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Motivation

I The area under the ROC curve (AUC) is a well-known
measure of ranking performance, estimating the probability
that a random positive is ranked before a random negative,
without committing to a particular decision threshold.

I It is also often used as a measure of aggregated
classification performance, on the grounds that AUC in
some sense averages over all possible decision thresholds
and operating conditions.

I Q: How exactly?
I A: in a model-dependent way! (David Hand, MLj 2009)



A summary of Hand’s argument

I AUC can be interpreted as the expected true positive rate,
averaged over all false positive rates.

I For any given classifier we don’t have direct access to the
false positive rate, and so we average over possible
decision thresholds.

I The relationship between decision thresholds and
operating conditions under which this threshold is optimal
is model-specific, and so the way AUC aggregates
performance over possible operating conditions is
model-specific.

I Expectations over the operating condition are task-specific
and not dependent on the model, and so AUC may make a
model’s classification performance look better or worse
than it actually is.



Contributions of this paper

I We offer a novel, model-independent interpretation of AUC
as an aggregation of macro-accuracy over all possible
decision thresholds and operating conditions.

I In doing so we provide a unifying framework for classifier
performance evaluation.

I We offer a natural interpretation of Hand’s alternative to
AUC (the H measure) as the area under the cost curve.



Expected Loss
Let c0 and c1 be the cost of misclassifying class 0 or 1
examples, and b = c0 +c1 and c = c0/b. We set b = 2 to
ensure loss is commensurate with error rate.

The loss produced at a decision threshold t and a cost
proportion c is given by

Qc(t ;c), c0π0(1−F0(t))+c1π1F1(t)
= 2{cπ0(1−F0(t))+(1−c)π1F1(t)}

Expected loss is defined as

Lc ,
∫ 1

0
Qc(Tc(c);c)wc(c)dc

Tc is a threshold choice method which maps cost proportions to
decision thresholds, and wc(c) is a distribution for cost
proportions over [0,1].



ROC curve and AUC

For a given, unspecified classifier and population from which
data are drawn, we denote the score density for class k by fk
and the cumulative distribution function by Fk .

The ROC curve is defined as a plot of F1(t) (i.e., false positive
rate at decision threshold t) on the x-axis against F0(t) (true
positive rate at t) on the y -axis.

AUC =
∫ 1

0
F0(s)dF1(s) =

∫ +∞

−∞

F0(s)f1(s)ds

The convex hull of a ROC curve (ROCCH) includes only those
points on the ROCCH with minimum loss for some c, using the
optimal threshold choice method T o

c (c), argmint{Qc(t ;c)}



Cost curves

A cost plot (Drummond & Holte) has loss

Qz(t ;z) = z(1−F0(t))+(1−z)F1(t)

on the y -axis against skew z = c0π0
c0π0+c1π1

on the x-axis.

Cost lines for a given decision threshold t are straight lines with
intercept F1(t) and slope 1−F0(t)−F1(t).

The optimal cost curve is the lower envelope of all the cost
lines, and only considers the optimal threshold for each skew:

CC(z), Qz(T o
z (z);z)



ROC curve, ROCCH and optimal cost curve
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ROC curve and convex hull (left), and cost lines and optimal
cost curve (right) for a classifier with scores
(0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.65,0.7,0.8,0.9,0.95) and
corresponding true classes (0,0,1,1,0,1,1,1,1,0,1,1).



Hand’s argument in more detail

Hand assumes that thresholds are chosen optimally using
T o

c (c). Under the assumption of a convex and continuously
differentiable ROC curve, the mapping from c to T o

c (c) is
one-to-one, with inverse

c(T ) = π1f1(T )/{π0f0(T )+π1f1(T )}

By changing the variable of integration we obtain

Lo
c =

∫
∞

−∞

2{c(T )π0(1−F0(T ))+(1−c(T ))π1F1(T )}W (T )dT

Assuming a particular threshold distribution
WG(T ), π0f0(T )+π1f1(T ) it is possible to derive

Lo
c,G = 4π0π1(1−AUC)



Hand’s argument in more detail (2)

In other words, optimising AUC means minimising expected
minimum loss under threshold distribution WG. As there is a
one-to-one mapping from optimal thresholds to costs, this can
be traced back to a cost distribution

wG(c) = {π0f0(T o
c (c))+π1f1(T o

c (c))}
∣∣∣∣dT o

c (c)
dc

∣∣∣∣
which depends on the score densities and hence on the
classifier.

So, two classifiers may have the same AUC, but that doesn’t
imply that they have equal expected minimum loss if a different
distribution over cost proportions was used that was the same
for both classifiers.



An alternative view

In our view, basing performance metrics on optimal thresholds
is overly optimistic. This means that we need to consider
thresholds and costs separately:

Lt
c ,

∫ 1

0

∫
∞

−∞

Qc(t ;c)W (t)dt wc(c)dc

If we assume wc(c) uniform, this reduces to

Lt
U(c) =

∫
∞

−∞

{π0(1−F0(t))+π1F1(t)}W (t)dt

Thresholds are sampled by the mixture distribution as before.

Theorem

LU(i)
U(c) =

Lo
c,G

2
+

π2
0 +π2

1
2

= 2π0π1(1−AUC)+
π2

0 +π2
1

2



An alternative view (2)

I We again derive a linear relationship between expected
loss and AUC, assuming a uniform distribution over
operating conditions that is therefore the same for all
classifiers.

I Expected loss ranges from (π2
0 +π2

1 )/2 for a perfect ranker
that is harmed by sub-optimal threshold choices, to
1− (π2

0 +π2
1 )/2 for the worst possible ranker that gains

some performance by putting the threshold close to one of
the extremes.

I Sampling thresholds according to the mixture distribution
corresponds to setting the threshold equal to the score of a
uniformly selected instance.



The case of empirical ROC curves
Ranking (0,0,0,1,1), scores (0.1,0.2,0.7,0.8,0.9).

t1 t2 t3 t4 t5 t6 Avg
F0(ti ) 1 1 1 2/3 1/3 0 2/3
F1(ti ) 1 1/2 0 0 0 0 3/12

Qz(ti ;z) 1−z 1−z
2 0 z/3 2z/3 z 3+z

12∫ 1
0 Qz(ti ;z)dz 1/2 1/4 0 1/6 1/3 1/2 7/24

● ●
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The case of empirical ROC curves (2)
Theorem
Let AUC be an empirical estimate obtained from a dataset with
n examples, then the expected loss for uniform skew and
(discrete) uniform instance selection is

LU (i)
U(z) =

(
n

n+1

)
1−AUC

2
+

(
n+2
n+1

)
1
4

Theorem
Let CLti denote the cost line corresponding to the i-th example
with score ti , then

LU (i)
U(z) =

1
(n+1)

n+1

∑
i=1

∫ 1

0
CLti (s)ds

=
1

(n+1)

n+1

∑
i=1

(1−MAcc(ti))



Expected minimum loss

Hand’s alternative to AUC is an explicit expected minimum loss
measure with the cost distribution wc(c) equal to the beta
distribution B(c,α,β ) (Hand suggests to use α = β = 2):

Lα,β ,
∫ 1

0
Qc(T o

c (c);c)B(c,α,β )dc

H , 1−
Lα,β

LMax

This proposal is very closely related to the area under the
optimal cost curve:

Lo
z ,

∫ 1

0
CC(z)dz =

∫ 1

0
Qz(T o

z (z);z)dz



Area under the optimal cost curve
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Conclusions

I We have shown that AUC can be a coherent measure of
aggregated classification performance when we consider
all scores that have been assigned to data points as
thresholds.

I We have also strengthened the connection between ROC
plots and cost plots, by visualising AUC in cost space as
an average of cost lines.

I Instance-uniform threshold selection is realistic in cases
where the deployment operating condition is unknown and
no validation data is available to set the threshold. Our
current work is aimed at threshold selection methods that
do take the operating condition into account when it is
known.
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