
Induction of decision multi-trees using Levin

search ⋆

C. Ferri-Ramı́rez J. Hernández-Orallo M.J. Ramı́rez-Quintana

DSIC, UPV, Camino de Vera s/n, 46020 Valencia, Spain.
{cferri,jorallo,mramirez}@dsic.upv.es

Abstract. In this paper, we present a method for generating very ex-
pressive decision trees over a functional logic language. The generation
of the tree follows a short-to-long search which is guided by the MDL
principle. Once a solution is found, the construction of the tree goes on
in order to obtain more solutions ordered as well by description length.
The result is a multi-tree which is populated taking into consideration
computational resources according to a Levin search. Some experiments
show that the method pays off in practice.

Keywords: Machine Learning, Decision-tree Induction, Inductive Logic
Programming (ILP), Levin search, Minimum Description Length (MDL).

1 Introduction

In a classification problem, the goal is to produce a model that will predict the
class of future examples with high accuracy from a set of training examples
(cases). Each case is described by a vector of attribute values, which represents
a mapping from attribute values to classes. The attributes can be continuous or
discrete, whereas we consider that the class can have only discrete values. One of
the most known classification methods is based on the construction of decision
trees. In a decision tree, each node contains a test on an attribute, each branch
from a node represents a possible outcome of the test, and each leaf contains a
class prediction. A decision tree is usually induced by recursively replacing leaves
by test nodes, starting at the root. Classic decision-tree learners such as CART
[2], ID3 [16], C4.5 [18] or FOIL [17] have given good results; however, they do
not have enough flexibility to trading result quality with processing cost.

In this paper, we present an algorithm for the induction of decision trees
which is able to obtain more than one solution, looking for the best one or
combining them in order to improve the accuracy. To do this, once a node has
been selected to be split (an AND node) the other possible splits at this point
(OR nodes) are suspended until a new solution is required. In this way, the
search space is an AND/OR tree [12] which is traversed producing an increasing
number of solutions for increasing provided time. Since each new solution is

⋆ This work has been partially supported by CICYT under grant TIC 2001-2705-
C03-01, Generalitat Valenciana under grant GV00-092-14, and Acción Integrada
hispano-italiana HI2000-0161

built following the construction of a complete tree, our method differs from other
approaches such as the boosting method [6, 19] which induces a new decision tree
for each solution. The result is a multi-tree rather than a tree. We perform a
greedy search for each solution, but once the first solution is found the following
ones can be obtained taking into consideration a limited computation time.
Therefore, our algorithm can be considered anytime in a certain way [3].

We focus on functional logic languages as representation languages. In the
Functional Logic Programming (FLP) paradigm [7], conditional programs are
sets of rules and, hence, they can also be represented as trees. The context of
this work is the generation of a conditional FLP program (a hypothesis) from
examples. This allows us to include the type information of the function profile in
the split criterion. On the other hand, since a function f is defined by equations
of the form f(X1, . . . , Xn) = Y , we consider the function result Y as another
attribute to be tested. All this extends the kind of tests performed in classical
decision-tree induction approaches.

Our method uses a heuristic based on the Minimum Description Length
(MDL) principle [21]. Hence, the decision tree is built in a short-to-long way.
The MDL principle has been previously used in the induction of decision trees
but just within the post-pruning phase [11, 20]. Also, the MDL principle has
been used as a stopping criterion (pre-pruning) [17], as a measure for globally
evaluating discretisations of continuous attributes [15], and for restructuring de-
cision trees [14]. In our approach, the MDL principle is used at the generation
phase which is justified because other quality criteria based on discrimination
such as the information gain [18], the information gain ratio [18] or the Gini

heuristic [2] are not useful for functions that have a recursive definition or that
use concepts of the background knowledge. Another reason is that the guidance
of the search by the MDL principle ensures a better use of computational re-
sources following a Levin search [9]. We use the MDL principle as split criterion,
as stopping criterion and also as solution tree selection criterion. In this way, we
present a uniform framework based on the same measure for constructing the
tree, selecting the split, selecting second-best trees to explore and selecting or
combining hypotheses.

The paper is organised as follows. Section 2 presents our method for con-
structing decission-trees defining new criteria. Section 3 illustrates the construc-
tion of decision multi-trees and presents a way of combining the obtained solu-
tions in order to give more precise predictions. Some experimental results are
shown in Section 4. Finally, Section 5 concludes the paper.

2 Decision Trees by Levin search

For the construction of a decision tree we consider 9 kinds of partitions [5], in-
cluding the comparison of an attribute to a variable, the inclusion of constructor
based types, the split over real numbers, the equality between variables, the
introduction of a function from the background knowledge and recursive calls.

2

With these kinds of partitions the adaptation of classical split criteria, such
as those used by C4.5 / FOIL or CART, would not be suitable, because these
measurements are devised to reward partitions which correctly discriminate the
class of the result, be it a predicate or a function. However, this may be mis-
leading for recursive functions where this recursive call appears directly on the
right hand side of a rule. As we have stated in the introduction, one proper way
to order the search space is by the description length of the hypothesis. By def-
inition, a top-down construction of a decision tree is short-to-long, since it adds
conditions and after a partition is made the tree is larger to describe. However,
this is not sufficient. The idea is to devise a split criterion such that partitions
that presumably lead to shorter trees should be selected first.

There exists a suitable paradigm for guiding the construction of the tree:
the MDL principle. If we assume P (h) = 2−K(h) where K(·) is the descriptional
(Kolmogorov) complexity of a hypothesis h, and P (E|h) = 2−K(E|h) with E
being the evidence, we can obtain the so-called maximum a posteriori (MAP)
hypothesis as follows [10]:

hMAP = argmaxh∈HP (h|E) = argminh∈H(K(h) +K(E|h))

This last expression is the MDL principle, which means that the best hypothesis
is the one which minimises the sum of the description of the hypothesis and the
description of the evidence using the hypothesis.

Initially, when there is only the root of the tree, the hypothesis is empty and
the length of its description (K(∅)) is almost zero, while the description of the
data (K(E|∅)) is large. At the end of the construction of the decision tree, the
description of the hypothesis K(h) may be large, and each branch constitutes
a rule of the program, while the description of the data by using the tree, i.e.
K(E|h), will have been reduced considerably. If the resulting tree is good, the
term K(h) +K(E|h) is smaller than initially.

The way to construct the tree is to select those partitions (whose description
will swell the K(h) part) so that the K(E|h) is reduced considerably. In other
words, the best partition will be the one which minimises the termK(h)+K(E|h)
after the partition. Once a tree is finished, we will explore second-best splits in
accordance with space-time resources. Therefore, we populate the tree up to a

limit number of nodes or time. The result of this process behaves as a Levin
search since solutions are found in a short-to-long fashion. The Levin search
guarantees the optimal order of computational complexity [9] or, more precisely,
it is the fastest method for inverting functions save for a large multiplicative
constant [10]. In what follows, we will introduce an approximation for K(E|h)
and for K(h).

Notation
Let S be a set of sorts1, also called types. An S-sorted signature Σ is an

S∗ × S-sorted family 〈Σw,s|w ∈ S∗, s ∈ S〉. f ∈ Σw,s is a function symbol of
arity w and type s; the arity of a function symbol expresses which data sorts it

1 A sort is a name for a set of objects.

3

expects to see as input and in what order, and the s expresses the type of data
it returns. Also, we consider Σ as the disjoint union Σ = C⊎F of symbols c ∈ C,
called constructors, and symbols f ∈ F , called defined functions. Let X be a
countably infinite set of variables. Then T (Σ,X) denotes the set of terms built
from Σ and X , and T (C,X) is the set of constructor terms. The set of variables
occurring in a term t is denoted V ar(t). A term t is a ground term if V ar(t) = ∅.
Given a term f(t1, . . . , tn) where f ∈ Σ(s1,...,sn),s, then Type(ti) = si.
Estimate for K(h) and K(E|h)

Given a node ν of a decision tree, we denote its set of conditions by Cν . The
Boolean function leaf(ν) returns true if ν is a leaf of the tree; π(ν) denotes the
partition in ν; childi(ν) represents the i-th child of ν and range(ν) is the number
of children of ν. Let us denote with Eν the set of examples which are consistent
with the conditions Cν . The open variables OVν of ν are the variables that do
not appear in the lhs of an equality of a condition of Cν . Let us denote with
OV Rν the set of variables of real type in OVν . OV NRν = OVν −OV Rν .

A predictive MDL criterion just describes the class of the examples. For in-
stance, if a leaf is assigned a class cj then the examples that fall into this leaf
need not be described. Only exceptions need be described. However, the con-
struction of our algorithm is guided by descriptive MDL, i.e., the examples must
be described completely, including not only the class but also the arguments. For
instance, if a leaf is assigned a class cj then the examples that fall into this leaf
need be described (except the class). Additionally, exceptions need be described
completely, including the class.

Given a partition P , its information can be obtained as2:

InfoPart(P, ν) = log 10 + InfoP (P, ν)

The first term of the above formula is used to select the partition from the 9
possible partitions (the tenth option corresponds to no split, i.e. a leaf). Note that
leaves also have InfoPart, which is equal to log 10, because the node cannot be
exploited further. InfoP (P, ν) denotes the cost in bits of each partition. Details
about the cost of the partitions can be found in [5]. Thus, K(h) can be estimated
as follows:

K(h) ≈ InfoHead(h) +
∑

ν∈nodes(h) InfoPart(π(ν), ν) (1)

where InfoHead(h) captures the information which is required to code the
profile of the function to be learned (which must include the arity and types of
the function).

The estimate for K(E|h) is based on the construction of tables. Given a node
ν, a table Ti is constructed for each different type τi of the set OV NRν . The
table contains an entry for each different term of type τi which appeared in the
evidence. With |Ti|, we denote the number of elements in table Ti. Each term is
denoted by termi,j , with j ranging from 1 to |Ti|. The information required for
each entry in the table, Info(termi,j), is defined in the following way:

2 All logarithms in this paper are binary logarithms.

4

– for finite discrete types, Info(termi,j) = log n, with n being the number of
possible values of the type.

– for constructor-based types, Info(termi,j) is defined as the cost in bits of
selecting the appropriate constructors (from the possible set of constructors
applicable at each moment) to describe the term.

From here, we can define the information which is required to describe the table
as:

InfoTable(Ti) = |Ti|+
∑

j=1..|Ti|
Info(termi,j)

Note that a table is constructed for each different type, not for each different
non-real open variable (OV NR).

Next we have to give a definition for the information required to give values
to all the open variables in order to describe an example. Given an example e
from Eν , we have to code the substitution for non-real variables (just referring to
the position in its corresponding table) and the substitution for real (continuous)
variables in a different way. Let us denote the argument k of the lhs of example
e of real type as RealV aluek(e). We consider the cost of a real number (denoted
as infoR) as a constant.

Thus, we can define the information which is required to code an example,
given the node ν and using the tables, as:

Info(e|ν) =
∑

k∈OVNRν
log |TType(k)|+

∑
k∈OV Rν

(1 + InfoR)

Note that this part is the same for all the examples.
Finally, we can define the cost of coding the whole set of examples that fall

under ν, i.e. Eν , as:

Info(Eν |ν) = |Eν |+
∑

i InfoTable(Ti) +
∑

e∈Eν
Info(e|ν)

The first term codes the number of examples that will be described. With this,
we have an estimate for the second term of the definition of the MDL principle,
K(E|h). In this way,

K(E|h) ≈
∑

ν∈leaves(h) Info(Eν |ν) (2)

Information of the Tree
Now, we introduce the information for the whole tree. Given a tree T with

root node ν, the cost of describing T is defined as:

InfoTree(E, T) = InfoHead(T) + InfoN(E, ν)

where InfoN(E, ν) can be obtained recursively in the following way:

InfoN(E, ν) =







Info(Eν |ν) if leaf(ν)

InfoPart(π(ν)) +

∑

InfoN(E, childi(ν))
i=1..range(ν) otherwise

Initially, the tree with just one node only has information about the function
profile. Since this node is a leaf, InfoTree(E, T) = InfoHead(T)+Info(Eν |ν).

5

When the tree is being constructed, any exploited node ν (which is still a leaf) has
an approximate value for the information, given by Info(Eν |ν), independently
of the possible partitions that there could be underneath. However, when this
node is exploited, then the value is substituted by the sum of the information of
the partition and the information required for the children subtrees.

Since the first approximations are useful when populating and pruning the
tree, we will denote the InfoN of a node up to depth d by InfoNd(E, ν). Ob-
viously InfoN∞(E, ν) = InfoN(E, ν) whereas InfoN0(E, ν) = Info(Eν |ν).

3 Constructing the Multi-Tree

In this section, we define the construction of decision multi-trees. At this time, we
can establish the way in which one tree is build from the root f(X1, X2, ..., Xn−1) =
Xn, which is an open node. First of all, the node selection criterion chooses the
node that is explored first. From all the open nodes, we select the node with less
InfoN0(E, ν), i.e. with less Info(Eν |ν). This criterion has little relevance, since
all the open nodes must be explored sooner or later. Secondly, the split selection
criterion is much more important, since it selects between the many possible
partitions. The InfoN1(ν) of the node ν is determined for every possible split.
The split with less InfoN1 is selected. Its children are new open nodes. The
other partitions are preserved as suspended nodes.

When pruning is not activated (when data is assumed to be noise-free) the
stopping criterion is easy to determine. A node is closed when the class is con-
sistent with all the examples that fall into that node (i.e. Eν). When pruning
is activated, the stopping criterion is given by the pruning criterion that we
describe next.

The MDL criterion has been used for pre-pruning and post-pruning decision
trees. Usually, a predictive MDL criterion has been applied for this purpose [20].
Note that exceptions are much costlier in the case of predictive MDL criterion,
because there is a great difference from regular examples (no extra bits are
needed) and exceptions (the arguments and class need be coded). This means
that the predictive MDL criterion would prune too late in many cases. For this
reason, we will also use a descriptive criterion for pruning.

More concretely, the descriptive MDL criterion is used for the pre-pruning

criterion in the following way. A node is pruned when the description at level
n+1 is greater than at level n. More formally, let us suppose a node ν, then the
tree should be pre-pruned when:

InfoN0(Eν |ν) < InfoPart(π(ν)) +
∑

i=1..range(ν) InfoN0(E, childi(ν))

Now that we can have non-closed nodes which can be pruned and we need an
extra bit for every node to tell whether a node is pruned or not. In the case a
node is pruned, the node is assigned the most common class under that node.
This has to be coded as well, with a cost log nC where nC is the number of
classes. Note that, in the above formula InfoN0 does not need to code the class
for all the examples which are consistent with their most common class. For

6

exceptions, however, this class has to be coded as usual, taking into account all
the possible values appearing in the exceptions.

The generation of the tree stops when all nodes are closed or pruned.
As we have stated in the introduction, once a tree is concluded, new trees

can be generated in order to construct a multi-tree. To do this, we have to
establish a new criterion, a tree selection criterion. Consider the set of possible
splits at depth 1 of a node ν, where σ1 is the best split and σk is the best
split that has not yet been exploited. Let us denote the node with split σ1

as ν1. Let us denote the node with split σk as νk. We define the ‘rival ratio’
ρ(ν) = InfoN1(ν1)/InfoN1(νk). Once a tree has been completely constructed,
the next tree can be explored, beginning with the split with the greatest rival
ratio. This next tree has to be fully completed before selecting another tree.

Finally, when different solutions are obtained we have to select one of them.
We have considered two solution selection criteria: the MDL principle (K(h) +
K(E|h)) or Occam’s Razor (K(h)).

The use of a multi-tree ensures that, when the problem is small or there is
time enough, many solutions will be generated. The first idea is to select the best
solution according to the solution selection criterion. As we have commented on
in the introduction, each solution of the tree can be expressed as a functional
logic program, which provides a comprehensible model.

Another option is to combine hypothesis in order to improve the accuracy,
however this represents the loose of a comprehensible model. The method used
for combining solutions is propagating upwards a vector of the probabilities of
nodes and they are combined whenever an OR-node is found.

4 Experiments

The method presented in the previous section has been implemented in a ma-
chine learning system (named FLIP2), which is able to induce problems from
arbitrary evidence using a functional logic language as representation language.
This system and examples is publicly available in [4]. We have performed dif-
ferent experiments using this system which show that our multi-tree approach
pays off in practice.

All the examples induced were extracted from the UCI repository [13] and
from the Clementine system [8] sample examples, and are well-known by the
machine learning community. Some of them contain noisy data and real argu-
ments. We have split the data sets in two similar-sized parts, using one part as
the train set and the other one as the test set.

Table 1 contains the results of the experiments: the accuracy and the number
of rules of the solution program depending on the number of hypotheses induced
(Numtree). The experiments were executed on a Pentium III 800 Mhz with
175 MB of memory. The experiments demonstrate that the system is able to
induce programs from a complex evidence (i.e. large number of examples and
many parameters). The increasing of Numtree allows to get shorter theories
(i.e. more comprehensible), without an important worsening of accuracy.

7

Numtree 1 10 100 1000

Rules Accuracy Rules Accuracy Rules Accuracy Rules Accuracy

cars 126 85.53 126 85.53 101 85.65 69 84.03
house-votes 71 86.70 71 86.70 53 93.11 49 89.90
tic-tac-toe 346 65.55 297 70.35 263 75.99 252 74.94
nursery 471 91.34 467 91.37 408 91.77 364 92.37
monks1 17 94.90 17 94.90 7 100 7 100
monks2 100 69.90 97 69.90 89 79.16 61 79.62
monks3 35 88.42 35 88.42 28 87.26 22 88.19
drugs 134 92.09 132 92.90 131 92.72 129 93.00
tae 41 57.33 40 60.00 38 60.00 37 61.33

Table 1. Accuracy and number of rules generated in the learning of some

classification problems.

The accuracy obtained by using the combination of hypotheses is detailed in
Table 2. In most cases the use of the combination produces an improvement of
the result. However, the raise of the accuracy is not linear w.r.t. Numtree. It
could be interesting to determine automatically the optimal Numtree depending
on the features of the problem.

Numtree 1 10 100 1000

Example Accuracy Accuracy Accuracy Accuracy

cars 85.53 85.53 90.16 92.12
house-votes 86.69 88.99 92.66 92.20
tic-tac-toe 65.55 82.46 83.71 85.39
nursery 91.34 91.45 92.98 93.98
monks1 94.90 94.90 100 91.90
monks2 69.90 69.91 79.17 79.63
monks3 88.43 90.05 92.59 86.80
drugs 92.09 92.45 93.09 93.09
tae 57.33 57.33 57.33 58.67

Table 2. Accuracy obtained in the learning of some classification problems

using the combination of hypotheses.

An experimental comparison of accuracy with some well known ML systems
is illustrated in Table 3. The results for FLIP2 are obtained withNumtree = 1000
and using solution combination. C5.0 is a decision tree learner, Rules is a rule
induction algorithm.3 The two are part of the data-mining package Clementine
5.2 from SPSS[8]. C4.5 [18] represents the results of FLIP2 using the splitting
criterion of C4.5 generating just one solution. As can be seen in the tables, the
accuracy of FLIP2 is superior or similar to the other systems in general depending
on the problem.

Another technique that permits to adapt the learning process to the amount
of resources available is Boosting [19]. This mechanism has been incorporated
successfully to C5.0. Figure 1 shows how Boosting increases constantly the re-
sources required (time and memory) depending on the number of iterations
of the algorithm.The reason is because each run does not use the information

3 Note that Rules is not able to deal with examples with noisy classes like tae.

8

Example FLIP2 C5.0 Rules C4.5

cars 92.12 88.54 85.88 90.39
house-votes 92.20 94.50 94.5 94.04
tic-tac-toe 85.39 80.38 77.45 78.70
nursery 93.98 95.99 95.73 95.67
monks1 91.90 87.90 100 78.00
monks2 79.63 65.05 65.74 69.90
monks3 86.80 97.22 94.44 92.12
drugs 93.09 97.27 95.05 90.18
tae 58.67 54.67 - 38.67

Table 3. Accuracy comparison between some ML systems.

generated in previous iterations. On the contrary, FLIP2 needs more resources
initially, every step it reuses the trees generated previously, thus the increasing
of resources required is slower.

11 10 100 1000
0,1

11

10

100

1000

10000

FLIP2− cars

FLIP2− nursery

C5.0− cars

C5.0− nursery

Iterations

T
im

e
(s

ec
on

ds
)

11 10 100 1000
10

100

1000

10000

100000

1000000

Iterations

M
em

or
y(

K
b)

Fig. 1. Time and memory required by FLIP2 and C5.0 with Boosting depend-

ing on the number of iterations.

5 Conclusions and future work

Much recent work in the area of machine learning has been devoted to the
combination of results given by different learners and by several iterations of the
same learner [1, 19]. In the latter case, the algorithm is re-run from scratch with
different samples from the training data, giving a bank of hypotheses, from which
the best solution can be selected or a voting can be made to give a combined
solution.

In this paper, we have presented an algorithm that has been designed to
give multiple solutions in an efficient way, re-using parts of other solutions and
maintaining the same common structure for all the solutions. We have called this
structure a multi-tree. The accuracy of the first solution given by our algorithm
is comparable to other systems, such as C5.0. However, the multi-tree can be
further populated in order to improve this accuracy. Moreover, a new tree is
not generated each time from scratch, but just some new branches are explored.
This makes that once a first solution has been found the time which is required
to produce the next n trees increases in a sublinear way.

This behaviour is similar to an anytime algorithm, as we have stated, which
increases the quality of the solution with increasing time. This quality is im-
proved for the best solution (which can be expressed as a comprehensible func-
tional logic program) or as a combination of the multiple solutions (which is

9

less comprehensible but usually improves further the accuracy). The anytime
character of our algorithm makes it very suitable for data-mining applications.

As future work we plan to include the complete set of partitions, in order to
induce recursive problems and to address problems with deep structure. Finally,
more experimental work with this kind of problems must also be performed.

References

1. E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithms: Bagging, boosting and variants. Machine Learning, 36:105–139, 1999.

2. Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth Publishing Company, 1984.

3. T. Dean and M. Boddy. An analysis of time-dependent planning. In Proc. of the
7th National Conference on Artificial Intelligence, pages 49–54, 1988.

4. C. Ferri, J. Hernández, and M.J. Ramı́rez. The FLIP system homepage.
http://www.dsic.upv.es/~flip/, 2000.

5. C. Ferri, J. Hernández, and M.J. Ramı́rez. Learning MDL-guided Decision Trees
for Constructor-Based Languages. In WIP track of 11th Int. Conf. on Inductive
Logic Progr,ILP01, pages 39–50, 2001.

6. Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In
Proc. of the 13th Int. Conf. on Machine Learning (ICML’1996), pages 148–156.
Morgan Kaufmann, 1996.

7. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19-20:583–628, 1994.

8. SPSS Inc. Clementine homepage. http://www.spss.com/clementine/.
9. L.A. Levin. Universal Search Problems. Problems Inform. Transmission, 9:265–

266, 1973.
10. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applica-

tions. 2nd Ed. Springer-Verlag, 1997.
11. M. Mehta, J. Rissanen, and R. Agrawal. MDL-Based Decision Tree Pruning. In

Proc. of the 1st Int. Conf. on Knowledge Discovery and Data Mining (KDD’95),
pages 216–221, 1995.

12. N.J. Nilsson. Artficial Intelligence: a new synthesis. Morgan Kaufmann, 1998.
13. University of California. UCI Machine Learning Repository Content Summary.

http://www.ics.uci.edu/~mlearn/MLSummary.html.
14. N.C. Berkman P.E. Utgoff and J.A. Clouse. Decision tree induction based on

efficient tree restructuring. Machine Learning, 29(1):5–44, 1997.
15. B. Pfahringer. Compression-based discretization of continuous attributes. In Proc.

12th International Conference on Machine Learning, pages 456–463. Morgan Kauf-
mann, 1995.

16. J. R. Quinlan. Induction of Decision Trees. In Read. in Machine Learning. M.
Kaufmann, 1990.

17. J. R. Quinlan. Learning Logical Definitions from Relations. M.L.J, 5(3):239–266,
1990.

18. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
19. J. R. Quinlan. Bagging, Boosting, and C4.5. In Proc. of the 13th Nat. Conf. on

A.I. and the Eighth Innovative Applications of A.I. Conf., pages 725–730. AAAI
Press / MIT Press, 1996.

20. J. R. Quinlan and R. L. Rivest. Inferring Decision Trees Using The Minimum
Description Length Principle. Information and Computation, 80:227–248, 1989.

21. J. Rissanen. Modelling by shortest data description. Automatica, 14:465–471, 1978.

10

