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Abstract. Learning methods based on distances are widely used to
deal with structured information, since several distance functions can
be found for the most common sorts of data. In these algorithms the jus-
tification of the labelling of a new case is normally guided by a pattern
expressing the similarity to a prototype. Other patterns based on the
structure of the data (e.g. one saying “all the lists headed by the item
i”) could be more interesting but some requirements must be taken into
account [2]. Among them, it is convenient to know how specific a pat-
tern is. Here, we briefly present a general framework where the concept of
specificity is expressed in terms of the distance and, hence, can be defined
for every sort of data embedded in a metric space. In this line, it can be
shown that Plotkin’s lgg is a specific case of minimal generalisation.

1 Introduction

In some learning problems data is not only described by nomimal and numerical
features, but also using other sorts of data (sets, lists, etc.). This forces to de-
fine new algorithms coping with structured representations [1]. Distance-based
methods are really popular for this purpose because they can be directly em-
ployed by defining an adequate distance. Despite the fact that these methods
are quite intuitive and have successfully been tested in several domains, a model
explaining why a new example belongs to one class or another is missing.

The problem of providing descriptions for distance-based algorithms is ad-
dressed in [2] for binary generalisation operators. In [3], we extend the idea for
n-ary operators, we explore the notion of comprehensible description in more
detail and we study the notion of minimality. We briefly introduce the concept
of distance-based generalisation operator presented in this second work. The ele-
ments to be generalised are embedded in a metric space (X, d) satisfying certain
conditions (such as being connected, see [3]). A generalisation operator ∆ maps
a finite set of elements E ⊂ X to a pattern p belonging to a pattern language L,
i.e. ∆(E) = p where E ⊆ Set(p) and Set(p) denotes the set of elements in X rep-
resented by p. In fact, every pattern represents a set in X. Among all the possible
generalisation operators, we are interested in those computing a pattern which
is “consistent” with the distance employed. That is, the so-called distance-based
generalisation operator. For instance, let (Σ∗, d) be the space of all the finite
words defined over the alphabet Σ = {a, b, c} and d the edit distance permitting



insertions and deletions only. Given the words w1 = cabab and w2 = ababc a
distance-based generalisation operator ∆1 could compute ∆1(w1, w2) = ∗ab∗.
That is, all the words having the subsequence ab. This pattern somehow shows
why d(w1, w2) = 2 because the subsequence ab has been taking into account by
the distance. However, this is different for an operator like ∆2(w1, w2) = ∗c∗ (all
the words having the symbol c) since the common sequence c is not considered
by the distance. From this example, a basic issue related to distance-based op-
erators arises. The pattern ∗ab∗ computed by ∆1 looks excessively general w.r.t
another “consistent” pattern such as ∗abab∗ . Thus ∆1 could be redefined to
return more restrictive patterns. But the opposite problem (overfitting) must be
considered as well.

Although the idea of generality has been deeply studied when data is repre-
sented by means of first-order predicates it does not happen the same for the rest
of sorts of data and specially when data is in a metric space. Thus, we propose a
general way (inspired on the MDL principle)of defining minimal distance-based
generalisation operators (mg operators) for data embedded in metric spaces.

2 Minimal distance-based generalisation operators

Determining when a generalisation operator computes minimal generalisations
is important if we want a generalisation to “fit” a group of elements as much
as possible. Here, we will proceed as follows. First, we will establish a criterion
to determine, given two patterns computed by the distance-based generalisation
operators ∆(E) and ∆′(E) respectively, which one is less general. Finally, we
will say that ∆ is a mg operator if for every set E and for every operator ∆′,
∆(E) is less general than ∆′(E).

Intuitively, we could utilise the inclusion operation between sets (⊂). That
is, a generalisation of E computed by ∆(E) is less general than a generali-
sation computed by ∆′(E), if Set(∆(E)) ⊂ Set(∆′(E)). However, this leads
to several problems. First, most generalisation are incomparable, since neither
Set(∆(E)) ⊆ Set(∆′(E)) or vice versa. Secondly, the inclusion between sets ig-
nores the underlying distance. Finally, the minimal generalisation may not exist.
For instance, consider R2 with the Euclidean distance and L as the set of all
the rectangles in R2 along with their finite unions. If we look at Figure 1 given
the pattern p0 computed by ∆0(E), we can always define another operator ∆1

such that Set(∆1(E)) ⊂ Set(∆0(E)) and so on. Note that, it is enough to draw
a connected chain of smaller rectangles which is included in the previous gener-
alisation and links both A and B. Therefore, if we define the generality in terms
of the inclusion between sets, then the mg operator does not exist in this case.
We need a more abstract principle as a generality criterion. A possibility could
be as follows. The level of “complexity” of a pattern is reasonable only if a
sufficient number of examples justify it, as the MDL/MML principle states.
For this purpose, we introduce a special function, called the cost function and
denoted by k(E, p), which is usually expressed as the sum of two functions c(p)
and c(E|p). The first one informs about the complexity of the pattern p and
the second one how good p fits E. One novel point in our approach is that the
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Fig. 1. Generalising E = {A(1, 1), B(3, 4)} by means of ∆i.

function c(E|p) is expressed in terms of the distance employed. Although there
are several possibilities, one choice is to define this function as the sum of all the
distances from the elements in E to its nearest point at the border of Set(p).
Other more specific definitions for c(E|p) can be found in [3]. The advantage
of defining c(E|p) in this way is that it is independent w.r.t. the sort of data
employed and it can be applied for any metric space. However, c(p) usually
depends on the sort of data [3]. For instance, regarding the pattern language
L formed by rectangles in R2, c(p) could be the number of rectangles of the
pattern p multiplied by a scale factor (e.x. p0 has 1 rectangle, p1 has 2, etc.).

Once the function k(E, p) has been specified, we will say that a pattern ∆(E)
is less general than ∆′(E) if k(E,∆(E)) ≤ k(E,∆′(E)). For instance, using both
c(p) and c(E|p) definitions shown above and regarding the patterns depicted in
Figure 1, it is easy to check that k(E,∆0(E)) ≤ k(E,∆i(E)), i = 1, 2.

To conclude, let us consider the metric space of the first-order atoms induced
by the distance [4]. If we set L the Herbrand’s base with variables, c(p) a constant
function and c(E|p) as the one defined so far, it can be shown that ∆(E) =
lgg(E), where E is any set of ground atoms, is a mg operator [3].

3 Conclusions

This work introduce the notion of mg operator for every sort of data which is
embedded in a metric space. Here we have exposed the basic ideas. In [3] we have
a detailed definition of the framework, the notion of generality in terms of the
MDL/MML principle, and we define several minimal generalisation operators
for different sorts of data. Additionally, we prove that the lgg is a particular
case of mg operator for atoms embedded in the metric space defined in [4].
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