Universal Learning of Classes From Sparse and
Non-uniform Evidence*

C. Ferri-Ramirez J. Herndndez-Orallo M.J. Ramirez-Quintana

DSIC, UPV, Camino de Vera s/n, 46020 Valencia, Spain.

{cferri,jorallo,mramirez}@dsic.upv.es

Abstract. We present a framework for the Inductive Functional Logic
Programming paradigm from positive data and from non-uniform classes.
It extends the Bayesian approach in [18] to consider classes in the defini-
tion of hypothesis generality, now called class unevenness, which is used
for the evaluation of hypotheses. This new measure takes into account
how the distributions of classes of the hypothesis and the target theory
are. The target theory class distribution is approximated by using the
class distribution of the evidence and the initial distribution. Any prob-
lem with different classes with any proportion between 0% and 100% can
be addressed by this new measure. As a result, negative examples are
no longer necessary for learning Boolean functions since they should be
considered as the positive examples which define a second false class.
Finally, we discuss an implementation of sample generators for a given or
unknown probability distribution of terms. The usefulness of the genera-
tors is shown for approximating the value of unevenness of a hypothesis.
Keywords: Machine Learning, Inductive Logic Programming (ILP), In-
ductive Functional Logic Programming (IFLP), Classification Problems,
Hypothesis Evaluation.

1 Introduction

The Inductive Inference framework in general and Inductive Logic Programming
(ILP) in particular usually deal with the learning of a target concept from pos-
itive and negative evidence. Nevertheless, learning from only positive data is
desirable for several applications. These applications have many positive exam-
ples available while few or no negative examples are given (such as the analysis
of DNA and RNA sequences [10], data mining applications, software engineer-
ing, grammatical inference [17] and natural language, to cite some of them).
The main difficulty of inferring from only positive examples is that the learning
mechanism has to avoid overgeneralisation. This is due to the fact that the sim-
plest and most general possible hypothesis for a concept p, i.e. VX p(X), will
always be consistent. However, is it neither an acceptable hypothesis in most of
the applications [17] nor can it be specialised unless negative evidence is pro-
vided. Gold [6] showed that even the class of regular languages is not inferable

* This work has been partially supported by CICYT under grant TIC 98-0445-C03-C1.

from positive data, and, thus, neither are (the whole class of) Prolog programs.
A lot of work has been done to discover restricted hypothesis languages which
are inferable in this way. In particular, ILP has identified constrained hypothesis
languages for which learning from positive data is possible (]20],1], [14],[19]).
Another approach known as U-learnability, which is independent from the hy-
pothesis representation, has been presented by Muggleton in [17, 18]. Tt is based
on the development of a Bayes function for maximising posterior probability. Un-
der this Bayes framework, a trade-off between size and generality of a hypothesis
is defined which allows for estimating the probability of a hypothesis.

We present a framework for the Inductive Functional Logic Programming
(IFLP) paradigm [8, 9] from positive data and from non-uniform classes following
this proposal. As in ILP, the induction of some IFLP programs from only positive
evidence presents the same problem of overgeneralisation. The following example
demonstrates this fact.

FEzample 1. Consider the following evidence e; — ejq:

e1: e(d)=true, ey: e(12) =true,
es: e(3)= false, eq: e(2) =true,
(
(

®

E={e5: ¢7)= false, eg4: 7) = false,
er: e(20) =true, eg: e(0) =true,
eg: e(3)=true, e: e(2)= false

where natural numbers are represented by using the functor s as the symbol for
succesor, e.g. s(s(s(0))) means 3.

If only positive examples are given, the most general theory e(X) = true
would be optimal and would cover the evidence. As has been shown for ILP, this
problem can be avoided by weighing the generality of the program. Nevertheless,
it is important to note that this problem only occurs in for Boolean problems.
Counsider the case of learning the function of addition (swm/2). In this case,
no negative evidence is strictly required, since programs must be confluent and
terminating. sum(X,Y) = Z (the most general program) is not confluent nor
terminating.

In functional programming [2] (and in functional logic programming, FLP
[7]), the evaluation of a functional term w.r.t. a program P is the computation
of its normal form'. The set of all possible different normal forms represents
the meaning of the program. In fact, the ADT defined by the theory P consists
of normal forms. Moreover, from this algebraic semantic point of view, they
represent the elements or congruence classes of the initial algebra 7(XY)/ =p
[4]. For this reason, we will refer to them as classes throughout the paper. This
situation is different from that in ILP since the meaning of a logic program is the
set of ground atoms that are proven true, i.e. that belong to its Herbrand minimal
model. Hence, using the notation of functional programming, we can say that
true is the unique class defined by a logic program. In this paper, we extend the
Bayesian approach in [18] in order to take classes into consideration within the

! The normal form of a term is unique if the program is confluent and terminating.

definition of the generality of a hypothesis. For the learning of Boolean functions,
if we work with more than one class, negative examples are no longer necessary
since they should be considered as the positive examples which define the false
class. From this point of view, learning a concept from positive examples in ILP
can be seen as the problem of learning a partially defined concept (since the
evidence only contains examples for the true class). Learning the same Boolean
target concept in IFLP can be seen as the problem of learning a totally defined
concept if positive evidence also contains examples for the false class, as we
will show in this paper. This makes the problem more general. Now, it is not a
question of positive-only and positive and negative examples, but on what the
distribution of classes is. We want a measure that considers any case between
0% and 100% for every class. If no correction is made, for a general problem
(not necessarily Boolean), examples for all classes must appear in the evidence.
However, in the case of learning from sparse and non-uniform evidence, a good
idea could be to preserve the proportion of examples of each kind according to
a prior probability distribution if an adequate evidence is generated.

On the other hand, our approach is also useful for classification problems in
the case of more than two classes?. Firstly, these problems can be better and
more naturally formulated as functional programs which define several classes.
Secondly, the programs that solve problems of this kind are suitable to be learned
from only positive examples due to the fact that negative evidence does not seem
to actually be neccessary, as we will show in Section 6. Of course, when there
are no examples in the evidence for one class, the learning task cannot be made
from only positive data even if a correction is not included. This correction is a
generalisation for more than one class of the Muggleton generalisation degree,
now called class unevenness. Once its theoretical properties are shown, this value
must be approximated by the use of an evidence generator. This generator also
allows the practical application of the new evaluation measure in the system
FLIP? [5].

The paper is organised as follows. Section 2 includes general notation and ter-
minology. In Section 3, we review the Bayesian formulation of [18]. Our approach
for evaluating the unevenness of a hypothesis in IFLP is defined in Section 4.
Also, in Section 5, we show that Boolean problems are transferable to two classes
in this framework. Classification problems of more than two classes are analysed
in Section 6. In Section 7, we discuss an implementation defining a generator of
samples given a certain probability distribution of terms which is used for ap-
proximating the value of unevenness of a hypothesis. Some experimental results
are also given. Finally, Section 8 concludes the paper.

? Classification problems which define two classes can be considered as Boolean prob-
lems.

3 The FLIP system is a learner of functional logic programs which is based on narrow-
ing (the best known operational semantic for FLP).

2 Preliminaries

Let V be a countably infinite set of variables and let X be a set of function
symbols (or functors) together with their arity, where f/n denotes the function
symbol f of arity n. Then 7 (X, V) denotes the set of terms built from X and
V, and 7 (X) denotes the set of ground terms built from X. We consider that
the signature X is partitioned as X' = C 4 F, where C is the set of irreducible
symbols and F is the set of defined function symbols. The length of a term ¢,
I(t), is defined as

I(t) = 1 if ¢ is a constant or a variable
T 1+ X0t if tis of the form f(t1,...,t,)

An equation is an expression of the form [= r where [and r are terms. [
is called the left hand side (lhs) of the equation and r is the right hand side
(rhs). By card(A) we denote the cardinality of a set A. Given a set of equations
A and given a class ¢, the cardinality of A over ¢ is defined as card.(A) =
card({l = ¢ € A}). An equational theory £ (which we call program) is a finite
set of equational clauses of the form [=r < eq,...,e,. with n > 0 where ¢;
is an equation, 1 < ¢ < n. The theory (and the clauses) are called conditional
if n > 0 and unconditional if n = 0. An equational theory can also be viewed
as a (Conditional) Term Rewriting System (CTRS) since the equation in the
head is implicitely oriented from left to right and the literals e; in the body
are ordinary non-oriented equations. Given a (C)TRS R, t —x s is a rewrite
step if there exists an ocurrence u of t, a rule [= r € R and a substitution
¢ with t, = 0(I) and s = t[0(r)],. A term ¢ is said to be in normal form
w.r.t. R if there is no term ¢’ with ¢t —x t/. R is said to be canonical if the
binary one-step rewriting relation — is terminating (there is no infinite chain
$1 —Rr 82 —r S3 —r ...) and confluent (V s1,s92,835 € T(X, X) such that
s§1 —% s2 and 81 —% s3,3s € T(X, X) such that so —% s and s3 —%).
Narrowing is a sound and complete method for solving equations w.r.t. canonical

programs. Given a program P, a term ¢ narrows into a term t' (in symbols

d=r0 . -) .
S, ') iff uw € O(t), | = r is a new variant of a rule from P, § = mgu(t),, 1)

and ' = 0(t[r],). We write t—"¢’ if ¢ narrows into ¢’ in n narrowing steps.
The Inductive Functional Logic Programming, IFLP, has been defined as
the functional extension to ILP [15]. The goal is the inference of a functional
logic program P from a set of positive and optionally negative equations F
using a background knowledge theory B (another functional logic program).
The evidence is composed of positive ET and negative £~ equations such that
their lhs are ground terms of the form f(¢1,...,t,) where f € F and t; € T(C)
and their rhs are normalized w.r.t. the background theory B and the theory P
which is meant to be discovered (hypothesis), with B U P being canonical.

] 1=r.0 0 i .
1 Or simply t bt or t < p t' if the occurrence or the rule is clear from the context.
Also, the subscript P will usually be dropped when clear from the context.

We use the following notation to denote a vector @ of n components: [v;]
Given a vector ¥, its normalisation is

_ 1 L=
= T v

D i1 Vi

Obviously, after normalisation, > . v; = 1. Two vectors 7" and @ of n com-

i=1l..n"

—>norm

ponents form an angle between them, ﬁ, which is defined as

where o denotes the scalar product, that is 7 e W = viwy + ...+ vpwy, and | @

denotes \/a? + ...+ aZ. With /W we denote (v /w1, v2/wa, ..., 0n/wy).

3 The Bayesian framework

Following the U-learnability framework defined in [16], Muggleton [18] derived a
Bayes’ function for maximising posterior probability of hypotheses when learning
from positive data. We briefly review that formulation in this Section.

X is taken to be a countable class of instances and H C 2% to be a countable
class of concepts. Let Dx and Dy be probability distributions over X and H
respectively. For H € H, Dx(H) is defined as X,y Dx (). Size and generality
of a hypothesis H are defined as follows:

sz(H) =-In Dy (H) (1)
g(H) =Dx(H) (2)

where formula (1) is justified by Occam’s Razor [12]. The Bayes theorem allows
us to relate size and generality. Let p(H | E) be interpreted as the probability
that the hypothesis chosen by the learner, H, would be the target theory T given
the example sequence F. Hence,

L Ce

In p(H | E) = m In (ﬁ) s2(H) + dyy (4)

where d,,, = In ¢;,, with ¢, being a normalising constant. Formula (4) shows that
the probability that a hypothesis H would be the target theory decreases when
either its size and generality increase.

As we have already mentioned in Section 1, in the above rationale it is as-
sumed that all the evidence defines one value or class: the true value.

In what follows, we extend this formulation to take classes into considera-
tion. In our proposal for IFLP, X is the set 7 (F,C) whereas the evidence E is
composed by equations of the form [= r such that [€ X and r identifies a class.

4 A Framework for the Evaluation of Hypotheses in IFLP

In this section, we define our method for the evaluation of hypotheses. The basic
idea is to define the generality of a hypothesis (the above formula (2)) w.r.t. all
the classes defined by the target theory (i.e. by the problem) and the relation
between a probability distribution over H and 7.

In what follows, the (possibly infinite) collection of classes C' determined by
a target program T is defined as C' = |J._, ¢;, where ¢; denotes each one of
the n classes. Also, X., denotes the instances of X which belong to the ¢; class
according to T. Note that X can be infinite. When it is the case, we will assume
that X is approximated by a finite subset which is large enough to be meaningful.
In Section 7 we will introduce a procedure to generate finite approximations to
both X and C.

The following definition shows that the probability distribution over a col-
lection C of n classes according to a hypothesis H is a vector such that each one
of its components represents the probability of each class in H.

Definition 1. Given a hypothesis Hﬂl}d given a collection of classes C, the
probability distribution over C for H, Dc(H), is:

card(X.,(H)) } |

Dc(H) = [card(Xc(H))

where
Xe(H)={wv e X |HEz=c} and Xo(H) = Y X,(H)

i=1l..n
Ezample 2. For instance, if H defines the function mod3/1 (which computes

true if its argument is divisible by 3 and false otherwise), then m(H) =(3,2).

Definition 2. Given a hypothesis H, the probability distribution of H w.r.t. X
and C, D¢ x(H) is:

Dox(H)=| Y Dx(
x € X, (H)

i=1l..n
FEzample 3. Consider again the target theory T" = mod3 and suppose that the
terms from X follow the distribution Dy (x) = 27!®) then:

Do x(T) = Yo 2o N g O [0,6,0.4)
i=0.n i=0.n
mod3(s'(0)) =1 mod3(s'(0)) =r
true false

where s%(0) denotes the natural number i.

Our aim is to estimate whether a hypothesis H is close or even to the target
theory T'. The goodness of H can be obtained by analysing what the probability
of each class of C' in H is and what the probability in 7" is. Since these proba-
bilities are components of two vectors, we can compare H with T by means of
the angle that its corresponding vectors form in the space. In a certain way, this
angle is a measure of the closeness of ZTC:(T) with D¢ (H)>. This difference is
called unevenness and is defined as follows:

Definition 3. Class Unevenness
Given a hypothesis H and a collection C' of n classes, the class unevenness of
H s

tan o

H=—+—
u() 1+tano

- > (Do(H));

i=1l..n

e

where o represents the angle Do(H)De(T).

The above definition shows that the smaller the angle is, the better the
hypothesis is because unevenness is lower.

Ezample 4. Consider H; = mod2 and Hy = mod3. We have Do (Hq) = [0.5,0.5]
and D¢ (Hz) ~ [0.33,0.67). Consider a T such that Do(T) = [, 2]. Comparing
the two hypotheses with T

0.
——) =10.321 =
0sz0) ~ 08T e =0
u(Hy) = 0.3332 w(Hy) =0

oy = arccos(

As we could expect, the correct hypothesis obtains a 0 rad angle.

Although from a theoretical point of view, the probability distribution over a
collection of classes has been defined considering the set of terms X, in practice,
the learning task is done from a partial evidence E. This also means that we
must take into consideration that F can contain one example [= r more than
once since this evidence is generated according to the probability distribution
Dx (I). Note that, on the contrary, X does not contain any term twice.

Definition 4. The probability distribution function over an evidence E, D_é,
can be computed as:

= card,,(F)
Dr = Z card(E)
zxecE

i=1l..n

® This has usually been done by a statistical x? test. This test cannot be used here,
because, for it to be useful, the absolute frequency of each class must be > 5 and
the initial distribution must be closer to the uniform distribution. There are other
methods to estimate the discrepancy such as some corrections of the x? test. However,
these can only be applied if all the expected frequencies are greater than 0. Example
6, for instance, shows a case where this test cannot be used.

The following results show that the probability distribution over classes w.r.t.
an evidence E with infinite examples converges to the theoretical one (which
considers X instead of E).

Lemma 1. Given an evidence E such that lhs of equations of E are generated
following a distribution Dx, then

lim Dg= Do (T)
card(E)— oo

The following result is established when ZTX> is the uniform distribution:
Corollary 1. IfD—X) is the uniform distribution, then
lim Dp = Do(T)

card(E)—oo

Proof. Trivial, since if D—X> is the uniform distribution then

6 (Lo} 2 € X,(0): D) = o
and by Definition 2
(Do x (1)) = Z Dx(x) = Z m a

meX('i(T) meXu;(T‘)

B card(X.,(T)) B .
T card(Xc(T)) (Do(T))i

Therefore, the corollary holds by Lemma 1. O

Example 4 illustrates how we can choose among a set of hypotheses by comparing
them with the target theory. However, this is not a very real situation because
D¢(T) is usually not known, and without this distribution it is impossible to
know the angle between a hypothesis and T'. We solve this problem by introduc-
ing a method that computes an approximation of Dg(T). Our approximation,

which we denote as D_C>(T), is expressed by the following definitions:

Definition 5. Given an evidence E and a collection of classes C, W(E) is:

card(E)

BB = | 3 Dxlhs@) o

rzeE N

i=1l..n

Definition 6. The distribution D_C: (T) is approzimated from an evidence E and
a distribution Dx by:
—
— Dg
De(T) =
D=5

FEzample 5. Let foo be a theory such that:
Jif1 <2 <33 thenl
foolx) = {if 34 < & < 99 then 0
then W(T) = (%, %) . And consider

5 _ [l<@<33 00203
T34 <2 <99 - 0.005

If we take an evidence E; formed by 10 examples, 5 from each class, then we
have:

Dg = (0.5,0.5) 70(Ey) = (0.066,1.939) D (7)™ = (0.967,0.033)

If we take a second evidence, Fo, built ideally from Dx, we would get 1000
examples where 33 are from the first class, and 967 are from the second class.

—

Dz, = (0.033,0.967) 77(F2) = (1,14.665) Do (T)""™ = (0.33,0.67)

As we see, as long as the evidence is generated according to Dx and T', D (T)™"™
. ——
is close to D¢ (T).

This last example shows how important a good evidence is, when D_c> (T) is not
given. Therefore, the approximation to D_C)(T) greatly depends on the quality
and quantity of the evidence. If the evidence goes to infinite, then both the
theoretical value and its approximation agree, as the following theorem shows.

Theorem 1. If an evidence E is generated following the distribution Dx and a
theory T then

lim Do(T) = DA(T
card(%‘r)l—»oo C() C()

— ——
Proof. By Definition 6, we have that l%)(T) = TD(% Hence,

= Dy lim Do
lim Do(T) = lim E___ card(E)—oo E
card(E)—oo C() card(E)—oco ﬁ(E) hmmrdw)ﬁoo ﬁ)(E)

Now, by Lemma 1, lim qyq(5)—oo 17}5 = D¢, x(T'). Therefore,
]‘imCCLTd(E)*)OO l)—)E o DC,X (T)
liInccw"d(E)~>(>o W(E) hmcm"d(E)ﬂoo W(E>

and by Definitions 2 and 5

DC’,X (T) _ ZmEXw(H) .DX (.CL‘)

i=1l..m

limcard(E)ﬂoo W(E) hmca’fd(E)%oo ZwEE Dx (I) %F(EE)')_ —

On the other hand, it holds that

li d(F)=K - d(Xc(T
card(%‘r)l—»oocar() car (C())

li de(EF) =K - d(X. (T
card(%r)l—»oocar "() car ("())

where K is a constant. Finally,
[Zeex., i Dx(@)]
card(E) :| -
i=1l..n

hmcard(E)—»oo [ZmEE Dx (x)m

i=1..n

[erxq(H) DX(:E)L‘:l n De(T)
K-card(Xc(T
[erx(.i (1) DX(x)mﬁH i=1..n

O

5 The Function u(H) as a Generalisation of g(H)

We have introduced the previous measures in order to generalise the results
of learning from only positive data to any proportion of instances of each of
the classes. Now we will show that this extension is coherent with the results
which are obtained for one class. We will also establish the equivalence between
Boolean problems with one class and the same problem presented with two
classes (false and true). In most problems of learning from only positive data, the
proportion of possible constructable positive examples over negative examples is
small. For instance, in natural languages, there are many more combinations of
characters that mean nothing (or are incorrect) than there are well-formed ones.
Moreover, as any problem from only positive data, the general (everything is
valid) hypothesis is suggested by the data and one must ‘correct’ the hypothesis
towards more specific ones. If we consider two classes (positive and negative) it
holds that the ‘ideal’” vector to consider is l)_c>(T) = (0, 1), for the previous two
reasons. This is finally what is implicit in many works of learning from positive
data only [18].

Theorem 2. Given a learning problem A with only one class ¢; and a partial
hypothesis H, and a second problem B with two classes c¢1 and co where there
exists a total hypothesis Hy such that:

if x =g, c1 then T =g, C1

Vee X ,
otherwise v =g, ca

If we consider the optimal vector for positive evidence D_O)(T) = (0,1), i.e.,
there are infinitely more negative cases than positive ones, then

9(Ha) = u(Hy)
and this holds for any distribution of examples of the hypothesis.

10

Proof. Consider a hypothesis H, with a distribution of examples such that Dg =
(1/a,(a — 1)/a) where 1/a corresponds to class ¢;. Consequently, g(H,) = 1/a.
On the other hand, from the definition of w(H) we have:

> (Da(Hy))s

i=0..2

tana

H -
() = 1+ tana

which is equal to:
u(Hb) =

since Hj, is total. It is easy to show that, from the angle between D¢ (T)=(0,1)
and Dg = (1/a, (a — 1)/a), it follows that tana = 1/(a — 1). From here,

tana
1+ tano

It is important to note that the previous theorem shows the equivalence between
considering the problem with two classes and a total function, and considering
the problem with one class and a partial function in the traditional NAF (Nega-
tion As Failure) sense.

Ezample 6. Consider a complete hypothesis with l)_c>(H) =1(1/3,2/3). The an-

gle with W(T) =(0,1) is arccos\%% = arccos 2/v/5 = 0.4636 rad. From here
w(H) = —ten0.4636_ _ 0.5

= Trtan0.4536 — 13 — 0-3333 which matches with the corresponding one-

class partial hypothesis g(H,) = 1/3.

However, function u(H) is not equal to g(H) for one class, since for one class,
angles are always 0, and u(H) will always be 0. Consequently, if one is going
to consider partial hypothesis, it is better to add a “default class” to which
unclassified examples are going to be assigned.

Corollary 2. Consider a hypothesis H for n classes where only 2 of them (c;
and c¢;) follow that D;(H) + D;(H) = 1, and the expected vector Do(T) is of
the form (0,0,---,0,1,0,0,---,0) where D; = 1. If we construct a hypothesis H'
such that:

if ©=pgc thenx =g ¢;

VazeX{f x=pg ¢j thenz =g ¢;

then u(H) = u(

The previous corollary affirms that empty classes can be added without af-
fecting the evaluation measure.

The advantage is that we can now consider any distribution of positive and
negative examples, either in the initial distribution Dx which generates the ex-
amples or in the expected distribution of classes of the theory which has assigned
classes to the examples.

11

6 General Classification Problems and Negative Evidence

In the case of classification problems with more than two classes, our approach
extends the formulation of Muggleton [18] since we take into consideration not
only classes in the formulae but the probability distribution of every class.

Also, we have shown that for Boolean problems, it is better to work with two
classes, that is, without negative examples. However, in the case of more than
two classes, negative examples are less useful than positive ones. Consider, for
instance, a problem which defines four classes {¢1, ca, c3, ¢4 }. A negative example
fla) # cs, is equivalent to f(a) =c1 V f(a) = c2 V f(a) = ¢4. This last formula
is less informative than f(a) = co, for instance. Hence, positive examples carry
more information than negative examples if n > 2. This situation is extreme
when the number of classes is infinite. In fact, in this case, a negative example
as sum(3,4) # 6 has no information, since it is equivalent to

sum(3,4) =0V sum(3,4) =1V sum(3,4) =2V sum(3,4) =3...

The FLIP system is able to handle negative examples, although, as we have
shown, they are not necessary for classification problems.

7 Implementation and Experiments

In the previous sections we have seen a method for comparing m)(T) with
m}(H), resulting in the extension of the notion of generality. We have also found
an estimation for ZTC:(T) that converges in the limit. For this estimation, we must
know Dx, as in [18]. For many problems of positive data, this distribution can
be estimated. For instance, in grammar learning, one may suppose that written
corpora or spoken examples are constituted by mostly positive examples. In
other words, if we consider two classes {w, b} where w represents a well-formed
sentence and b a badly-formed sentence, then we can assume Dy ~ 0 if wrong
examples are not given. In other cases, if this distribution is not known, we will
assume the universal distribution.

Another question with regard to implementation is the handling of zero val-
ues for some classes. This can cause division by zero in some of the previous
definitions. In order to solve this problem, it is sufficient to redefine card,, (E) =
card.,(E) + c¢. In other words, ¢ fictitious examples of each class is initially
added, in order to avoid zero values. This constant ¢ (0 < ¢ < 1) should be
as small as possible in order to preserve the classes probabilities. Note that for
two classes and ¢ = 1, this corresponds to the Laplace corrected estimate of
9(H) = (positiveE + 1)/ (possibleE + 2) [18].

Ezample 7. Consider Dy = (100,0) and that Dx assigns nine times more prob-
ability to positive examples than to negative ones, i.e. Do x(T) = (0.9,0.1).
From here, we have that:

= Dy (101,1) (101,1)
De(T) = == = ’ = 2 (1.1,0.098)
E 91.8,10.2
FE) 909 %,0.1 X g) (018,102)

12

The other question is how to compute D¢ (H) because X is usually infinite or
very large. In these cases, as in [18], we must generate examples according to a
distribution, in order to obtain D¢ x (H) and, from here, D (H). Finally, for an
infinite number of classes, the vectors are of infinite dimension. In these cases,
only the finite number of classes which appeared in the evidence are considered.

7.1 Evidence Generators

In this subsection, we discuss how to generate random samples in order to gen-
erate evidences that will permit us to evaluate the hypothesis.

The easiest case is when there exists a limited number of classes in the do-
main. This first method produces examples randomly from a given distribution
function Dx which can be arbitrarily selected (or given). One particular in-
stance of this case is when Dy is the universal distribution. Even if the number
of classes n is finite, a generator can be useful because this number could be
large and Do (H) can also be approximated.

The second case is when there are infinitely many classes in the domain. In
this case, Dx must necessarily be approximated, because the infinite positive
inputs to the hypothesis cannot all be evaluated. This situation is more common
than one might expect, because any function over the natural, integer or real
numbers has an infinite number of classes. At first glance, it seems that we cannot
define a distribution to generate examples for testing to which class they belong,
because probabilities, if uniformly distributed, would tend to 0. In order to solve
this problem, we use an approach which is based on the universal distribution:
Dx=2"K®)_Specifically, we will use Levin’s variant [11]. This variant is derived
from the notion of “age” of a string, where “age is dominated by the total time
needed for a string to appear out of nothing, enumerated by a constant-size
program”. The Levin variant is defined as Kt(X) = log age(z). More formally:

Definition 7. The Levin Length-Time Complezity of an object x given y on a
descriptional mechanism (3 is:

Ktg(xly) = min{LTs(ply) : ¢s({p,y)) =)}
where LTs(ply) = U(p) + log 78({p,y)) and pg(a) represents the output given by
¢pp on input a.

The term y represents the background knowledge and x represents the evi-
dence. LT weights the length of the program with the logarithm of the temporal
cost 7 that the program takes to generate the evidence.

For the logical functional case, we have the additional advantage that if
we have a confluent program, each term that we can ever construct over the
program will have only a normal form. Consequently, we simply have to randomly
generate lhs of equations but not complete equations. For instance, consider the
sum example. We have the signature X' = sum, 0, s. If we consider types, the
signature is divided into og = {sumyy 1y} and o1 = {0y, 5411}, where subindexes
represent the number of arguments of each function symbol and which signature
they are from. In the remainder of the paper, by type we denote a natural number

13

as the index of each subsignature. We denote the constructors with o.. In this
case, 0 = {0, s}. We denote the set of these subsignatures (all the o; and the o)
by op.

The generator can easily be constructed from this point:

function generate(n, 0o): t;
e:= select with prob. 1/card(c,) an element from o, ;
let m:= number of arguments of e;
for i:= 1 to m do begin
let s;:= type of the ith argument of e;
t;:= generate(s;, 0o);
endfor;
construct the term t:= e(t1, t2, ... y tm);
return t;
endfunction;

If executed with the call generate(0, 0,), this simple algorithm generates ground
terms ¢ according to a good approximation to P(t) = 211,

Finally, consider a function narrows(t, P, var: steps, maxsteps,o.) : u that
narrows a term ¢ wrt. a program P returning in u the normal form of the term
(a term which is different from ¢ such that all its function symbols are in o.)%
and sets steps as the number of narrowing steps (including failed branches) that
were necessary for deriving u. This function returns {} if the term t does not
narrow to a normal form or if maxsteps are used.

From here, m positive examples can be generated in the following way:

function positive(m, P, mazsteps, 0o): set of examples;
let S:= 0;
while m # 0 do
t:= generate(0, 0,);
u:= narrows(t, P, steps, mazsteps, o.);
if u # () and TempCorrection(steps) then
add {t =u} to S; m:=m—1;
endif;
endwhile;
return S;
endfunction;

TempCorrection(steps) is a function that computes the following correction to
approximate function Kt: TemporalCorrection(steps) = (rand - log(steps)) <
1/2 where rand gives a random value between 0 and 1.

In summary, the previous approach generates examples according to an ap-
proximation of the universal distribution P(z) = 2-%%®). This approach is di-
rectly applicable to logic programs (they are special cases of conditional func-
tional logic programs) and easily adaptable to other languages. If TemporalCor-
rection is ignored, it gives the distribution 27'®), which is an approximation to

% In FLIP [5] we do this by constructing an equation t = X with X being a fresh
variable. The normal form is given by the substitution of X.

14

the universal distribution P(x) = 275(*) with K(z) being the absolute Kol-
mogorov complexity.

Finally, by using the generators we can approximate D¢ x(H) by generating
k examples into an evidence E*. If Dy is uniform, by corollary 1, then Dg (H) ~
Dé’x (H) = E* when k is large. In general,

r - norm

D¢ x (H)

ZmeEk Dx(élf>

rhs(z) = ¢

i=1l..n-

FEzample 8. Let us recover example 4. Consider the following evidence F formed
by 100 examples (k = 100) and generated by the universal distribution 2=,

FExample| Probability| Number of|Hs = mod3
mod(0) 0.5 52 True
mod(1) 0.25 26 False
mod(2) 0.125 12 False
mod(3) | 0.0625 6 True
mod(4) | 0.0312 3 False
mod(5) 0.015 1 False
We have
Dk (H) (58 42) norm
Dk H) = C, X _ B _
c(H) [(26.38, 8.109)]
X sem Dx@)
Th's(x) =G i=1..n-

[(2.199,5.18)]"™ = (0.298,0.702) =~ (0.33, 0.66)
With all this, we can retake the entire definition of the probability P(H|E):
Definition 8. The optimality of a hypothesis is

Opt(H) = In p(H|E) — d,, = m In() —sz(H)

1
u(H)
Apart from being useful for approximating D¢ x (H) and D (H), the generators,

are useful for generating sets of evidence and essaying the robustness of learning
systems. However, we do not deal with this question in this paper.

15

7.2 Experiments

Let us present an example that illustrates the use of the approximations. This
example has been implemented in the FLIP system and describes a case where
Dx is known (a uniform distribution).

Example 9. Consider Table 1 which represents an evidence of size 100 based on
a uniform Dx of a simplified database for fitting contact lenses which originally
appeared in [3]. 7

FEyeglass |Astigmatism|Tear Production|contact
Prescription Rate lenses ||[Examples
myopia no reduced no 13
myopia no normal soft 15
myopia yes reduced no 11
myopia yes normal hard 11
hypermetropia no reduced no 13
hypermetropia no normal soft 12
hypermetropia yes reduced no 14
hypermetropia yes normal hard 11

Table 1. Databases for fitting contact lenses

This database can be interpreted as a problem that determines whether the
patient needs to use contact lenses, and if this is the case, what type of lenses
s/he must use. Therefore, this case is a classification problem with three target
classes: C' = {no, soft, hard} with D¢ = (1/2,1/4,1/4).

With our method we can approximate D¢, (T') as:

DE

Dc (T) = T

= (0.51,0.27,0,22)

Consider these possible hypotheses with their respective D¢ and the angle they
form with ITC:(T)

Hl {leTLS(X7Kr) =no DC = [05'0'0] a1 = 0599 rad
lens(X,Y,r) =no _ B
Hy {lens(X Y,n) = soft Do =[0.5,0.5,0] ag = 0.464 rad

Hs =

{lensEX,Kr =no D¢ =[0.5,0.25,0] asg = 0.365 rad

)
lens(X,no,n) = soft

lens(X,Y,r) =mno
Hy =< lens(X,no,n) =soft Do =[0.5,0.250.25 a3 =0.174 rad
lens(X,yes,n) = hard

" The simplification consists in assuming that a fourth attribute (age) is always young.

16

As expected, the angle with respect to m)(T) gets lower and lower as the hypoth-
esis becomes more accurate. Moreover, the corresponding w(H) and optimalities
are:

Hy:l=4, u= {8n05% 5 05=0.2028, Opt = 100in(55555) — 4 = 155.55

14+tan0.599
Hy:1=8, u=03333x1=0.333, Opt = 100In(5255) — 8 = 101.86
Hs:1=8, u=0276x0.75=0207, Opt = 100In(zaz=) — 8 = 149.4
Hy:1=12,u=0.15x1=0.15, Opt = 100In(z=) — 12 = 177.71

This and other experiments can be found in the FLIP system web page:
http://www.dsic.upv.es/"jorallo/flip/

8 Conclusions

This paper has converted the notion of hypothesis generality into a new notion
of class unevenness. This new view of the problem places the learning of Boolean
functions as a special case: when the number of classes equals 2 and where any
proportion of examples of class true and class false can be used.

Moreover, it clarifies the problem when sparse or non-uniform evidence is
given for one class. Consider, for instance, the lens example in a purely logical
way, as a predicate lens(X,Y, Z, C) where C' is the argument that represents the
classes to be predicted (usually done by a mode declaration in ILP systems).
The learnability of the problem and the evaluation of hypotheses do not only
depend on the number of positive or negative examples, but also depends on the
proportion of classes in the evidence, hypothesis and theory.

In conclusion, the approach presented in this paper neglects the use of nega-
tive evidence and supports the conversion of Boolean problems into classification
problems. Although there is important literature on handling class distribution,
it does not deal with universal representation languages, such as functional logic
programming. In this regard, the IFLP framework is the most natural step for
handling classes from the ILP point of view.

In the presence of noise, our work could be extended following the model
presented in [13].

Acknowledgments

We would like to thank Stephen Muggleton for suggesting the implications and
naturalness of IFLP for classification problems. We also thank the anonymous
reviewers for their useful comments.

References

1. H. Arimura and T. Shinohara. Inductive inference of prolog programs with linear
data dependency from positive data. In T. Kitahashi H. Jaakkola, H. Kangassalo
and A. Markus, editors, Proc. Information Modelling and Knowledge Bases V,
pages 365-375. IOS Press, 1994.

17

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.

J. Cendrowska. PRISM: An algorithm for inducing modular rules. International
Journal of Man-Machines Studies, 27:349-370, 1987.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification, volume 6 of
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

C. Ferri, J. Herndndez, and M.J. Ramirez. The flip system: From theory to imple-
mentation. submitted to Machine Learning, 2000.

E.M. Gold. Language indentification in the limit. Information and Control, 10:447—
474, 1967.

M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19-20:583-628, 1994.

J. Herndndez and M.J. Ramirez. Inverse Narrowing for the Induction of Functional
Logic Programs. In Proc. Joint Conference on Declarative Programming, APPIA-
GULP-PRODE’98, pages 379-393, 1998.

J. Hernédndez and M.J. Ramirez. A Strong Complete Schema for Inductive Func-
tional Logic Programming. In Proc. of the Ninth International Workshop on In-
ductive Logic Programming, ILP’99, volume 1634 of Lecture Notes in Artificial
Intelligence, pages 116-127, 1999.

T. Koshiba, E. Mékinen, and Y. Takada. Learning deterministic even linear lan-
guages from positive examples. Theoretical Computer Science, 185:63-79, 1997.
L.A. Levin. Universal search problems. Probs. Inform. Transm., 9:265-266, 1973.
M. Li and P. Vitanyi. An Introduction to Kolmogorov Complezity and its Applica-
tions. 2nd Ed. Springer-Verlag, 1997.

E. McCreath and A. Sharma ILP with Noise and Fized Example Size: A Bayesian
Approach 15th Intl. Joint Conference on Artificial Intelligence, pp. 1310-1315, 1997.
E. Martin and A. Sharma. On sufficient conditions for learnability of logic pro-
grams from positive data. In S. Dzeroski and P. Flach, editors, Proc. of the 9th
International Workshop on Inductive Logic Programming, ILP’98, volume 1634 of
Lecture Notes in Artificial Intelligence, pages 198-209. Springer-Verlag, 1999.

S. Muggleton. Inductive Logic Programming. New Generation Computing,
8(4):295-318, 1991.

S. Muggleton. Predicate invention and utilisation. Journal of Experimental and
Theoretical Artificial Intelligence, 6(1):127-130, 1994.

S. Muggleton. Inverse entailment and progol. New Generation Computing Journal,
13:245-286, 1995.

S. Muggleton. Learning from positive data. Machine Learning (accepted subject to
revision), 1999.

M. Krishna Rao. A framework for incremental learning of logic programs. Theo-
retical Computer Science, 185:191-213, 1997.

T. Shinohara. Inductive inference of monotonic formal systems from positive data.
New Generation Computing, 8:371-384, 1991.

18

