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Abstract. In this work, we consider the extension of the Inductive Func-
tional Logic Programming (IFLP) framework in order to learn functions
in an incremental way. In general, incremental learning is necessary when
the number of examples is infinite, very large or presented one by one.
We have performed this extension in the FLIP system, an implementation
of the IFLP framework. Several examples of programs which have been
induced indicate that our extension pays off in practice. An experimental
study of some parameters which affect this efficiency is performed and
some applications for programming practice are illustrated, especially
small classification problems and data-mining of semi-structured data.
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1 Introduction

Since the beginning of the last decade, Inductive Logic Programming (ILP) [14]
has been a very important area of research as an appropriate framework for the
inductive inference of first-order clausal theories from facts. As a machine learn-
ing paradigm, the general aim of ILP is to develop tools, theories and techniques
to induce hypotheses from examples and background knowledge. ILP inherits the
representational formalism, the semantical orientation and the well-established
techniques of logic programming. The ILP learning task can be defined as the
inference process of a theory (a logic program) P from facts (in general, positive
and negative evidence) using a background knowledge theory B (another logic
program). More formally, a program P is a solution to the ILP problem if it
covers all positive examples (BU P | ET) and does not cover any negative
examples (BUP = E7).

ILP has provided an outstanding advantage in the inductive machine learn-
ing field by increasing the applicability of learning systems to theories with more
expressive power than propositional frameworks. Functional logic languages fully
exploit the facilities of logic programming in a general sense: functions, predi-
cates and equality. The inductive functional logic approach (IFLP) [9] is inspired
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by the idea of bringing these facilities to the mainstream of ILP [13]. From a
representational point of view, IFLP is at least as suitable for many applications
as ILP, since FLP programs subsume LP programs. Moreover, many problems
can be stated in a more natural way by using a function than a predicate. For
instance, classification problems are solved in ILP by using predicate symbols
such that one of their arguments represents the class.

A learning system is incremental if the examples are supplied one (or a few) at
a time and after each one the system induces, maintains or revises a hypothesis.
This operation mode is opposite to that of non-incremental systems (known
as batch systems) for which the whole evidence is given initially and does not
change afterwards.

Incrementality in machine learning is a powerful and useful technique that
tends to improve performance by reducing the use of resources. In regard to
spatial resources, many problems can consist of a large evidence, which cannot
fit in memory, and an incremental handling of this evidence is a straightforward
and convenient solution (there are, of course, other solutions, such as sampling
or caching). Secondly, there is also a temporal resources improvement, since in-
duction is much more computationally expensive than deduction. Incrementality
allows the establishment of a hypothesis in the early stages of the learning pro-
cess. If this hypothesis is stable, the next work will be deductive in order to check
that the following evidence is consistent with the current hypothesis. Moreover,
there are other reasons for using an incremental learning approach|[2]: it may be
impossible to have all examples initially or even its number cannot be known.
In this sense, incrementality is essential when the number of examples is infinite
or very large. This is the case of knowledge discovery from databases [6].

Incrementality has been studied by the ILP community. Some incremental
ILP systems are CLINT [17], MOBAL [12], FORTE [19] and CIGOL [15]. On
the other hand, predicates which are already known (learned) can be used as
background knowledge in learning new predicates, and so on. This allows the
learning of programs which define more than one concept at the same time in a
way that is also incremental [18].

In this paper we present an incremental algorithm for the induction of func-
tional logic programs. Starting with the IFLP general framework defined in [8],
we focus on the case of learning one target concept from an evidence whose ex-
amples are given one by one. The IFLP framework has been implemented as the
FLIP system [5]. We extend its main algorithm in order to make it incremental.

The paper is organised as follows. In Section 2, we review the IFLP frame-
work and the FLIP system. Section 3 defines an incremental IFLP algorithm
and extends the FLIP system according to this improvement. From this point,
the system can operate not only as an incremental or non-incremental theory
inducer but as a theory evaluator/reviser if one or more initial theories are pro-
vided. Some results and running examples are presented in Section 4. Finally,
Section 5 concludes the paper and discusses future work.



2 IFLP Framework

IFLP can be defined as the functional (or equational) extension of ILP!. The
goal is the inference of a theory (a functional logic program? P) from evidence (a
set of positive and optionally negative equations E). The (positive and negative)
examples are expressed as pairs of ground terms or ground equations whose right
hand sides are in normal form wrt. B and P. Positive examples represent pairs
of terms that will have to be proven equal using the induced program, whereas
negative examples consist of pairs of terms, where the lhs term has a normal form
different from the rhs term. In this section we briefly review the IFLP framework
and its implementation. More complete descriptions of the framework and the
system can be found in [8][9][5].

The IFLP framework is based on a bottom-up iterative search which gener-
alises the positive examples. The generalisation process is limited by a number
of restrictions that eliminate many rules that would be inconsistent with old and
new examples or useless for the induction process. We name this limited gener-
alisation Consistent Restricted Generalisation (CRG). More specifically, a CRG
of an equation e is defined as a new equation e’ which is a generalisation of e (i.e.
there exists a substitution o such that ¢’c = ¢e), and there are no fresh variables
on the rhs of ¢ and €’ is consistent wrt. the positive and negative evidence.

The basic IFLP algorithm works with an initial set of equations (we denote
EH, Equations Hypothesis) and a set of programs (PH, Program Hypothesis)
composed exclusively of equations of EH. The new generalised equations ob-
tained from a first stage are added to EH (removing duplicates) and new unary
programs from each equation are generated, which are added to PH (removing
duplicates). From this new set PH, the main loop of the algorithm selects first
a pair of programs according to the selection criterion (currently, the pair which
covers more positive examples with the minimum length of the rules) and then
combines them.

Two operators for the combination of rules of each pair of programs have
been developed: a Union Operator, whose use is restricted in order to avoid
non-coherent solutions, and an Inverse Narrowing operator, which is able to
introduce recursion in the programs to be induced. The union operator just
gives the program resulting from the union of other two programs. The inverse
narrowing, on the contrary, is more sophisticated. This operator is inspired by
Muggleton’s inverse resolution operator [13]. An inverse narrowing step has as
input a pair of equations: the receiver equation e, and the sender equation e,. In
an informal way, the sender rule is reversed and a narrowing step is performed

! It is obvious that any problem expressed in the ILP framework can also be expressed
in the IFLP framework, because all the positive facts ] of an ILP problem can be
converted into equations of the form e = true and all the negative facts e; can be
expressed as e; = false.

A functional logic program is a logic program augmented with a Horn equational the-
ory. The operational semantics most widely accepted for functional logic languages
is based on the narrowing mechanism [7].



to each of the occurrences of the rhs of the receiver rule. In this way, there are
as many resulting terms as occurrences to which the sender rule can be applied.
Each of these terms are used as rhs of new rules whose lhs’s are the lhs’s of
the receiver rule. These rules are the output of the inverse narrowing step. For
instance, consider e, : X +s(0) = s(X) and e; : X +0 = X. Reversely using the
sender equation in two different occurrences of the rhs of the receiver equation
we can construct two different terms: s(X + 0) and s(X) + 0. The resulting
equations are X + s(0) = s(X +0) and X + s(0) = s(X) + 0. This mechanism
allows the generation of new programs starting with two different rules. The new
rules and programs produced by the application of inverse narrowing are added
to the set of rules and programs FH and PH.

The loop finishes when the stop criterion (StopCrit) becomes true, usually
when a desired value of optimality has been obtained for the best solution or
a maximum number of loops has taken place. In the first case, one or more
solutions to the induction problem can be found in a rated PH. In the latter
case, partial solutions can be found in PH.

For the induction of programs using background knowledge we use the fol-
lowing method. It permits the introduction of function symbols from background
knowledge into the program that is being induced. Briefly, the method consists
of applying the inverse narrowing operator with a rule from the background
theory. In this way it is possible to obtain new equations with the background
function in their rhs. For instance, if the background theory B contains the equa-
tion sum(X,0) = X, then the equation prod(X,0) = 0 can be used to generate
prod(X,0) = sum(0,0) by the application of inverse narrowing. In this way,
we have introduced a function from the background theory into the induction
process.

2.1 The FLIP system.

To implement this algorithm we have built the FLIP system. FLIP is a project
built in C, that implements the Inductive Functional Logic Programming frame-
work. The system includes an interface, a simple parser, a narrowing solver, an
inverse narrowing method, and a CRG generator (see [5] for details).

We have tested our system with several examples of different kinds. FLIP
usually finds the solution after a few loops, but, logically, this depends mainly
on the number of rules of the solution program and on the ‘quality’ of the
initial examples. The length of the induced program is not limited. However,
each new rule requires at least one iteration of the main loop. Consequently,
FLIP deals better with shorter hypotheses. The main interest (and complexity)
appears when learning recursive functions. In this sense, some relevant recursive
functional logic programs induced without the use of background knowledge can
be seen in Table 1.

Functions such as app are more naturally defined as a function than as a
predicate. No mode information is then necessary. It should be highlighted that



Induced program

Description

Steps

sum(s(X),Y) = s(sum(X,Y))
sum(0,Y)=

Sum of two natural numbers

length(-(X, Y)) s(length(X)) Length of a list 2
length(\)=0
consec(+(X,Y)) = consec(X) Returns true if there exist |1
consec(-(-(X,Y),Y)) = true two consecutive elements
in a list
drop(0,X) = X Drops the N last elements |1
drop(s(X),-(Y,Z)) = drop(X,Y) of a list
app(-(X,Y),Z) = -(app(X,Z),Y) Appends two lists 1
app(A.X) = X
member(-(X,Y),Z) = member(X,Z) Returns true if Z is in 1
member(- (X,Y) Y) = true a list
last(-(X,Y)) = t(X) Last element of a list 1
last(-(\,X)) =
geq(s(X), ( ) = geq(X,Y) Returns true if the first 1
geq(X,0) = true element is equal or greater
than the second
sum(s(X),Y) = s(sum(X,Y)) Addition and Multiplication |3
sum(0,Y)=Y at the same time
prod(s(X0),X1) = sum(prod(X0,X1),X1)
prod(0,X0) = 0
mod3(0) = 0 The mod 3 operation 3
mod3(s(0)) = s(mod3(0))
mod3(s(s(0))) = s(s(mod3(0)))
mod3(s(s(s(X0)))) = mod3(XO0)
even(s(s(X)) = even(X) Returns true if natural 1
even(0) = true number is even

Table 1. Recursive programs induced without background knowledge®

the FLIP system is not restricted to learn one function at a time, as can be shown
for the sum & prod functions, which are induced together from a mixed evidence.

Finally, with the use of background knowledge, more complex problems can
be generated, as is illustrated in Table 2.

The results presented in this section were obtained by randomly selected ex-
amples. Evidence was relatively small in all cases: from 3 to 12 positive examples
and from 2 to 11 negative examples. For a more extensive account of results,

examples used, etc. please visit [4].

3 The constructor symbols s,
function symbols, respectively.

- and A represent the successor, insert and the empty list




Induced program Description Bkg. |Steps
rev(-(X0,X1)) = app(rev(X0),-(A,X1)) |Reversal of a list|append|2
rev(A) = A

suml(-(X0,X1)) = sum(suml(X0),X1) Sum of a list of |[sum |1
suml(-(A,X0)) = X0 natural numbers
maxl(-(X0,X1)) = max(X1,maxl(X0)) |Max of a list of |max |1
maxl(-(A,X0)) = X0 natural numbers
prod(s(X0),X ) = sum(prod(X0,X1),X1)|Product of two |sum |1
prod(0,X0) = natural numbers
fact(s(X0)) = prod(fact(XO) s(X0)) Product of two |prod |4
fact(0) = s(0) natural numbers [sum
sort(-(X0,X1)) = inssort(X1,sort(X0)) |Inefficient sort |inssort,|1
sort(A\) = A of a list gt, if

Table 2. Some programs induced with background knowledge

3 Incrementality in IFLP

In this section we present an extension of the IFLP algorithm in order to make
it incremental.

Given the current best hypothesis P selected by the algorithm, three possible
situations can now arise each time that a new positive example e is presented:

Definition 1. HIT. ¢ is correctly covered by P, i.e., P = e.

Definition 2. NOVELTY. Given the old evidence OF, a novelty situation is
given when e is not covered by P but consistent, i.e., P £ e A Ve € OF :

Pu{e} =¢.
Definition 3. ANOMALY. e is inconsistent with P i.e., P = —e.

Both novelty and anomaly situations will require the revision of the current best
hypothesis in order to match the new examples. In the first case, the theory must
be generalised in order to cover the new evidence, whereas in the other case, it
must be specialised in order to eliminate the inconsistency. Hence, the topic
known as theory refinement [21,22] is a central operation for incremental learn-
ing. The incremental reading of negative examples can also be contemplated,
but in this case only hits and anomalies are possible.

As has been commented in the introduction, incremental learning forces the
introduction of a revision process. Let us denote by CoreAlgorithm the algo-
rithm which induced a solution problem from an old and new positive (and
negative) evidence and a background knowledge given an initial set of hypothe-
ses and an initial set of theories (programs). The calling specification of the
algorithm is:

CoreAlgorithm(OE",OE~,NET NE~,B, EH, PH, StopCrit)



This algorithm generates the CRGs from the new positive evidence (although
consistency is checked wrt. both old and new evidence: OET,OE~, NET and
NE™).

The algorithm starts with the initial sets EH and PH which can be both
empty. The first process is the generalisation of the new positive evidence NET.
The old positive evidence OE™ is only used for checking consistence of these
generalisations, as well as the old and new negative evidence OE~ and NE™.
When learning non-incrementally, OE™ and OE~ are usually empty. The result
of the CRGs is added then to EH (removing duplicates) and generates unary
programs which are added to PH. Then, the algorithm enters a loop which has
been described in the previous section until a program in PH covers both OE™
and NET (and consistent with old and new negative evidence) with a certain
optimality value given in the StopC'rit.

In any incremental framework the number of examples that should be read in
each iteration must be specified. The most flexible approach is the use of adapt-
able values, which can be adjusted by the use of heuristics. The simplest case,
on the contrary, is the use of a constant value, which is usually 1. In our case, we
have adopted an intermediate but still simple approach. We use an initial incre-
mentality value (start-up value) which is different from the next incrementality
value. The reason for different initial incrementality values is the CRG stage,
which may require greater start-up values than the next incrementality value,
which is usually 1.

According to the previous rationale, new additional parameters are required
in our algorithm: isr is the initial positive incrementality value (start-up value),
which determines how many positive examples are read initially. ¢, is the initial
negative incrementality value. T is the positive incrementality value and i~ is the
negative incrementality value, which determine how many positive and negative
examples are read at each incremental step. With these four parameters, the
overall algorithm can be generalised as follows:

OverallAlgorithm(E™, E~, B, PH, StopCrit, OptimalityCrit,id iy ,it,i~, no_rev)
begin
OE" := (), OE™ :=() // old examples
IET .= (, IE~ :=( // ignored examples
EH := ExtractAllEquationsFrom(PH)
PH := PHU{EH} // adds equations from FH as unary programs
NET := Remove(&E™,if) // extracts the first ig elements from E™T
NE~ := Remove(&E™ i) // extracts the first i5 elements from E~
CoreAlgorithm(OEY,OE~ ,NET,NE~,B,&EH,&PH, StopCrit)
while (E™ # 0) or (E~ # 0) do
BestSolution:= SelectBest(P H, OptimalityCrit)
NE' := Remove(&E™,it) // extracts the first it elements from E*
NE™ := Remove(&E™,i") // extracts the first i~ elements from E~
if Bestsolution = NE" and Bestsolution £ NE~ then // Hit
IEY := IET UNE" // the new + and - examples are ignored



IE~ := IE~ UNE™ // and the Best Solution is maintained
else // Novelty or Anomaly. The sets are revised
RecomputeCoverings(& EH, &PH,IEY IE~,NET NE™)
// recomputes the coverings of equations and programs wrt.
// the new examples and (optionally) the ignored examples
{ NET := IET UNE™ } // Option. Ignored + examples are reconsidered
{ NE~ :=1E~ UNE™ } // Option. Ignored - examples are reconsidered
BestSolution:= SelectBest(PH, OptimalityCrit)
if not (Bestsolution = NE* and Bestsolution [ NE~) then
if not no-rev then
CoreAlgorithm(OEY,OE~ , NEY, NE~, B, &FEH,&PH, StopCrit)
endif
OE" := OET UNE™; // the new + examples are now added to old
OE™ :=OE~ UNET; // the new - examples are now added to old
endwhile
return BestSolution:= SelectBest(P H, OptimalityCrit)
end
Plainly, the algorithm considers two cases (if-else). The first one is given when
the best solution covers and is consistent with the new examples. In this case,
the new examples are ignored (included in the sets IET and [ E~) and nothing
else happens. This has been done in this way because if the right solution is
found soon, the algorithm is highly accelerated as it only performs a deductive
checking of subsequent examples.

In the case of a novelty or anomaly, the EH and PH sets are re-evaluated.
The existing information for old evidence is reused, but the values are recom-
puted for the new examples. Ignored examples of previous iteration can be taken
into account, depending on a user option. The result is that some equations and
programs can be removed because they are inconsistent. The optimality of the
elements of both FH and PH is recomputed from the old ones and the covering
of the new examples. Then the best solution is obtained again in order to see
whether there is a solution to the problem. In this case, nothing is done. Other-
wise, the procedure CoreAlgorithm is activated, which will generate the CRG’s
for the new examples as we have seen before and will work with the old FH and
PH jointly with the new CRG’s until a solution is found.

This new algorithm allows a much richer functionality for FLIP. This can now
accept a set PH of initial programs or theories Py, Ps, ..., Ps, a background the-
ory B and the examples. If these initial programs are not specified, FLIP begins
with no initial program set. If one or more initial programs are provided, FLIP
will build FH from all the equations that form the initial programs (avoiding
duplicate equations) and will generate a PH for each program.

In this way, FLIP is at the same time:

— a pure inducer: when there are no initial programs.

— a theory reviser: when a unique initial program is given. The program will
be preserved until an example forces to ‘launch’ the CoreAlgorithm.



— a theory reviser/evaluator: when several initial programs are given and
n examples are provided with a value of (positive) incrementality ig < n.
In this case, the SelectBest function selects the best one wrt. the if first
examples. This program will be compared with subsequent examples and
could be changed accordingly. In the end, FLIP will indicate which initial
program (or a new derived program) is better wrt. the n examples. If ij > n
FLIP will be just an evaluator if the theories are consistent with all the
examples.

— a theory evaluator: when the no-rev option is selected, several initial
programs are given and n examples are given with a value of (positive)
incrementality ia' > n. In this case, the optimality criterion is applied and
the best program wrt. the n examples is chosen. Consequently, FLIP simply
indicates which of the initial programs is the best wrt. the evidence. The
additional condition no-rev of the overall algorithm precludes the theories
to be revised and new equations and programs to be generated.

Initial theories, negative examples and background knowledge are optional for
the incremental FLIP system. The positive examples are also optional because
FLIP can also work as a theory evaluator for negative evidence only.

At the present FLIP implementation, both if and i, are specified by the
user, and 47 = 1 and i~ = 0. The use of i~ > 0 does not affect considerably
the efficiency of the algorithm since the CRG’s are generated only for the posi-
tive examples. Moreover, negative examples are not necessary for classification
problems with a finite number of classes, due to the nature of functional logic
languages. In any case, the parts of a theory which the user wants to be fixed
should be specified in the background knowledge.

With regard to the automated evaluation possibilities of FLIP, it is possibly
the most direct application for programming practice. As has been commented
in [10], selection criteria from machine learning can be used to automatically
choose the most predictive model of requirements, in order to reduce modification
probability of software systems. Although in the next subsections we will center
on generation and revision for small problems, the scalability of FLIP for large
problems can be shown in the evaluation stage of software development.

4 Results and applications

To study the usefulness of our approach, we have performed some experiments
using the FLIP system.

4.1 Extending ILP and IFLP applications

Apart from classical ILP problems, the first kind of application for which IFLP is
advantageous is the dealing with semi-structured data, an area that is becoming
increasingly more important. Most information in the web is unstructured or
semi-structured. In order to do this, learning tools should be able to cope with
this kind of data.



FLIP is able to handle these problems because it can learn recursive functions
and can work with complex arguments (tree terms).

Ezample 4. Given an eXtended Mark-up Language (XML) document [1] which
contains information about the good customers of a car insurance company (cus-
tomers with a 30% gratification):

<goodc> <name>john</name> <has_children/> </goodc>

<goodc> <married/> <teacher/> <has_cellularphone/> </goodc>

<goodc> <sex>male</sex> <teacher/> <name>jimmy</name> </goodc>

this document cannot be addressed by usual data-mining tools, because the
data are not structured within a relation. Moreover the possible attributes are
unordered and of different number and kind for each example. Nonetheless, it
can be processed by our IFLP system FLIP by automatically converting XML
documents into functional terms trees. In this case, the resulting trees would be:

goodc (- (-(A,name (john) ) ,has_children))=30

goodc (- (- (- (\,married) , teacher) ,has_phone))=30,

goodc (- (- (- (\,sex(male) ,teacher) ,name (jimmy))))=30,

goodc (- (-(\,sex(female)),tall))=30,

goodc (- (-(\,nurse) ,sex(female)))=30,

goodc (- (- (-(A,browneye) ,likes_coffee) ,has_children))=30,

goodc (- (-(-(\,has_children) ,nurse) ,has_phone))=30,

goodc (- (- (- (\,name (jane)) ,plays_chess) ,has_children))=30,

goodc (- (-(-(A,has_children) ,name(joan) ) ,speaks_spanish))=30,

goodc (- (- (- (A,name (jane) ) ,sex(female))tall))=30,

goodc (- (- (- (- (\,name (jimmy)) ,teacher) ,sex(male)) ,tall))=30,

goodc (- (-(-((\,teacher) ,low_income) ,is_atheist) ,married))=30,

goodc (- (- (- (A\,name (mary) ) ,has_children) ,has_phone))=30
and the evidence for the other classes (customers with a 10% or 20% gratifica-
tion), extracted from bad customers:

goodc (- (-(\,sex(male)),tall))=10,

goodc (- (-(\,nurse) ,sex(male)))=20,

goodc (- (- (\,name (peter)) ,married) )=20,

goodc (- (- (- (\,married) ,policeperson) ,has_phone))=10,

goodc (- (- (- (\,name (charlie)) ,sex(male)) ,butcher))=10,

goodc (- (- (-(A,browneye) ,likes_coffee) ,sex(male)))=20,

goodc (- (-(-(\,plays_football) ,nurse) ,has_phone))=10,

goodc (- (-(-(\,susan) ,plays_chess) ,married))=20,

goodc (- (- (- (- (A, butcher) ,sex(male)) ,name (paul) ) ,speaks_spanish))=10,

goodc (- (- (- (\,name (steve)) ,sex(male) ) ,speaks_portuguese) )=10,

goodc (- (- (- (- (\,name(pat)) ,married) ,sex(male)) ,high_income))=20,

goodc (- (- (- (- (\,policeperson) ,atheist) ,has_phone) ,married))=10
The FLIP system returns the following solution:

goodc (-(X0,X1)) = goodc(X0)

goodc (- (X0,has_children)) = 30



goodc (- (X0,sex(female))) = 30
goodc (- (X0,teacher)) = 30
Note that the solution is recursive and covers semi-structured datasets.

The next example, originally appeared in [3], can illustrate the application
of the revision abilities of FLIP:

Ezxample 5. An optician requires a program to determine which kind of contact
lenses should be used first on a new young client/patient. The optician has many
previous cases available where s/he has finally fitted the correct lenses (either
soft or hard) to each young client/patient or has just recommended glasses. The
evidence is composed of 8 examples with the following attributes, parameter
ordering and possible values for them:

Age : #1 young
SpectaclePrescription: #2 myopia, hypermetropia
Astigmatism: #3 no,yes
TearProductionRate : #4  reduced, normal

The goal is to construct a program that classifies a new patient into the following
three classes soft, hard, no. After feeding FLIP with the 8 lens examples of young
patients from the database, it returns:

lens(X0,X1,no,normal) = soft
lens(X0, X1, yes,normal) = hard
lens(X0,X1,X2 reduced) = no

Consider that the optician wants to extend the potential clients. Now s/he deals
with three different kinds of age: young, prepresbyopic and presbyopic. S/he adds
16 new examples to the database with the results of the new clients. Using the
new and old examples, FLIP revises the old program into the following one:

lens(X0, hypermetropia,no,normal) = soft
lens(young, myopia,no,normal) = soft
lens(X0,myopia, yes,normal) = hard
lens(young, hypermetropia, yes, normal) = hard
lens(prepresbyopic,myopia, no,normal) = soft
lens(prepresbyopic, hypermetropia, yes,normal) = no
lens(presbyopic,myopia, no,normal) =no
lens(X0, X1, X2, reduced) =no
lens(presbyopic, hypermetropia, yes,normal) = no

4.2 Speed-up analysis

We have performed several other experiments with the new incremental version
of FLIP to learn well-known problems with and without knowledge (see [4] for the
source code of the problems). The inclusion of incrementality can highly improve



[ Benchmarks [ Non-inc. [ Inc. [ Speed-up| #Rules [ #Attributes |

sum 6.01 0.42| 14.30 2 2
length 13.96 |5.51 2.53 2 2
lenses 12.17 |2.15 5.66 9 4
prod 10.57 |2.22 4.76 2 + 2 bkg 2
maxlist 39.66 |2.27| 1747 |2 4 3 bkg 2

Table 3. Benchmark results for ig = 6 and 24 examples. The accuracy for all of them
is 100%

Sum
Length
Prod
Lenses
Maxlist

Seconds

4 6 8 10 12 14 16 18 20 22 24
Start- up value

Fig. 1. Times obtained in the induction of some problems depending on the start-up
value.®

the induction speed. Table 3 shows the speed-ups reached when inducing these
problems running FLIP. Times were measured on a Pentium III processor (450
Mhz) with 64 MBytes of RAM under Linux version 2.2.12-20. They are expressed
in seconds and are the average of 10 executions. The column Speed-up shows the
relative improvement achieved by the incremental approach for ig = 6, obtained
as the ratio Non-Incremental + Incremental.

One can think that the time can strongly oscillate depending on the start-
up value. Nevertheless, as we illustrate in Figure 1, the use of incrementality
generally improves induction time whereas the start-up value only affects the
speed-up. Figure 1 expresses the performances of rules of the resulting programs
induced for different problems, depending on the start-up value. The results

5 The points surrounded by a circle indicate experiments where the accuracy is below
100%.



show that increasing start-up values give increasing times, because induction,
especially CRG’s, are used more intensively. This is especially noticeable in the
case of the maxlist problem, because the size of examples is large, and CRG’s
are very time consuming. Although lower i values give the most efficient results,
there is also a risk of missing the good solution. This value is very dependent
on the number of attributes. For instance, in the case of the problems with 2
attributes, the optimal start-up value could be between 4 and 8 with some risk of
missing the target program at low values. For the lenses problem (4 attributes)
the optimal start-up value could be between 7 and 20. This suggests that the
start-up value can be estimated from the number of attributes (which, moreover,
is the only parameter that is known a priori).

Let us perform a more detailed study for a larger problem: the monks1 prob-
lem. This problem is a popular problem from the UCI ML dataset repository [16]
which defines a function such that monks1(., -, -, -, 1, -) and monks1(X, X, _, _, _, -).
It has a larger number of examples to essay and the function depends on 6 at-
tributes. The following table shows, as expected, that the speed-up increases as
long as the number of examples increases:

[ Benchmarks [ Non-inc. [ Inc. [ Speed-up| #Examples| #Rules | #Attributes ||

monks1 528 345 1.53 25 2 6
monks1 1075 344 3.13 50 2 6
monks1 2012 347 5.8 100 2 6
monks1 3286 350 9.39 150 2 6
monks1 4598 351 13.10 216 2 6
Table 4. Benchmark results for g = 14, and variable number of examples for the

monks] problem. The accuracy for all of them is 100%

We have also measured the speed-up for different values of the start-up value,
from 14 to 216. Figure 2 shows the results. Values below 14 are quite irregular
but, in general, are worse than those for 14.

5 Conclusions and future work

In this paper we have extended the induction of functional logic programs to
an incremental framework. Incremental learning allows the handling of large
volumes of data and can be used in interactive situations, when all the data are
not received a priori.

Although incrementality forces the introduction of revision processes, these
can be of different kinds. According to the complexity of revision, many ap-
proaches [20] [22] have been based on minimal revisions, which usually ‘patch’
the theory with some factual cases to cover the exceptions. These approaches
are more efficient in the short term but, since revisions are minimal, the re-
sulting theories tend to be more a patchwork and more frequently revised with
time [11] than a coherent hypothesis. On the contrary, our approach is based
on deep revisions (the whole inductive core algorithm is reactivated) until the
best hypothesis reaches a good score according to the evaluation criterion. This
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Fig. 2. Times obtained in the induction of the monksl problem depending on the
start-up value.

motivates that theories can be revised either by anomalies or novelties, and the
resulting theories output by FLIP are more coherent.

As future work we plan to implement ‘oblivion’ criteria in order to forget
old data that are redundant or that have been used in theories which are well
reinforced. ‘Stopping’ criteria should also be introduced in order to increase
the speed-up. Currently the speed-up is obtained because in the moment that a
hypothesis is stable, the rest of positive evidence is just checked deductively, and
the inductive process (the costly one) is not used. Among the stopping criteria we
are investigating two heuristics: one based on the number of iterations that the
hypothesis has remained unchanged and the other one based on the optimality
of the hypothesis. These could also be used in order to work with non-constant
incrementality values (currently ¥ = 1). In the same way, we want to study the
relation between FLIP performance and the use of different evaluation criteria
by using the evaluation mode of FLIP and a generator of examples that has
been recently developed. More ambitiously, we are working on an incremental
redesign of the CRGs in order to cope with a great number of attributes. In
this way, incrementality would be horizontal as well as vertical, allowing the use
of complex and large examples (lists, trees, etc.) that in many cases cannot be
handled non-incrementally. This would extend the range of applications of the
FLIP system to other kinds of problems: data-mining and program synthesis.
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