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Abstract

Inductive programming has focussed on problems where data are not necessarily big, but representation and
patterns may be deep (including recursion and complex structures). In this context, we will discuss what really
makes some problems hard and whether this difficulty is related to what humans consider hard. We will highlight
the relevance of background knowledge in this difficulty and how this has influence on a preference of inferring small
hypotheses that are added incrementally. When dealing with the techniques to acquire, maintain, revise and use
this knowledge, we argue that symbolic approaches (featuring powerful construction, abstraction and/or higher-order
features) have several advantages over non-symbolic approaches, especially when knowledge becomes complex. Also,
inductive programming hypotheses (in contrast to many other machine learning paradigms) are usually related to the
solutions that humans would find for the same problem, as the constructs that are given as background knowledge
are explicit and shared by users and the inductive programming system. This makes inductive programming a very
appropriate paradigm for addressing and better understanding many challenging problems humans can solve but ma-
chines are still struggling with. Some important issues for the discussion will be the relevance of pattern intelligibility,
and the concept of scalability in terms of incrementality, learning to learn, constructive induction, bias, etc.
Keywords: Inductive programming, deep knowledge, big data, incremental learning, constructive induction, knowl-
edge bases.

1 Introduction

Much attention has recently been cast on Big Data [/, '] and Deep Learning [’]. While this attention
is deserved, we see that some important challenges in computer science and artificial intelligence lie in the
construction of systems that are able to acquire and use both previous knowledge and context information
[] to deploy solutions for some unexpected situations. Learning to learn, meta-learning, transfer learning,
incremental learning, context-aware computing, are terms of possible approaches for this. These approaches,
however, are limited by a still inappropriate handling of knowledge: as knowledge becomes more complex and
abstract, it is no longer processed in a completely automatic way. In fact, while the capability of automatically
storing and handling factual, textual, numerical and statistical information has increased exponentially over
the years, dealing automatically with knowledge bases of arbitrary depth and sophistication has increased
at a much lower pace. Expert systems and knowledge-based systems have clearly improved, and the use
of ontologies has provided more depth, but most knowledge bases are still based on sets of rules over some
predefined features and concepts, where an abstract and constructive learning is not fully integrated (apart
from some kind of incrementally learning more rules). Basically, the constructs and elements the system
deals with after a time are the same it had initially. All of these uses are basically the knowledge acquisition,
handling and application problem [, 77], but where depth (and not necessary size or diversity) is the
change.

On many occasions, the above problems have nothing to do with big data. In fact, much learning in
humans and many of the prospective applications that machines cannot solve today work with small data.
More precisely, each particular inference is not performed from a large number of examples, but just a few.
Once a small piece of knowledge is integrated, other (small) inductive inference processes can take place,



incrementally. In other words, each new example is added to the knowledge base, which may force an
increment or revision of the existing knowledge with generalisation or abstraction mechanisms.

The above problems are related to the deep learning approach, as architectures, concepts and features
are said to be hierarchical. However, most deep learning approaches are based on artificial neural networks
and other statistical approaches, and it is not clear how knowledge can be accessed, revised and integrated
with other sources of knowledge.

In this short note we discuss on the appropriateness of inductive programming as a learning paradigm that
may facilitate the acquisition, integration, modification, maintainance and application of deep knowledge,
where new constructs and concepts can be developed, and being examined and evaluated because of the
intelligibility of symbolic languages. We include many pointers for further reference. But this large number
of references does not mean that we aim at being comprehensive nor exhaustive; this is just a position
paper where we suggest that inductive programming can be the right approach for a series of fundamental
problems to make machines learn from experience in a more incremental and constructive way. Henceforth,
I recommend to read some of the surveys about inductive programming [/, 7/, 20, (] before reading this
note. The site http://inductive-programming.org is also an excellent source as an overview of inductive
programming, its community, events and systems.

2 Deep data, deep knowledge

Data can be small or big, but it can also be shallow or deep. Shallow or flat data is the common data
representation in machine learning, where data is in a form of a table, where each column is a scalar
feature. Deep data is usually characterised by existing relations between features, between examples, with
the existence of complex structures such as lists, sets, trees, graphs, etc. Some deep data (toy) examples
have been used in the literature of inductive logic programming and inductive programming, such as the

East-West trains dataset [(7], mutagenesis [/7], block towers [*/], the rectangle problems [ ], Bongard
problems [/ (], to name a few. Of course, natural language is also a source of complex data, and grammar
inference [ /] is one of the areas where this deep structure is unravelled.

In the same way, knowledge can either be small or big, but it can also be shallow or deep. Shallow (flat)
knowledge can be represented by series of propositional rules, e.g., as those extracted from many association
rule algorithms. Also, many expert systems are composed of hundreds or thousands of rules, but the features
or concepts they handle have a predetermined flat structure. In contrast, some problems require theories
that are deep, including different datatypes, structures, variables and recursion. The typical example of a
deep theory or model is a program or algorithm. Handling knowledge bases that are composed of programs
and algorithms is not an easy task, such as software repositories (to be precise, knowledge usually has some
truth connotations, while software repositories are operational). We are interested in knowledge that can be
learned semi-automatically. Examples of learning deep knowledge are any model that is able to capture the
underlying patterns behind any of the deep data examples above, but many other diverse examples have been
mentioned in the literature: learning algorithm or function implementations such as quicksort [/ 7], learning
the product from the addition [’ 7], learning properties of lists [ ], learning relations with probabilities [ ],
learning modal concepts [], to name a few.

Complex structured (in the form of structured data types or structured prediction) do not entail an
inductive programming approach. Kernels, distances or other notions ['7, ”7] can be used to convert a
structured problem into a scalar feature representation. In fact, structured machine learning can include
or not inductive (logic) programming techniques. Even the field of Statistical Relational Learning [ '] goes
beyond what inductive (logic) programming has been.

3 What’s distinctive about inductive programming?

Inductive programming has emerged as a general term to refer to inductive inference with the use of pro-
gramming languages. The term appeared in the late 1980s [, 7] as a generalisation of both inductive
functional programming (learning with functional programming languages such as Lisp) and inductive logic
programming (learning with logic programming languages such as Prolog), which was steadily growing in
the 1960s, 1970s and 1980s [, =%, =7, 02, 00, 1, 2, 50, U1]. An inductive programming special interest group
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was also created [']. Some of the early works were produced in the context of artificial intelligence, while
others took place in the context of program synthesis from examples. This wide range of applications and
origins has been a distinctive trait of inductive programming, even from the first uses of the term, from
software [(] to robotics [].

Also, inductive programming is naturally associated with machine learning, although the term ‘symbolic

learning’ was used in contrast to the so-called connectionist approach [/, = ]. While this opposition seems to
be no longer a big issue in artificial intelligence (as many hybrid approaches exist [ (] and many ways of bridg-
ing non-comprehensible models into comprehensible patterns have been studied [ 1, 20, 70, 22, 5] 20 20)), it

is still meaningful, at least in the context of machine learning. However, inductive programming has usually
been associated with the notion of algorithmic models, possibly using variables and recursion, while symbolic
learning is more usually associated to the use of rules, which can be just propositional. Nowadays, although
the term inductive programming has been occasionally used to cover some non-declarative approaches to
machine learning [ ] there seems to be some consensus in its use for symbolic approaches [0, 7, 20, 20].

The term ‘symbolic’ may mean many things, including Turing machines. In praactice, the languages
used in inductive programming for the representation of examples, hypotheses and background knowledge
have been varied in terms of several features:

e Semantics: logical, functional, functional logic, hybrid...
e Conditions: unconditional, conditional, constraints...
e Expressive power: propositional, first-order, higher-order...

e Uncertainty and probability: close-world, open-world, abductive, probabilistic, stochastic, Bayesian...

Beliefs and dynamics: modal, action...

Clearly, inductive logic programming [/, '] has covered many of the previous paradigms, and it is the
area that has been more active in the past twenty years. Nonetheless, other areas in artificial intelligence,
machine learning, evolutionary computation, inductive inference, formal methods, functional programming
and cognitive science have also contributed with techniques and systems that can be considered part of in-
ductive programming. And many categories are no longer strict. For instance, the hybridisation of functional
and logic programming led to the idea of inductive functional logic programming, and some of the associ-
ated papers were published in ILP conferences, functional programming conferences or artificial intelligence
indistinetly [/, 10, 20, 27]
So, what is distinctive about inductive programming? Several characteristics have been suggested:

e Examples include relations between objects.

e Features are non-scalar.

e Patterns are constructive, rather than flat.

e Use of variables or constructor terms (or both).
e Use of recursion.

e Models can be comprehensible.

However, not all of these features are found in every particular inductive programming approach.

One possible inclusive characterisation of inductive programming can be the inductive inference using
symbolic languages that are (nearly) Turing-complete. We use the term “symbolic languages” instead of a
more specific “declarative (programming) languages”, as imperative languages such as C' or Java are not
excluded, although it is much more usual to use declarative languages (functional, logical, etc.), because
inference is much easier. Also, we do not use “programming languages” or “learning of algorithms” because
we can consider languages that are not used for programming as a useful representation mechanism for
examples, hypotheses and background knowledge, such as description logic. Note that this characterisation
does not exclude the possibility of inductive inference from noisy or malicious data, while it is true that
many applications of inductive programming (and some systems) only deal with perfect examples.

The previous characterisation does not fix any particular technique: refinement, analytical approaches,
schema-driven, top-down approaches, bottom-up approaches, genetic programming approaches, explanation-
based, generate-and-test, example-driven, Levin search, Monte Carlo, SAT solvers, etc. All of them are
possible approaches for inductive programming.



The previous characterisation is also compatible with a wide variety of applications, as learning with
complex representations is useful in many domains. For instance, the first workshop on Approaches and
Applications of Inductive Programming (AAIP) held in conjunction with ICML 2005 (http://wuw.cogsys.
wiai.uni-bamberg.de/aaip05/objectives.html) identified all applications where “learning of programs
or recursive rules are called for, are first in the domain of software engineering where structural learning,
software assistants and software agents can help to relieve programmers from routine tasks, give programming
support for endusers, or support of novice programmers and programming tutor systems. Further areas
of application are language learning, learning recursive control rules for Al-planning, learning recursive
concepts in web-mining or for data-format transformations”. Nonetheless, it is in program synthesis [ ],
programming by example [/, 7] or by demonstration [/ ] and automatic data manipulation ['!] where
inductive programming has found the most relevant and successful applications. Other areas where inductive
inference has been recently applied or may be applied are knowledge acquisition, artificial general intelligence
[ 7], cognitive systems [ ], intelligent agents, games, robotics, personalisation, ambient intelligence and
human interfaces.

4 What makes an inductive problem hard

If we are not particularly interested in big data (at least not learning from huge amounts of data at a
time), where does the difficulty come from? Clearly, in inductive programming, the difficulty comes from
the expressive power of using (nearly) Turing-complete languages, with the use of things such as constructor
terms and recursion. But let us analyse where the difficulty lies exactly. First of all, we will limit our
analysis to the difficulty of problem instances instead of problem classes. This distinction is important, as
many problems in the same class are easy while many others are very difficult. In fact, considering problem
instance is consistent with our use of Turing-complete languages, where we know that induction is not only
intractable but incomputable, in general.

There are four main ingredients to determine the difficulty of a learning instance: the data D, the target
model(s) or hypothesis h, the hypotheses space H and background knowledge B (which has influence on
H). The direct question can be: are each of them big and deep? Actually, we need to consider all of them
together to make a meaningful question from this. First, it is insightful to think about B and H together
(as the bias). Second, it is important to realise that B has a dual effect, namely:

e If the background knowledge B does not contain key auxiliary concepts, the problem becomes very
difficult as the concepts need to be invented, but

e If the background knowledge B contains too many auxiliary concepts, the problem is now how the
appropriate auxiliary concepts are chosen.

In fact, the order of finding a hypothesis h with background knowledge B is in O((|h|-|B|)!h|). From here, we
can be tempted to reduce B. However, as fewer auxiliary concepts are provided, they have to be created, and
h becomes much larger, which is base and exponent here. So, the problem of induction becomes tractable
when h is syntactically very small (the exponent), but a selection on B can be made.

Note that the number of examples is not included in the above considerations. We are assuming them
to be a small number. But note that we also reach the conclusion that the hypothesis has to be small.
In other words, at each small induction step, tractability for Turing-complete languages only seems to be
possible if learning infers a small hypothesis from small data. This is precisely what inductive programming
has been specialised in, learning small chunks of code or algorithms from a few examples. It is important
to highlight that complex (deep) concepts can only be expressed shortly if powerful abstract constructs have
been introduced previously and are available in the background knowledge.

If we look at how humans learn, we see some similarities. For instance, the constraints about hypothesis
size is well known, as humans have important limitations on working memory, so complex hypotheses can
only be constructed over previously derived or existing concepts [/(]. Humans are not good at big data
(except for perception mechanisms: e.g., vision, speech, music, etc.). In contrast, humans are good at
appropriately handling B, both in the way it develops and is refined, and in the way it is applied to new
problems. In fact, in humans, difficulty depends on how unrelated or non-contextual the solution is w.r.t.
previous knowledge.
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This sets a different view of scalability for inductive inference, where the key issue is the size of knowledge.
In humans, e.g., fluid vs. crystallised intelligence are distinguished, where fluid intelligence is affected by
scalability on D, H and h, and crystallised intelligence is also affected by scalability on B.

As a result, we need new ways of comparing inductive systems such that the role of background knowledge
is taken into account. First, many different kinds of problems have been used in ILP, IP, AI, ML and program
synthesis, but we only have informal assessments of their difficulty. Second, some systems are able to solve
them from scratch, others with background knowledge. Third, some systems are able to solve just one type
of problems, others are more general. Consequently, we need libraries of problems (featuring deep data and
deep background knowledge), to really know what the challenges are, when there is real progress, etc. The
construction of new benchmarks can originate from real problems: e.g,. program synthesis, ILP problems, Al

problems and IQ tests provide some starting collection, as done in [!7] with a systematic assessment of their
properties la [0, 70] or with artificial problems (possibly enriching existing approaches for flat artificial
dataset generators [0, (7]). Also, the difficulty of the problems can be set subjectively (e.g., relative to

humans) or can be derived theoretically (e.g., using algorithmic information theory, [ 17, 11, [1].

5 Big deep knowledge

Naturally, the idea of learning incrementally, as well as the construction and contextual application of
(large repositories of ) background knowledge or function libraries for inductive problems has been a key and
recurrent issue in the past:

e Incrementality (data [, *7] and knowledge [0, 01, =0, 11]), repeat learning [ !].

e Learning to learn, meta-learning, incremental self-improvement [/], policy reuse [/, (7, (7]
e Function and predicate invention [/, 70, (]

e Constructive induction [/ ] and constructive reinforcement learning [!"].

e Meta-knowledge [, (7], declarative bias [ /], transfer learning, relational reinforcement learning , beliefs
and modality [*7].

o (Interactive) Theory Revision ", |7], Theory completion [/ ].
e Integration with abduction [’*] and deduction.

e Representation, knowledge level change and learning [/ '],

e Use of large repositories of functions or predicates [ '],

e Knowledge dependency and redundancy, what to keep explicitly and implicitly (inductive and deductive
gains) [1],
e Learning and evolution in expert systems and knowledge-based systems [/, |, 7]

Some of these areas are oldies (but goldies) in Inductive Logic Programming (ILP), Inductive Programming
(IP), program synthesis, Al, cognitive science and other areas. Many also have recently had a new revival.

While some of the above approaches are not in the scope of inductive programming, now we will argue
that inductive programming (in any of its forms, including, of course ILP) is appropriate for this problem.
First, we must acknowledge that in machine learning and even artificial intelligence, two paradigms are
now predominant: the connectionist approach and the statistical-probabilistic approach (if they can now
be considered different approaches, as the mathematical interpretation of neural networks as non-linear
discriminants sets a continuum between the two). Even in cognitive science, and robotics, the use of neural
networks seems to be preferred, as the human and animal brains are based on (natural) neural networks.
Actually, the deep learning paradigm is largely influenced by both the statistical-probabilistic approach and
the connectionist approach.

Inductive programming, while clearly different to the way humans brains work, has several advantages.
First, as knowledge grows but systems do not develop natural language, it becomes more and more difficult
to analyse, supervise, fix and understand the knowledge of a system if it is not represented internally
in an intelligible way. Using inductive programming does not ensure this introspection, but can make it
possible. In contrast, connectionist systems are much more difficult to understand once they begin to have
emergent property. For instance, when a system integrates millions of neurons in several subsystems, and



mentally develop for days or even weeks, how can we supervise and understand this knowledge? For instance,
Spaun[~ '], an impressive brain model based on millions of neurons that is able to do several tasks, including
some list processing, is difficult to understand and really see how some problems are solved. For instance, it
is difficult to check whether Spaun solves list problems by capturing the recursive concept of a list structure
or because it uses some shortcuts (such as recognising the first and last element).

Secondly, many tools for handling knowledge have been developed with symbolic or rule-based approaches,
such as theory revision, consistency check, adding or removing constraints, etc. In fact, we can understand
many pieces (or all) of H, h, D and B. This can hold in the short, mid and long terms for B. We can
provide start-up knowledge By. We can revise and fix their knowledge. We have tools to combine different
sources of knowledge. Agents can exchange knowledge before they can develop any (natural) language. In
the end, many applications require model understanding (scientific discovery, multi-agent systems, software
engineering, engineering modelling...). In particular, cognitive science, development robotics and robot
programming by demonstration are also areas where this application can be more productive because of
additional reasons: inductive programming hypotheses are usually related to the solutions that humans
would find for the same problem, we can understand the solutions reached by the system and we can see
explicitly the mental constructs the system has been given. Several examples are proliferating: common
cognitive tasks [ 7], cognitive tutors [/], analysis of number or symbol series tasks [/, ], etc.

All this is basically a vindication of symbolic Al and symbolic learning, but some considerations have
to be made. Deep learning, and other paradigms, illustrate that new concepts, feature transformations and
abstractions need to be learned. This cannot be done with rule-based symbolic systems that are not able to
construct new concepts. This was one of the reasons why symbolic representation was criticised in the 1980s
and 1990s [']. In other words, if deep learning suggests that multi-level architectures of several conceptual
levels are needed for emergence or more complex constructs, we say that knowledge representation languages
must be able to use notions such as higher-order functions, predicate/function invention and other kinds of
abstractions, so that emergence can take place. The field that has worked on these ideas in the past decades
is precisely inductive programming.

6 Discussion

One of the motivations of this note was to put emphasis on the idea that learning from small data is
interesting and useful, and also that it can be difficult if the data is deep, especially if we have an expressive
language and a rich deep knowledge. In fact, some phenomena have been observed when learning takes place
in the context of large knowledge bases, such as decreased performance when the knowledge base gets larger
[0, 1=, 19]. Many pointers have been included, but it is more evident that much more needs to be done
on knowledge acquisition and reuse. We have (briefly) argued that inductive programming is a good way to
address the knowledge acquisition problem.

As a final remark, I would like to criticise a research bias towards disposable learning and disposable
research. We have all created many systems that learn from data again and again, and start completely void
for each application, without any knowledge acquisition and reuse. Creating incremental systems that need
to acquire knowledge and keep this knowledge to improve their learning abilities is a challenge that requires
a more continuous effort and larger teams, as results can be discouraging initially: newborn baby inductive
programming systems are not expected to be very useful until they can be trained and can fully develop.
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