Theoretical Issues of Mimetic Classifiers

José Hernandez-Orallo, Vicent Estruch

Departament de Sistemes Informatics i Computacié
Technical University of Valencia, C. de Vera s/n, 46022 Valencia, Spain.
{jorallo,vestruch}@dsic.upv.es

Abstract. In this report we study the theoretical properties of the sim-
ple mimicking method devised for obtaining classifiers that are similar
to an oracle. The method is based on generating a set of random exam-
ples (random dataset) jointly with (part of) the training dataset. This
work complements the experimental results shown in [2]. First, we show
that when all the arguments of the function to be learned are nominal, a
sufficiently large random dataset allows a loyal mimetic classifier to cap-
ture exactly the semantics of the oracle, as expected. Secondly, and more
interestingly, we show that if the function to be learned is probabilisti-
cally pure (i.e. not fractal) and the classifier is loyal and fence-and-fill
then for a sufficiently large random dataset then the error made by the
the mimetic classifier will approach zero. We particularise the results
for unpruned decision trees, which are loyal and fence-and-fill. Then we
study the behaviour of the mimicking method considering learning curve
functions. We derive the conditions where the method is useful and we
analyse the influence of adding (part of) the training dataset. Finally,
we discuss new methods for generating the random dataset considering
the first classifier as a soft classifier and ranking the random examples.

Keywords: Mimetic classifiers, learning with oracles, machine learning,
unlabelled datasets, co-training, comprehensible models.

1 Introduction

The motivation of this work comes when we look for a new classifier that could
be “semantically” similar to an accurate (and maybe complex) classifier (an
oracle £2) but “syntactically” or “structurally” simpler, and ultimately compre-
hensible. In other words, we look for a new classifier that “mimics” or imitates
the behaviour of an oracle (a combined classifier, a neural network, etc.). But
how can we do this in a simple and effective manner? In [2] we have presented
a method that is based on an additional “random dataset”. This dataset can
be artificially generated as large as we want, and this is possible just because
we want it unlabelled, i.e., without class values. Next, the unlabelled random
dataset is “classified” or “labelled” by using the oracle. What we obtain now
is a labelled random dataset that captures or distils (partially) the semantics
of the oracle. And once here, the final stage is easy: we just join this labelled
random dataset with (part of) the original training dataset and we can train a

single comprehensible model, e.g. a decision tree. We call the final classifier the
mimetic classifer, denoted by . Figure 1 shows this process:

First First
Training Learning Classifier
Data Algorithm (Oracle
- . First Stage
:> gy . ¢ g

Distribution Second Stage
Training Data +
First E Labelled Random Second Second
Unlabelled Classifier -~ Labelled Data Learning Classifier
Random Data (Oracle)~ Random Data Algorithm (Mimetic)

e T

Fig. 1. Mimicking Process

In [2] we have performed an experimental study of different variants of the
method, showing that it works in practice and that a prior distribution is better
than a uniform distribution for generating the invented dataset. We have also
shown that it is usually good to also use the training dataset in the invented
dataset, and that results are increasingly better as larger the invented dataset
is. However, all these experiments are not accompanied by theoretical results
showing the rationale behind these experimental results. This report is devoted
to obtain such results.

2 Notation and Settings

Next we give basic definitions for classifiers. An attribute domain X is any set
of values, either nominal (finite) or numerical (real). The evidence space E is
defined as a product X; x X5 X ... X X,;,,. The class domain C' is defined as a
finite set of ¢ classes denoted by natural numbers: 0, 1, ..., ¢ — 1. From here,
we define a classifier as a function f : E — C. We usually refer to the function
representing the oracle and mimetic classifier by fp and f, respectively. Each
element e € E is known as an unlabelled example. A pair (e, i) where e € E and
i € C is known as a labelled example. A sample dataset is any finite subset of
E. A sample dataset can be labelled or unlabelled. We use the notation D; to
designate a dataset D labelled with function f. The subscript can be dropped
when f is clear from contexts. Note also that datasets are sets and not multisets.
Additionally, and accordingly, we assume there are no equal examples labelled
with different classes. We denote by T, (or simply T') the training dataset, a
labelled dataset used for learning. We denote by Ry (or simply R) a random
dataset labelled by oracle 2. A test or validation dataset is a labelled sample
dataset usually denoted by V.

If all the attributes in E are numeric, we can also call each e € E a point.
For the sake of simplicity, we may consider (when needed) all numeric attributes
zj € X; will be in the interval [0..1]. Given two points e; and e, we denote
by erez the segment connecting both points. The length of the segment is the
Euclidean distance between e; and ey, denoted by d(eq, ez).

Given an evidence domain E = X; x X X...x X,,,, we denote by E, the subev-
idence domain constructed only with the nominal attributes, i.e., E, = [[X;
such that X; is nominal. In a similar way, we denote by £, the subevidence
domain constructed only with the numeric attributes, i.e., E, = [[X; such that
X is numeric. Obviously, E,, is finite. We call |E,| the “nominal dimension” of
the dataset. Each element o € E, is called an anchor. If we fix an anchor then
we have that the whole evidence has only variable numeric attributes and we can
extend the notion of segment and distance. For instance, we can define the Eu-
clidean distance between two points e; and es, such that the nominal attributes
match (i.e. equal to a certain), as the Euclidean distance just considering the
numeric attributes. If the nominal attributes of e; and e; are not equal then
the distance is infinite. Without loss of generality we can sort the attributes
such that every example e can be expressed in the following way (es,e,) where
er € E,and e, € E,.

And, before starting up the definitions, we must clarify that we denote by
Prob(v) the probability of event ¢, and we denote by Prob, (v) the probability
of event v if event w has happened, i.e. the conditional probability Prob(v|w).

Definition 1. Given an evidence domain E, we say that a method for generating
a random sample R is exhaustive if and only if:
when E has only nominal attributes:

Ve € E : Prob(3e' € R,e=¢') >0
when E has only numeric attribues':
Ve > 0,Ve1,es € E,d(e1,e3) < €: Prob(de' € R, e’ € e1ez) > 0
when E has nominal and numerical attributes:
Ves € E,,Ve > 0,Ve, € E,,e = (ef,e,),Ves € E,d(e1,e2) < €: Prob(Ie’ € R, €' € erez) >0

Given the previous definition we can consider several methods of generating
random samples (given a training set):

— Uniform Distribution: for nominal attributes, one of the possible (seen
in the training set) values is randomly chosen according to a uniform dis-
tribution. For numeric attributes, one random value is generated by using a
uniform distribution on the interval {min;, maz;}, where min; is the lowest
value observed for attribute ¢ and max; is the highest value observed for that
attribute in the whole training dataset. This is independently uniform, since
one attribute distribution does not affect the distribution of other attributes.

! An alternative definition Ve > 0,Ve € E : Prob[3e’ € R,d(e,e’) < e is not valid
because a method could be exhaustive in just one dimension or direction.

— Prior distribution: each attribute z; of a new example is obtained as the
value v; in a different example e € T, e = (vy,...,v;, ..., Uy) selected from
the training set by using a uniform distribution. This procedure of generating
instances also assumes that all the attributes are independent. Consequently,
the method just maintains the probabilities of appearance of the different
values observed in each attribute of the training dataset (prior).

— Prior interpolating distribution: it is similar to the previous distribution
for nominal attributes. But for numeric attributes, we look one value v; 1 in
the training set as before but then we look for the closest values v;» and
v;,3 from other examples such that v;» < v;1 and v;3 > v;1. Then we use
a uniform distribution from v; » to v; 3 to generate a new value v’ which is
used as the numeric value for the argument i of the example. If the value
v; 2 does not exist (v;1 has no value on the left), then we use a one-side
normal distribution with mean at v;, and standard deviation half the range
(ming, max;) of the attribute. For the right value in the alternative situation,
we behave similarly.

It is easy to see that the uniform distribution and the prior interpolating dis-
tribution are exhaustive (providing we know the range of all the numeric values
or we have them normalised from 0 to 1), while the prior distribution is not
exhaustive if there are numeric attributes (values that have not appeared have
0 probability). Of course, there are other (exhaustive) methods for generating a
dataset, e.g. using kernel density estimation methods.

And just to finish this section, let us define the notion of loyalty, applied to
a classifier:

Definition 2. Let C be a classifier, we say C is loyal if for every example e be-
longing to the training set used for learning the classifier, C classifies e correctly.

For instance, an unpruned decision tree classifier is a loyal classifier.

3 General Results

Given the previous definitions we consider the situation where we have a domain
E, an oracle 2 and an exhaustive method for generating random examples from
E labelled by 2. The random dataset created is denoted by R. Let us show some
properties.

The first property is quite trivial and just shows that if all the attributes are
nominal, then there is a finite number of examples and hence the semantics of
the oracle can be captured exactly. Formally,

Proposition 1. Given an evidence domain E with only nominal attributes, an
oracle (2, and a loyal mimetic classifier i using a random dataset R generated
by an exhaustive method labelled with (2. Then:

if |R| =00 then Vee E: f,(e) = fol(e)

Proof. We know that every attribute X; is nominal. Consequently, []|X;| will
be the number of possible examples in E, where |X;| indicates the number of
possible instances of the X; attribute. If |R| — oo, since it is generated by an
exhaustive method, than we will have necessarily that, at certain point?, R = E
(since E is a finite set), and since p is a loyal classifier that has used R for
learning, we conclude that f,(e) = fo(e) foralle € E. 0

This has been fairly straightforward. It is also fairly obvious that the thing
is different when real numbers appear in the domain.

Proposition 2. Given an evidence domain E with at least one numeric at-
tribute, and a loyal mimetic classifier p using an random dataset R generated
by an exhaustive method labelled with an oracle 2. Then, there exists an oracle
2 such that

if |R| =00 then Jee€ E: f,(e) # fale)

Proof. Consider an oracle that represents the function fo(X) = true if X is
rational, otherwise false. Even an extremely large random dataset with an ex-
haustive method of generation may never generate all the rational numbers, so
there will be an example such that has not been seen and the classifier may give
an incorrect classification. 0

This is related to the negative theorems about identification in the limit [3].
In fact we can find other less picturesque counterexamples.

Nonetheless, it seems that the greater the random dataset the mimetic classi-
fier could approzimate better the oracle, even when there are numeric attributes.
However, this cannot be shown for whatever function and whatever classifier. We
need to define some slight restrictions on the function and the classifier. Let us
start with the function:

Definition 3. Given a function f we say that a point e € E is in a pure region
of radium €, denoted by Pure.(e) if and only if

Ve' € E(d(e,e') <€) = f(e) = f(e)

That means that all points (at a distance less than ¢) are of the same class
that e. In other words, there is not a frontier closer than €. It is important to
note that € is a paramter and may be different for each point.

Definition 4. We say a function f only has pure regions (or simply it is pure)
if and only if
Probecg[de > 0 A Pure.(e)] =1

No additionally condition is imposed on nominal attributes apart from the fact
that the previous condition has to be true for any anchor.

% In fact |R| will be never greater than |E)|.

From here we can allow an infinite number of points in boundaries, because
the area of these boundaries is zero. However, we cannot have an infinite number
of “spurious” points which are different from their surroundings, if these are
spread around the space, even if this infinite number is neglectable in the whole
space. For instance, natural numbers among real numbers. The reason is the
strict definition of pure region.

In order to avoid this problem, we are going to extend the probability to the
first definition.

Definition 5. Given a function f we say that a point e € E is in a probabilis-
tically pure region of radium €, denoted by PPure.(e) if and only if

PTObe’GE | d(e,e’)ge[f(e) = f(el)] =1

That means that the probability of selecting another point (at a distance less
than €) of the same class that e is equal to 1. In other words, there is not a region
boundary closer than e. The term probabilistically pure is a generalisation and
includes cases where some finite or infinite sets of “spurious” points (with no
area) of other class may be inside the region, but they can be neglected over the
overwhelming majority of points which are of the same class as e. From here,
now we give a more flexible (probabilistical) definition of pure function:

Definition 6. We say a function f only has probabilistical pure regions (or
simply it is probabilistically pure) if and only if

Probecg[3e > 0 A PPure.(e)] =1

No additionally condition is imposed on nominal attributes apart from the fact
that the previous condition has to be true for any anchor.

The use of a second probability here is on one hand, to avoid the problems of
frontiers as in the firs case, and, on the other hand, to avoid problems precisely
with the “spurious” points, for which there does not exist such an e. Again, it is
important to note that the e may be different for each point. That means that
the function can have as much resolution and any form we may want. But, then,
what kind of functions are ruled out by the previous definition? The answer is
functions for which given a point we cannot even find a small region around it
where the class is the same as the point for the overwhelming majority of points.
This kind of functions are usually known as fractal functions.

For instance, the following function f is a fractal:

f(X) = g(X, 0, 1, true)

gX, L, R, B) = if (X = (R - L)/2) then return B

else if (X < (R - L)/2) then g(X, L, (R-L)/2, not(B))
else g(X, (R-L)/2, R, not(B))
In fact, the previous function f is so fractal that its appearance is “grey” (half
the points are true and half the points are false) at whatever resolution. Curi-
ously, it may be considered not fractal in a more informal sense! Nonetheless,

the previous function is only defined for rational numbers. If we only consider
rational numbers, then the previous function is not probabilistcally pure and,
logically, is not pure, either.

However, if we make it complete for real numbers, i.e.

£f7(X) = £(X) if X is rational

£’ (X)= false otherwise
Now f’ has fractal components but, since there are infinite more irrational num-
bers than rational, probabilistically, we have f'(X) = false and hence, we can
say that it is probabilistically pure (although not pure).

In general, most patterns we can think of which are usual in machine learning
and data mining applications are probabilistically pure. Moreover, as we will see,
with our mimicking method, oracles are usually implemented on a computer with
limited resolution, which makes them probabilistically pure or even simply pure.
Consequently, the previous restrictions can be considered pretty mild.

Once given these restrictions on the functions we are going to deal with, let
us now give a definition of a fence-and-fill learning algorithm.

Definition 7. A fence-and-fill learning algorithm is an algorithm that only gen-
erates pure classifiers.

Note that it is defined with the no-probabilistic version. This is not an im-
portant restriction. If we consider that classifiers are algorithms that give an
output for an input in a finite time then they are pure.

Now, given the previous definitions, we can assert a positive result:

Lemma 1. Given an evidence domain E with only numeric attributes, an oracle
2 such that its characteristic function fq is probabilistically pure, and a loyal
fence-and-fill mimetic classifier p using a random dataset R generated by an
ezhaustive method labelled with (2. Then:

if |R| = oo then Probecr[fule) = fale)]=1

Proof. We know that every attribute X; is numeric, so we can apply the defini-
tions that use distances.
Since R is generated by an exhaustive method, we have,

Ve > 0,Ver,es € E,d(er,e2) < e: Prob(de’ € R, e’ € erez) > 0
But we will have necessarily, since |R| — oo, that:
Ve > 0,Ver,es € E,d(e1,e2) < e:3e' € R, e € e1es (1)

This means that there are examples all around.
Since the mimetic classifier is loyal:

Vee R: fu(e) = fale)
Since the mimetic classifier is fence-and-fill:

Prob.cg3e > 0 A Pure.(e)

extending the definition of Pure.(e) we have:
Prob.cpde > 0A (Ve' € E(d(e,e') <€) = fule) = fule))
Consequently, from being loyal and fence-and-fill, we have:
Prob.cg[de > 0N (Ve' € E(d(e,e') <€) — fule) = fu(e))] =1 (2)

That means that the mimetic classifier matches with the oracle in the over-
whelming majority of the seen points, and their surrounding points have the
same class assigned as the centre point.

And now, we know that fq is probabilistically pure, that means:

Probecg[3e > 0 A PPure.(e)] =1
extending the definition of PPure.(e) we have:
Probecp[3e > 0 A Probecp | geeny<elfole) = fo(e)] =1] =1 (3)

which means that for the overwhelming majority of the points, the class given
by the oracle matches the surrounding points.
From (2) and (3) we have:

Probecg[3e > 0N Probecp | gee,ey<elful€') = fo(e)] =1 =1

That means that the mimetic classifier matches with the oracle in the over-
whelming majority of the seen points (d(e,e') = 0) and their surrounding points
(0 < d(e,€e') <e).

And finally, from this and (1) we have:

Probeep[3e > 0 A Probecp | deeny<clful€') = fole)] =1] =1

which means that the mimetic classifier matches with the oracle in the over-
whelming majority points and their surrounding points, which logically entails
that it matches on the overwhelming majority of points, i.e.:

Probecp[fu(e) = fale)] =1
O

The previous lemma means that with the conditions imposed the error will
approach zero when we generate sufficiently many random examples for the
mimetic classifier.

And from the previous lemma for evidences composed exclusively by numeric
attributes, we can now establish the result for both numerical and nominal at-
tributes.

Theorem 1. Given an evidence domain E with either numeric or nominal at-
tributes, an oracle {2 such that its characteristic function fq is probabilistically
pure, and a loyal fence-and-fill mimetic classifier p using a random dataset R
generated by an ezhaustive method labelled with (2. Then:

if |R| = oo then Probecg[fu(e)= fole)]=1

Proof. (sketch). If the domain E contains only nominal or numeric it is proven
by proposition 1 or by lemma 1 respectively. If both nominal and numeric at-
tributes exist in F, we can divide it into nominal F, and numeric E,. Since
we discussed in the beginning E, is finite and each element o € E,, is called
an anchor. Since the way to generate examples is exhaustive, we have non-null
probability for each anchor, and for each anchor we have the same conditions
for making lemma 1 hold. 0

From here, we have that for almost every function of interest (probabilistic
pure) represented by an oracle we can approximate it as well as we want with
fence-and-fill methods and a large enough dataset.

4 Results for Decision Trees

Since we are using decision trees for mimicking because one of the objectives
of this technique is to obtain a comprehensible representation of any oracle, it
would be interesting to particularise the previous results for decision trees. Here
we go:

Proposition 3. An unpruned decision tree learner is a loyal fence-and-fill learner.

Proof. 1t is loyal because it is unpruned, and all the leaves are pure and hence
all the training examples are classified correctly.
It is fence-and-fill because a decision tree is pure, since, for numeric attributes,
partitions are of the form
X; <w | X;>w

where v is a rational number. That means that, in the end, the space formed
by the numeric attributes of E will have a partition based on hypercube regions
for each anchor. This kind of partitions (hypercubes) are pure for all the points
except from the points at the boundaries. Since there is a finite number of
conditions in a decision tree, the area of the boundaries is neglectable and,
hence we have that:

Prob.cg[de > 0 A Purec(e)] =1

which is the definition of a pure classifier.
Once seen they are loyal and pure then we have that decision tree learners
are fence-and-fill learners. 0

From here, we have the following trivial corollary of the previous theorem:

Corollary 1. of Theorem 1 Given an evidence domain E with either numeric
or nominal attributes, an oracle 2 such that its characteristic function fo is
probabilistically pure, and a unpruned decision tree learner p that mimics {2 by
using a random dataset R generated by an exhaustive method labelled with (2.
Then:

if |R| = oo then Probecg[fu(e)= fole)]=1

Proof. From the previous proposition. 0

Of course it would be interesting to relate the error rate with the number
of examples. However, this depends on the resolution of fg, the dimension of
the space and the way in which the random datasets are generated. We think no
interesting bounds can be obtained from here. However, we can still do something
interesting if we consider the whole picture and we are given the learning curves
of the classifiers. This is addressed next.

5 Learning Curves and Influence of the Training Set

In this section, we are complicating things a little bit. Now we consider a real or
target function f; (from which we have a training dataset and a test dataset).
The target function is approximated by an oracle, and then the mimetic classifier
wants to approximate the oracle. For the moment we do not use the training set
for the second stage and we have a scenario as shown in Figure 2:

First First
Training Learning Classifier
Data Algorithm (Oracle
— * First Stage
Distribution Second Stage
First g
Unlabelled Classifier & Labelled Second Second
Random Data (Oracle) s~ Random Data Learning Classifier

R 2 Algorithm (Mimetic)
@zﬁ = = | gatn) @%

Fig. 2. Mimicking Process without Training Set used in the Second Stage

Seen in a more general way, we can say that we have a first learning stage with
fidelity a; and a second learning stage with fidelity a; wrt. the results of the
first stage. From here, we can establish the whole fidelity a;.2 easily:

Theorem 2. Given a two-stage learning scenario with ¢ classes, where the first
learner has fidelity a, for that problem and the second learner has fidelity as for
the problem representing the first stage, we have that:

a1:2 = a1 - a2 + (rll)(l —ai) - (1 —as)

Proof. The proof is straightforward. For the first part of the sum we have to
consider the cases where the target function and the function in the first stage
match (i.e. @) and also the cases where the function in the first stage and the

10

function in the second stage match (as). The probability that both things happen
just gives the first part of the sum.

For the second part of the sum we have to consider the cases where the
target function and the function in the first stage do not match, i.e. 1 —ay. In
this situation we have to consider that for all the cases where the first stage
function and the second stage function do not match either, i.e. 1 — as, some of
them will, by chance, correct the former error. It is easy to see that this happens
in just 1/(c — 1) of the cases. Consequently, the probability that the first stage
fails but the second stage corrects it by chance gives the second part of the sunﬁ

We can particularise the previous trivial result for the “oracle accuracy” (the
similarity between the target function and the oracle), “fidelity” (the similarity
between the oracle and the mimetic classifier) and “mimetic accuracy” (the
similarity between the target function and the mimetic classifier)

We can define this more formally:

Definition 8. Oracle accuracy is defined as:

Accr o = Probecr fr(e) = fole)

Definition 9. Fidelity is defined as:

Accq = Probeer fo(e) = fu(e)

Definition 10. Mimetic accuracy is defined as:

Accr, = Probeer fr(e) = fule)
From here, we can obtain the following trivial result:

Theorem 3. Given a target function of ¢ classes, an oracle 2 and a mimetic
classifier i, we have that:

)(1 = Acer,0) - (1 — Acco,u)

Accr = Acer o - Acco + (c——l

Proof. Trivial from Theorem 2. 0

5.1 Learning Curves

Up to now, we have considered global error and we have given for granted that we
know the error committed by each stage for a given size of training dataset T' (for
the first stage) and random dataset R (for the second stage). With the conditions
assumed in previous sections, if we indefinitely increase the size of both, we
would have that a; — 1 and a2 — 1 and hence, a;.2 — 1. However increasing
indefinitely T is not possible since we are usually given a finite training set
and increasing indefinitely R is not possible due to computationally restrictions
(space and time).

11

Consequently, we need to generalise the constant “fidelities” to variable “fi-
delities”. More precisely, from now, we consider a “learning curve” for each
classifier, which tells us which specific value of fidelity is obtained for a given
dataset size.

Definition 11. Given a classifier, a fidelity learning curve function is defined
as a function g : IN — IR and Vz : g(z) € [0,1] such that given a dataset D
extracted from target function or problem f, where D is used by the classifier,
then the fidelity of the classifier wrt. f is given by g(n) where n = |D].

Obviously, that function g may not exist even for a single classifier and prob-
lem, may be discontinuous and, obviously, may depend not only on the size of
the dataset but also on the order of appearance of the examples. Consequently,
we consider them to be “average-case” functions, i.e., either they are averages
of all (or a representative sample of) the possible combinations of examples of
each size or they also average the behaviour for several problems®. Nonethe-
less, the use of learning curve estimations or functions is not new, and has been
used for more than a decade, theoretical bounds established (depending on the
Vapnik-Chervonenkis dimension or other dimensions of the problem) and specific
approximations found (see e.g. [5][4]).

Consequently, the function could be estimated and averaged over many sub-
sets of £ and even for many problems. Moreover, and what it is interesting, it
can be used to model some behaviours and, as we will see next, to understand
the reason why sometimes a particular technique does not work well or which
options are better.

The performance of classifiers regarding the number of examples seen usually
has a form of an inverse exponential growth curve, which usually begins from the
accuracy given by a random classifier 1/c and rises first quickly and then more
slowly to a maximum. This kind of behaviour can be modelled by the following
learning curve:

Definition 12. A “saturation” fidelity learning curve function is defined as the
function of the form:

1 1
S[a,a](n) = (@ — E)(l —e*") + P
where a is the maximum fidelity or saturation point and « is the growth rate.

An example of a saturation learning curve (sg.9,0.05)(1) for a 5-class problem
is shown in Figure 3).

It is not difficult to consider a particular learning algorithm and learn one or
more models for increasing sizes of the training set. In many cases, the previous
function can fit well the behaviour of the algorithm and dataset, making it

We cannot consider all the possible problems because of the free-lunch theorem [6]
at least without further assumptions, but we can consider a representative sample
of problems (e.g. the UCI dataset)

12

aE a: maximum accuracy (saturation point)

0,8 4

0,7 4

0,6 4

0,5 4

Accuracy

0.4
0,3 q

0.2 (1/¢c): chance cl

0,14

0 10 20 30 40 50 60 70 80 90 100
Training Set Size

Fig. 3. Saturation Learning Curve

possible to obtain the parameters a and « in order to extrapolate for larger
datasets.

In what follows we consider generalised curve functions for theoretical results
and we just use saturation curves for examples.

And now, once presented the learning curve functions, we can give a charac-
terisation of when it is useful to use the mimicking method:

Theorem 4. Given a two-stage learning scenario with ¢ classes, where the first
learner has fidelity learning curve function g1 for that problem and the second
learner has fidelity go for either the original problem and the problem representing
the first stage, and a dataset T (for the first stage, which is considered correct
wrt. the target function) of length t = |T'| and a dataset R (for the second stage)
of length r = |R| and accuracy g1 (t), then the mimetic procedure is useful if and
only if:

0:(0) < 0 0) - o) + ()1 =0 (0) - (1 - ()

Proof. If we do not use the mimicking procedure, then we can use the training
set T with the second classifier and we have an accuracy of g2(t). If we use the
mimetic procedure, we have the expression from Theorem 3. Consequently, the
mimetic procedure is useful when the former expression is not greater or equal
than the second expression. 0

Let us see with some examples whether we can determine the use or not of
the mimimicking technique.

Ezample 1. Consider a neural network with fidelity learning curve function g; (n) =
50.9,0.05)(n) and a decision tree with fidelity learning curve function gs(n) =
810.8,0.1) (). We have a training dataset with 50 examples. Is it reasonable to use
the mimicking method?

The answer is no. It turns out that the use of mimicking (with infinite random
dataset) will attain an accuracy of 0.69 while the direct use of the second classifier
obtains almost 0.80 accuracy (the curve is rather steep). In fact, for these two

13

curves there are no training size for which the mimicking method is useful. This
is an example where the first classifier is good but slow and the second is bad
but quick. Mimicking is useless.

Example 2. Consider a logistic regression classifier with fidelity learning curve
function g1(n) = $)0.9,0.05(n) and a decision tree with fidelity learning curve
function ga(n) = sj0.5,0.01)(n). We have a training dataset with 100 examples. Is
it reasonable to use the mimicking method? And with 200 examples? And with
300 examples?

For 100 examples the answer is yes. It turns out that the use of mimicking
(with infinite random dataset) will attain an accuracy of 0.721 while the direct
use of the second classifier obtains 0.579 accuracy.

With 200 training examples we have that mimicking (with an infinite random
dataset) will attain an accuracy of 0.725 while the direct use of the second
classifier obtains 0.719. The answer is yes.

With 300 training examples we have that mimicking (with infinite random
dataset) will attain an accuracy of 0.725 while the direct use of the second
classifier obtains 0.770. The answer is yes.

This is an example where the first classifier is good and quick and the second
is bad and slow. In this situation we see that in some cases the mimicking method
is useful while in others is not.

Ezxample 3. Consider a Bayesian classifier with fidelity learning curve function
g1(n) = s[0.8,0.1](n) and a decision tree with fidelity learning curve function
g2(n) = $[0.9,0.01](n). We have a training dataset with 100 examples. Is it rea-
sonable to use the mimicking method? And with 300 examples?

The answer is yes. It turns out that the use of mimicking (with infinite
random dataset) will attain an accuracy of 0.725 while the direct use of the
second classifier obtains 0.642 accuracy. With 300 training examples we have
that mimicking (with infinite random dataset) will attain an accuracy of 0.725
while the direct use of the second classifier obtains 0.865. This is an example
where the first classifier is bad and quick and the second is quick and slow. In
some cases the mimicking method is useful.

Of course, there are cases where the mimicking method is useful because we
have a black-box and we do not have training set.

In figures 4 and 5 we illustrate two typical cases in a graph that we call a
“Mimetic Response Graph”. This graph shows three curves: the learning curve
of the first classifier, the learning curve of the second classifier if it were learned
with different sizes of training data and, additionally, we show the learning curve
of the mimetic classifier, considering the random data infinite. These graphs
are quite illustrative, because we can see whether the method is useless (if the
mimetic curve is below the curve of the second classifier) or in case it is useful,
for which training sizes it is useful.

The first figure 4 shows a case where the mimicking method is useful for short
training sets (no. examples j 415).

14

Mimetic Response Graph

09 First Classifier: a=0.9, a= 0.02

08 // Second Classifier: a=0.8, a= 0.005
07 4 - —
> - Mimetic Classifier
8 06 4
5 054
§ 04 4 Mimicking Mimicking
< Useful *— {7~ Useless

03 4
02 4
014

0 100 200 300 400 500 600 700 800 900 1000
Size of Training Set

Fig. 4. Mimetic Response Graph when Mimicking is useful

The second figure 5 shows a case where the mimicking method is useless inde-
pendently of the size of the training set.

Mimetic Response Graph

First Classifier: a=0.9, a= 0.01

Second Classifier: a=0.8,a=0.02

Mimetic Classifier

Mimicking
Useless

Accuracy

0 100 200 300 400 500 600 700 800 900 1000
Size of Training Set

Fig. 5. Mimetic Response Graph when Mimicking is useless

According to the previous results and rationales, it seems that the most impor-
tant thing to know of both classifiers is their learning rate. This is even more
important than their maximum accuracies. There are cases where quick but bad
classifiers can be used for the first stage and slow but good classifiers can be
used for the second, especially when there are not many examples available.

Nonetheless, it must be stated that the mimicking procedure may be bet-
ter than expected because g» may be better for the oracle than for the target
function. This may happen because the oracle is usually an algorithmic device
and hence is pure. By the results of the previous section, this means that fence-
and-fill methods for the second stage will capture correctly the semantics of the
oracle for a large random dataset. Let us formalise this rationale.

Lemma 2. Given a mimicking scenario. If the first stage classifier (the oracle)
is probabilistically pure and the second stage classifier is pure and loyal then the
average-case learning curve of the second classifier follows the condition:

if |R|— oo then gh(|R|)) =1

We use g4 to denote that this good behaviour only happens wrt. the oracle. We
reserve go to the learning curve wrt. the target function.

Proof. Direct from theorem 1. 0

15

And now, from this, we can assert the following theorem:

Theorem 5. Given a mimicking scenario with training set T of size t = |T|.
If the first stage classifier (the oracle) with learning curve g1 is probabilistically
pure and the second stage classifier with learning curve g» is pure and loyal then
the mimetic classifier will be useful if and only if:

92(t) < g1(t)
Proof. From theorem 4 we have:

1
c—1

g92(t) < g1 () - g5(r) + ()1 = g1(£)) - (1 = g5(r))
Considering we can generate as many random examples as we want then we have
|R| — co. Hence, from lemma 2 we have:

0:(0) <0 (0) 1+ (=)0 - ga(8) - (1— 1)

1

92(t) < g1(t) + (7)1~ 0a(8) - 0

92(t) < g1 (t)
O

This is a very good result and can be seen in the mimetic response graph as
that whenever there is a zone where the curve of the first classifier is over the
curve of the second classifier, then the mimicking method is useful. Note that in
the mimetic response graph we must show the behaviour of the second classifier
wrt. the target function, not wrt. the oracle. This is precisely the point we have
discussed, because the second tends to 1 whereas the first may not.

5.2 Influence of the Training Set

And given all this, now we can consider the situation where, additionally to the
random dataset R, the mimetic classifier also uses the training set 7. Conse-
quently, we have a dataset used for the second stage I = RUT. This dataset
will be referred as the “invented” dataset or the joint dataset. This is shown in
figure 6.

For this new situation, we have to redefine our previous results.

First of all, we have to generalise our notion of learning curve to take two
datasets of different distributions into account. Even taking into account aver-
ages, it is clear that the function g(n) is just an idealisation that in many cases
can only be approximated. But this is still possible because examples are drawn
from a single distribution. In the case of joining R and 7" both datasets try
to model the same problem but must be considered two different distributions.
Consequently, we must extend the definition of the learning curve for the second
stage. First we need to define an averager combined classifier:

16

First First

Training Learning Classifier
Data Algorithm (Oracle)

First Stage

Distribution Second Stage
Training Data +
First E Labelled Random Second Second
Unlabelled Classifier -~ Labelled Data Learning Classifier
Random Data (Oracle)~ Random Data Algorithm (Mimetic)

e T

Fig. 6. Mimicking Process with Training Set used in the Second Stage

Definition 13. Given two classifiers fi and fo and a ratio r € [0,1]. An aver-
ager combined classifier is defined as C[r](f1, f2), where the predictions of C are
averaged in such a way that given an example e:

if fi(e) = fa(e) =i then C(e) =i
otherwise : Prob(C(e) = fi(e)) =r and Prob(C(e) = fale)) =1—1r

Definition 14. Given a classifier input with data from two distributions, a pro-
portional fidelity learning curve function is defined as a function g : IN X IN — IR
such that Vz,y : g1(z,y) € [0,1] and given a dataset Dy extracted from target
function or problem f, and a dataset Dy extracted from target function or prob-
lem fo, where Dy U Dy is used by the classifier, then the fidelity of the classifier
wrt. the combined classifier C[ny/(ny + n2)](f1, f2) is given by g(ni,n2) where
ny = |D1| and ny = |Da|.

Consider for instance a problem defined by function f; = true and another
problem defined by function fo = false. If we generate D; examples from f;
and D, examples from f>, a learner with good learning functions for f; and f
separately may have a very bad schizophrenic curve for an averager combined
classifier C[r] when joining D; and D, especially if r = ny/(n; + ns) ~ 0.5.

But with these generalisation of the learning curve, we can now address the
issue of assessing the influence of the training set added to the random dataset:

Theorem 6. Let us consider a two-stage learning scenario with ¢ classes, a
dataset T (for the first stage, which is considered correct wrt. the target function)
of length t = |T'| and a dataset I = RUT (for the second stage) of length i = |I|,
where R is a random dataset generated from the first stage with an exhaustive
method of length r = |R|. Consider as well that the first learner is pure and
has fidelity learning curve function g, for the target function and the second
learner has fidelity g»(r,t) for the problem representing the invented dataset.

17

For a sufficiently large number of random examples and training examples, and
considering R and T have no common examples, we have:

91200 =~ (1) 2, 0) + (=)= 91(0) - (1 = (s, 0)]

+(1-) - g2(r)

r+t
Proof. If we consider the “averager” combined classifier Cy (r,t) just before the
second stage, we have:

T t
r+t + r+t
The first part has the g; (¢) because it comes from the first stage classifier
through R. The second part comes from the target function directly through 7',
which is considered correct.
And now, we have a first-stage function C;(r,t) and a second-stage learning
curve function go(r,t). From theorem 3 we have:

Ci(r,t) = g1(t)

CL(r,) 92(r,8) + (=)0 = 11, 1)) - (1= ga(r,1)

If we use the expression of C(r,t) in the above formula, we have:

92— + — 10, 1) + () (L= [0 () + ——]) - (1= 2(,) =
() 0000) + —)+ ()~) (L= (1) =
1) g2 0) a8+ (1 (0) - (1 ga00) =
100 9200) + (= 0(0) - (1= o O]+
(1-—12) a0,

O

The previous theorem establishes a general model from this variant of the
mimicking, where the training set is used in both stages. The problem of the
previous model is that go(r,¢) may be difficult to be estimated for all r and
t. The approach we are taking below is based on the definition of three specific
models, according to several assumptions on learning curve g»(r, t). These models
are:

18

— Model 1 (Ideal): We assume that Vga(r,t) = g2(r + t) where g2 is the
learning curve function of the second classifier. This assumption makes sense
if R and T are highly similar.

— Model 2 (Optimistic): We assume that Yga(r,t) = ga(maz(r,t)) where
go is the learning curve function of the second classifier. Since r will usually
be greater than r, we will simply consider g»(r,t) = g2(r). This assumption
makes sense if R and T are similar, but 7" adds complexity to R and slows
the learning rate.

— Model 3 (Pessimistic): We assume that Vgo(r,t) = g2(min(r,t)) where go
is the learning curve function of the second classifier. Since r will usually be
greater than r, we will simply consider go(r,t) = g2(t).

Of course we can consider even more pessimistic models than model 1, but we
assume that at least R and T try to model the same function (i.e. the first-stage
classifier is not very bad).

Let us start with model 1.

Proposition 4. Under model 1, the mimicking procedure is useful if and only

if:

[0) g+ 0 + ()1 01 (0) - (1= galt + 1)
+(1 - TLH) -g2(r +1)
>
92(t)

Proof. Just using the assumption of model 1 in theorem 6 we have the first
expression. The second expression is just given with the second classifier learning
from the training set only. 0

Proposition 5. Under model 1, for a given n, if g1(n) < 1 and g=(n) > 1/c
then it is beneficial to use the training set as well.

Proof. From model 1, we can express the final accuracy of the mimicking struc-
ture using the training set as:

r
r+

[010) 20+ 0+ ()1 = 1 (0) - (1= ga(r + 1))

+(1 -)-g2(r+1) (1)

r+t

Let us concentrate on the second part of the first expression and let us proof
first that:

(1

c—1

JA=g1(8) - (1= g2(r + 1)) <((L=g1(8)) - g2(t+7) (2)

19

This can be shown simplifying it to:
1
(c— 1
(I—go(t+7) <(c—1)-go(t +71)
1<c-go(t+7)
1/e < g2t +71)

) (L=ga(t +7)) < g2(r +1)

which is true by assumption.
And now, considering (1) we have that:

91(0) g2l +8) + (—) (1= 92 (1) - (1 = ga(r +)]

c—1
<[g1(t) - g2(r +8) + (1 — g1(2)) - g2(r + 1)]
= [g2(r +1)]

Consequently, in (1), we have that the first part is lower than the second.
Since both parts are proportional, it makes sense to make the second term higher
by increasing the proportion of ¢t wrt. r 0

According to the previous propositions, we can see that in general the cases
where the mimicking technique is useful increases.

The previous corollaries confirm intuition and, in this sense, are not much too
informative. However, they can be used to clarify what to do in some examples:

Ezample 4. Consider a neural network with fidelity learning curve function g; (n) =
510.9,0.05)(n) and a decision tree with fidelity learning curve function gs(n) =
570.8,0.1(1). We have a training dataset with 50 examples. Is it reasonable to use
the mimicking method?

The answer is no. It turns out that the use of mimicking has a maximum
with a random dataset size of 30 examples (with infinite random dataset it is
lower) giving at most 0.75 while the direct use of the second classifier obtains
0.80 accuracy. In fact, for these two curves there are no training size for which
the mimicking method is useful. This is an example where the first classifier is
good but slow and the second is bad but quick. Mimicking is useless. The results
are equal to those without the training set.

Example 5. Consider a logistic regression classifier with fidelity learning curve
function g1(n) = $[0.9,0.051(n) and a decision tree with fidelity learning curve
function gs(n) = sj0.8,0.01)(n). We have a training dataset with 100 examples. Is
it reasonable to use the mimicking method? And with 200 examples? And with
300 examples?

For 100 examples the answer is yes. It turns out that the use of mimicking
has a maximum with a random dataset size of 500 examples (with an infinite
random dataset it is lower) giving at most 0.735 (without the training it was
0.721) while the direct use of the second classifier obtains 0.579 accuracy.

20

With 200 training examples we have that mimicking has a maximum with
a random dataset size of 500 examples (with an infinite random dataset it is
lower) giving at most 0.745 (without the training it was 0.725) while the direct
use of the second classifier obtains 0.719. The answer is yes. With 220 training
examples we would have that it would be useful with the training set but useless
without the training set.

With 300 training examples we have that mimicking has a maximum with
a random dataset size of 500 examples (with an infinite random dataset it is
lower) giving at most 0.752 (without the training it was 0.725) while the direct
use of the second classifier obtains 0.770. The answer is no.

This is an example where the first classifier is good and quick and the second
is bad and slow. In some cases the mimicking method is useful. In comparison
with examples in previous sections, the use of the training set make more cases
useful.

Example 6. Consider a Bayesian classifier with fidelity learning curve function
g1(n) = s[0.8,0.1](n) and a decision tree with fidelity learning curve function
g2(n) = $[0.9,0.01](n). We have a training dataset with 100 examples. Is it rea-
sonable to use the mimicking method? And with 150 examples? And with 200
examples? And with 300 examples?

The answer is yes. It turns out that the use of mimicking has a maximum
with a random dataset size of 500 examples (with an infinite random dataset
it is lower) giving at most 0.751 (without the training it was 0.725) while the
direct use of the second classifier obtains 0.642 accuracy.

With 150 training examples we have that mimicking has a maximum with
a random dataset size of 500 examples (with an infinite random dataset it is
lower) giving at most 0.763 (without the training it was 0.725) while the direct
use of the second classifier obtains 0.744. The answer is yes. (Without training
the answer was no).

With 200 training examples we have that mimicking has a maximum with
a random dataset size of 500 examples (with an infinite random dataset it is
lower) giving at most 0.773 (without the training it was 0.725) while the direct
use of the second classifier obtains 0.805. The answer is no.

With 300 training examples we have that mimicking has a maximum with
a random dataset size of 200 examples (with an infinite random dataset it is
lower) giving at most 0.799 (without the training it was 0.725) while the direct
use of the second classifier obtains 0.865. The answer is no.

This is an example where the first classifier is bad and quick and the second
is quick and slow. In some cases the mimicking method is useful. In comparison
with examples in previous sections, the use of the training set make more cases
useful.

Summing up, there can be cases where increasing the number of random exam-
ples is always good. There are other cases where the mimetic technique is of no
use. But, as shown in some previous examples and unlike what happened with
the mimicking method without the training set, when we use the training set

21

jointly with the random set there are some cases where the mimicking technique
is good upto a certain amount of random data but further increasing the random
data is not beneficial.

This is interesting to note that for some combinations of learning curves there
may be three different zones. The following generalised response graph (Figure
7) shows in a third dimension the influence of the size of the random dataset
(the first classifier has learning curve sy s ,.1] and the second s.7,0.02:

Mimicking Mimicking
Useful Useless
r1t uptoa
limit
r it the
better
Acc
r1
100000 - rase
50000 r0,8
20000 L
10000 07
5000 F0,6
2000 L
1000 05
500 F04
200 L
100 03
Size of 5020 F0,2
Random Set (r) 10 F0,1
L e o e L e oo o e e Y N A S 0
A S I A A N N))p}‘%p%%%%d\%p)o%)b%o

Size of Training Set (t)

Fig. 7. Generalised Mimetic Response Graph when Training is used
It seems counterintuitive that there is a zone for which increasing the random
dataset is not beneficial. This is a pity, because this is one of the easiest param-
eters that can be modified to increase the quality of the whole process.
Fortunately, it seems there may be a way-out in these strange zones. The idea
is based on noting that the previous graph is always increasing for whatever (r, t)
to (rx k,t = k) where k > 1. Let us prove it:

Proposition 6. Under model 1 and non-decreasing learning curve functions, if
we increase v and t in the same proportion (i.e. (r * k,t * k) where k > 1) then
we have greater or equal overall accuracy.

Proof. From model 1 we have:

r 1
- t) - t — (1 - t)) - (1— t
[0 92 +) + (L =1 (0) - (L= gl +)]
r
1—-—)- t 1
Hl=)) ()
It is trivial to see that the ratios ;77 remain constant after the increase (rxk, txk),

so it is just needed to prove that

91(8) g2 + 1)+ (1) (L= g1 (1)) (L= gl +1)

22

cannot decrease when r and ¢ grow, which is fairly trivial because both g; and
go are non-decreasing. And we also have to show that:

g2 (r +1t)

cannot decrease when r and ¢ grow, which is even more trivial because both ¢;
and g, are non-decreasing. 0

That justifies the idea of duplicating examples from the training set. Provided
the second classifier can be “teased” in this way, so forcing it to give more
relevance to the training set. This means that we can have a new ' = k - t and
anew r' =k -t. Of course, repeating the training set may have not good effects
(especially if we repeat the data several times), but at least there may be some
situations where it can be beneficiial.

And we leave it here for this model. We leave as future work to obtain similar
(or different) results with the other two models.

Of course there is a fourth model, which assumes that the first classifier is
probabilistically pure and we still have the conditions of theorem 5, and hence
we have that the mimicking method in much more cases. It is easy to see that
the results can be adapted to the case where we have also the training set. Let
us show the lemma also holds

Lemma 3. Given a mimicking scenario where the training set is used for the
second stage classifier. If the first stage classifier (the oracle) is probabilistically
pure and the second stage classifier is pure and loyal then the average-case learn-
ing curve of the second classifier follows the condition:

if |R| = oo then gy(|R|+1|T))) =1

We use gb to denote that this good behavious only happens wrt. the oracle. We
reserve gs to the learning curve wrt. the target function.

Proof. From theorem 1 just considering that any probabilistically pure classifier
is also probabilistically pure when we add a finite set of cases (represented by

T). -

And now, from this, we can assert the following theorem similar to theorem

Theorem 7. Given a mimicking scenario with training set T of size t = |T|. If
the first stage classifier (the oracle) is probabilistically pure and the second stage
classifier is pure and loyal, and the second stage uses both R and T then the
mimetic classifier will be useful if and only if:

92(t) < g1(t)

23

Proof. From theorem 6 we have:

r
r+t

(01 (8) - g () + (—) (1 — g1 (8)) - (1 — gb(r,)]

t
92(t) < P

,
1——)-g,
HL=) gh(r)

Considering we can generate as many random examples as we want then we
have |R| — oo. Hence, from lemma 3 we have:

92(0) < —— (0 1+ (7)1~ g1 (9) - (1=)]
+(1_7“+t)'1

but also r — oo and hence:

92(8) < 1-foa () - 1+ (—5)(1 = ga(1)) - (1 =)]

c—
+0-1
which yields:
92(t) < g1(t)
d
Note that in this case, we have the same result with and without the use of
the training set, but the previous results tell that, even in this ideal situation,
we would need less examples, in general, if we use the training set in the second
stage th, than if we do not use them.

5.3 Additional Remarks

The previous theorem also shows that a bad classifier can perform better for
small dataset and can be used as an oracle for a good classifier that performs well
for larger samples. For instance, it seems that neural networks + decision tree
learning may not be a good combination (because neural networks usually require
a large number of examples), but that the combination ensemble + decision tree
can be a good combination (since ensemble methods avoid overfitting and are
good for small samples).

Finally, there are some details we have left out in the previous discussion.
First we have assumed that a random dataset R and the training set T' have
no common examples. This is easy if we have numeric attributes and exhaustive
random generator methods, but may not be a reasonable assumption in other
cases. If there are common examples, it may happen that both classes are the
same?. In this case, the previous results are practically identical to what have
been shown. On the contrary, if the class of the example e in R is different from
the class of e in T', then we can do three different things for constructing the
“invented” dataset:

* This is the only possible case if the first stage algorithm is loyal.

24

— correct the errors in R with those of T and just use the good examples.
— maintain both datasets (now they will be inconsistent).
— maintain only the class of R.

It seems reasonable to consider the first option better. If we do this, the previous
results still hold, since this correction is good, and the use of the training set
(additionally to the random dataset) is reinforced, because the first term of the
expression in theorem 6 will be increased slightly.

A second issue is that the examples in the training set are obtained from
a real prior distribution, whereas the examples in R are generated, at best,
with a simulated prior distribution. That means, that it is likely that examples
similar to those in T are more probable (according to the target distribution)
that examples similar to those in R. Once again, this will affect positively the
use of the training set in the second stage.

6 Co-Training and Ranking

Other scenarios could also be considered, such the use of existing unlabelled data.
This situation is obviously better, since the given unlabelled data complements
the prior distribution given by the training set. Techniques from the field of
learning from unlabelled labelled data and, especially from co-training, could be
used here [1]. In fact, mimicking can be seen as an asymmetrical (i.e. one way)
co-training where one of the two classifiers is considered much better than the
other and where unlabelled data is generated rather than obtained from a pool.

In particular we are interested in the notion of ranking the examples in such
a way that more confident predictions are chosen first for the random dataset.
So the idea is to generate a random dataset where the more reliable predictions
for the oracle have greater probability. A way to achieve this is to use the oracle
as a probability estimator rather than a classifer. A probability estimator for
classification or, simply, a soft classifier, is a model that accompanies each pre-
diction with a confidence or even better it gives a probability for each class. If we
consider oracles taht can provide with one of these modalities, we can improve
the example generation. Let us see how:

First, we generate a large set of n examples given whatevever method seen
before, for instance the prior interpolating distribution. Then we rank these
examples according to the class probability estimation of the predicted class or
the reliability given by the oracle. The rank ¢ goes from 1 (the best ranked) to
n (the worst ranked).

From here, two different methods for extracting the final random dataset of
size r can be used:

— Absolute Ranked Bootstrap: Select the r best-ranked examples. The
problem of this method is that it is not exhaustive (some zones in the space
can be never chosen because the oracle behaves badly there). Moreover,
if n >> r then this is more likely to happen. Consequently, the relation
between n and r is very important in this method.

25

— Probabilistically Ranked Bootstrap: Select r examples probabilistically
with probability Prob(e) = 2(n — i+ 1)/(n(n + 1))) where i is the ranking
of the example e. This method is exhaustive and the results will be more or
less the same independently of the relation betwen n and r. Obviously there
are other probabilities that can weigh the ranking more or less, but this is a
first and easy approach.

And now, can we show under certain circumstances that the generation of ex-
amples in this way is better?

The idea is to think that the oracle has an overall fidelity or accuracy of a;.
However, if we select the best ranked with more probability, we could have a
better fidelity aj > a;. As long as this has no bad consequences for the accuracy
of the second stage, i.e., for ag, this can be considered a good idea.

However, according to the probabilistically ranked bootstrap, it may happen
that as long r becomes higher, then there will be examples everywhere and then
the mimetic classifier will capture so well the semantics of the whole oracle and
not only the part that works well.

Consequently, a different approach could be just to establish a confidence
threshold and select only the examples with threshold greater that this.

— Threshold Bootstrap: Select an example. If the reliability is lower than
the threshold h than discard the example. Generate examples in this way
until the number of examples is r. This method is not exhaustive.

From all the previous options, it seems difficult to assess theoretically which
of them is best. And for the last one, the best threshold has to be established
experimentally.

Nonetheless, any of the previous options could be used to simulate the be-
haviour, just considering that it is reasonable to think that using these variations
the g1 (as is seen from R) will be better (more precisely it will have a greater
learning ratio and even at the beginning).

This can be model through a new ¢ (r,t) that “depends” on r, but in this
case depends on ¢ positively (as before) but negatively on r because the greater
the random dataset we will have to include not only well-ranked predictions but
also bad predictions. This adds an extra difficulty and more assumptions to the
previous models and we think that it is not worthy being considered. For the
moment.

7 Discussion and Conclusions

In this work we have analysed some theoretical issues concerning the mimicking
method. The first part has been devoted to analyse the following questions:

— If we have a good oracle, can we approximate to it with a different
classifier? The answer has been yes, under a few reasonable assumptions.
— Do the assumptions hold for decision trees? The answer is yes.

26

The second part has been devoted to analyse the following questions:

— If I know the accuracies of the oracle and the fidelity of the mimetic
classifier, can I compute the overall accuracy? We have given a straight-
forward formula to do this.

— Is it useful to add the training set to the random dataset for the
second stage? The answer is yes.

— Which are the cases where the mimicking method is not good?
That depends on the model, but the only situation where mimicking can be
desestimated is when the accuracy of the oracle, obtained from the training
set only, is worse than the accuracy of the mimetic classifier, obtained from
the training set only.

— Given a training set and learning curves of two classifiers, how
many random examples may I need to have certain accuracy? We
have given an equation to solve this kind of problems.

— How should be the first learning algorithm and the second learning
algorithm in a mimicking scenario? The first one should be quick. The
second should be highly accurate with large dataset. A loyal fence-and-fill
algorithm for the second stage would be a good choice since the first one is
usually pure.

Obviously, there are many other open questions. Some questions related to the
methodology used in this work are:

— Question: if R is not a set but a multiset we have duplicate examples. How
does it affect? We guess it doesn’t matter for the previous results.

— Question: if T is not a set but a multiset we have duplicate examples. How
does it affect? We guess it doesn’t matter for the previous results.

— Question: if we consider numeric = rational instead of numeric=real, which
conditions can be relaxed? Do we need the probabilistically pure condition?

But before addressing these issues, we think we have proposed some models
and new random generation methods that should be examined experimentally,
This come-and-go situation between theoretical and experimental results will
hopefully give a more precise portrait on how mimetic classifiers work and what
are their limits.

This work cannot be mimicked without the permission of the authors.

8 Acknowledgements

We would like to thank the help of Carlos Monserrat for some discussions about
the convexity of the evidence space and the conditions for discretisation, and
Cesar Ferri for several comments on a draft of this report.

References

1. A. Blum and T. Mitchell. Combining Labeled and Unlabeled Data with Co-
Training. In Proc. of the 1998 Conf. on Computational Learning Theory, 1998.

27

. V. Estruch, C. Ferri, J. Herndndez, and M.J. Ramirez. Simple mimetic classifiers. In
3rd Machine Learning and Data Mining Conference, MLDM(03, volume to appear
of Lecture Notes in Computer Science, 2003.

. E.M. Gold. Language Identification in the Limit. Information and Control, 10:447—
474, 1967.

. H. Gu and H. Takahashi. How bad may learning curves be? IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(10):1155-1167, 2000.

. D. Haussler, M. Kearns, M. Opper, and R. Schapire. Estimating average-case learn-
ing curves using bayesian, statistical physics and vc dimension methods. Advances
in Neural Information Processing Systems, 4:855-862, 1992.

. D. Walpert and W. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, pages 67-82, 1997.

28

