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Abstract. Ensemble methods improve accuracy by combining the pre-
dictions of a set of different hypotheses. However, there is an important
shortcoming associated with ensemble methods. Huge amounts of mem-
ory are required to store a set of multiple hypotheses. In this work we
devise an ensemble method that partially solves this drawbacks. The
key point is that components share their common parts. For this goal,
we employ a multi-tree, a structure that can simultaneously contain an
ensemble of decision trees, but with the advantage that decision trees
share some conditions. To construct this multi-tree we define an algo-
rithm based on a beam search with several extraction criteria and with
several forgetting policies for the suspended nodes. Finally, we compare
the behaviour of this ensemble method with some well-known methods
for generating hypothesis ensembles.

Keywords: Ensemble Methods, Decision Trees, Randomisation, Search
Space, Beam Search, Option Trees.

1 Introduction

Ensemble methods [6] are used to improve the accuracy of machine learning
models. Basically, this technique combines a finite set of hypotheses in order
to get a new one, usually more accurate than any of the ensemble. Well-known
ensemble methods are boosting, bagging, randomisation, etc. Although accuracy
is significantly increased, a large amount of computational resources is necessary
to generate, store, and employ the ensemble due to the large number of different
hypotheses that must conform the ensemble. For this reason, there are several
contexts where these techniques are hard to apply.

Since ensemble methods construct a set of models, one way to overcome these
hindrances could be to share the common parts of the models. In our framework
(decision tree learning), we share the common branches of the trees. In previous
works [8], we presented an algorithm which is able to obtain more than one tree.
It is based on a structure, called multi-tree, which can contain a set of decision
trees that have in common some of their conditions. In order to generate a multi-
tree, once a splitting criterion is applied on a node, we store the splits which have
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not been selected into a list of suspended nodes. The selected split is pursued
until a complete tree is constructed. Later, alternative models can be generated
by exploring the nodes of the list. This way of exploring the space to generate
an ensemble of hypotheses can be seem as a beam search.

Consequently, the use of an auxiliary data structure (list of suspended nodes)
must lead to establish a policy to manage it. This policy must cover several
aspects such as the definition of a criterion to extract a node in order to populate
further the multi-tree. In this paper we focus on the study of some strategies
of selecting the nodes to be explored from the list of suspended nodes. We will
introduce some methods, and then we will study experimentally these strategies.
We compare the performance of this ensemble method with other well-known
methods as bagging [2] and boosting [9].

Despite the advantages of the multi-tree approach, there is a great amount
of suspended nodes that are never employed. Thus, they are occupying memory
needlessly and it would be interesting to try to forget these nodes. We study some
techniques to keep only a subset of the nodes into consideration. This forgetting
technique leads to a better use of resources as we experimentally demonstrate.

The paper is organised as follows. In section 2, we introduce the multi-tree
structure. Section 3 includes some experimental evaluation about multi-tree con-
struction. It also explains different forgetting strategies and shows the results of
several experiments related to this technique. Finally, section 4 closes the paper
with the conclusions and future work.

2 Shared Ensembles

Ensemble methods require the generation, storage and application of a set of
models in order to predict future cases. This represents an important consump-
tion of resources, in both scenarios: learning process and predicting new cases.

In previous work [8] we presented a method that allows a set of decision trees
to be generated from a single evidence. A collection of trees is called a forest, but
our approach is based on a shared ensemble, namely , a collection of trees that
share their common parts (decision multi-tree). The decision multi-tree learning
method is based on classical decision-tree learning; more precisely, the idea is to
generate an AND/OR tree structure called multi-tree, from which it is possible
to extract a set of hypotheses. We perform a greedy search for each solution,
but once the first solution is found the following ones can be obtained taking
into consideration a limited computation time. Therefore, our algorithm can be
considered anytime in a certain way. An anytime algorithm is one that can be
interrupted at any point during computation to return a result whose quality
increases with increasing computation time [5].

Since a multi-tree can contain a set of hypotheses, we employ an ensemble
method that combines the individual components of the multi-tree. This ensem-
ble method takes profit of the internal structure of the multi-tree by sharing
common parts of the components of the ensemble. In this way the amount of re-



sources required for the learning and the application of the ensemble is reduced.
We called this new ensemble method: shared ensemble.

A decision multi-tree structure is similar to an option tree [4, 3, 10]. The main
difference between these methods is the construction strategy. In the multi-tree
method, we store all the rejected splits as suspended nodes, and later we continue
the multi-tree construction selecting one of these suspended nodes according to a
criterion. Option trees are constructed as usual, but when at a level the difference
between the best test with the other possible is small, these are also explored as
optional tests (OR-nodes). The creation of optional nodes is limited at the upper
levels to restrict the size of the option tree. Therefore, while options trees are
constructed by a breadth search, a multi-tree is generated by following a beam
search, i.e. we store the discarded alternatives in a list of suspended nodes, and
later, if we want to populate further the multi-tree, we select one node from the
list according to one selection criterion, and at this point the search is continued.

As we have just seen in section 1, the decision multi-tree can be populated by
selecting one suspended OR-node from the list of suspended OR-nodes by means
of a selection criterion (suspended OR-node selection criterion).The optimality
computed for the splitting criterion can be used to choose the OR-node to be
explored. We have introduced the following suspended OR-node selection crite-
ria:

— Rival Absolute: From the list of suspended OR-nodes, the node with high-
est optimality is selected.

— Rival Ratio: For every suspended OR-node, a rival ratio value is com-
puted, as the relation between the optimality of the OR-node and the best
optimality of its sibling OR~nodes (i.e. the children of the same AND-node).
The suspended OR~node with highest rival ratio value is chosen.

— Rival Ratio with Depth Weighted: This criterion is identical to the rival
ratio criterion, but in this case we add to the split ratio value a factor that
depends inversely on the depth of the OR-node.

— Random: This criterion just selects nodes pseudo-randomly (uniform dis-
tribution) from the list.

— Random with Depth Weighted: This criterion just selects nodes in a
pseudo-random way but in this case taking into account the depth of the
selected node.

— TopMost: Select first the topmost node with highest optimality.

Once the multi-tree construction, it contains a set of hypotheses depending on
the number of suspended OR-nodes which have been explored. Note that the
number of hypotheses increases exponentially w.r.t. the number of nodes ex-
plored. Since it could be prohibitive to combine all this models at top, the com-
bination is performed inside the multi-tree structure.

3 Experiments

In this section, we present an experimental evaluation of our approach, as is
implemented in the SMILES system [7]. SMILES is a multi-purpose machine



learning system which (among many other features) includes the implementation
of a multiple decision tree learner.

For the experimental evaluation, we have employed 23 datasets from the UCI
dataset repository [1]. Some details of the datasets are included in Table 1.

For the experiments, we used GainRatio [11] as splitting criterion. Pruning
is not enabled. The experiments were performed in a Pentium III-800 Mhz with
180MB of memory running Linux 2.4.2. The results show the geometric mean
of running 10 times a 10-fold cross-validation for each dataset with a different
multi-tree construction.

First, we analyse the behaviour of the quality of the shared ensemble de-
pending on some criteria to populate the multi-tree: Bottom, Optimal, Random,
Rival Ratio and Top Most.

H# [Datasets [Size [Classes[Nom. Attr.[Num. Attr.”
1 [Balance Scale 325 [3 0 4
2 |Breast Cancer 699 (2 0 9
3 |Breast Cancer Wisconsin 569 |2 1 30
4 |Chess 3196(2 36 0
5 [Contraceptive Method Choice |1473(3 7 2
6 |Dermatology 366 (6 33 1
7 |Hayes-Roth 106 |3 5 0
8 |Heart Disease 920 (5 8 5
9 |Hepatitis 155 (2 14 5
10|Horse-colic-outcome 366 (3 14 8
11|{Horse-colic-surgical 366 |2 14 8
12{House Congressional Voting [435 (2 16 0
13|Iris Plan 158 (3 0 4
14| MONK’s1 566 |2 6 0
15|MONK’s2 601 |2 6 0
16| MONK’s3 554 (2 6 0
17[New Thyroid 215 |3 0 5
18|Postoperative Patient 90 |3 7 1
19|Segmentation Image Database[2310|7 0 14
20| Teaching Assistant Evaluation|151 |3 2 3
21| Thyroid ANN 7200(3 15 0
22|Tic-Tac-Toe Endgame 958 (2 8 0
23|Wine Recognition 178 |3 0 13

Table 1. Datasets used in the experiments.

Table 2 shows the accuracy comparison between these methods for populating
the multi-tree. According to the results, the best methods to build the shared
ensemble seem to be Random and Top Most. The Top Most method has an
important drawback: the decision trees do not share many components, so the
construction and use of the shared structure is slower. This fact is also perceived
if one observes the consumption of time. Table 3 shows the average learning time
for each dataset depending on the method employed to populate the multi-tree.
The difference in time between Random and Top Most is important because
the Top Most method selects the nodes to be explored at the top positions in
the multi-tree. This leads to the generation of very different models because
they do not share many conditions. However, this criterion also produces big
multi-trees where the advantages in resource saving of the multi-tree structure
are practically lost. Consequently, the Random criterion can be considered as an
optimal trade-off between efficiency and accuracy.



# Bottom|Optimal|Random|Rival Ratio|Top most
1 78.18 | 79.00 82.61 77.63 86.60
2 93.84 | 94.70 94.88 93.45 94.45
3 92.43 | 92.55 93.07 93.75 93.75
4 99.62 | 99.58 99.38 99.64 99.62
5 48.35 | 48.23 49.73 48.31 51.70
6 91.86 | 92.92 94.03 92.17 91.31
7 76.44 | 76.75 76.75 73.06 76.75
8 52.23 | 52.48 54.43 52.20 59.13
9 76.07 | 75.87 81.40 75.93 83.67
10 62.72 | 62.78 67.28 62.69 75.28
11 78.53 | 78.00 83.36 78.33 85.83
12 94.70 | 95.53 95.67 94.35 95.23
13 94.13 | 94.13 95.33 94.20 94.67
14 95.20 | 95.91 99.78 99.73 100.00
15 75.42 | 75.33 75.67 71.05 77.55
16 98.02 | 98.02 97.85 97.38 97.95
17 92.14 | 93.38 93.29 93.14 92.43
18 64.63 | 63.75 63.25 69.88 63.00
19 95.91 | 95.91 96.40 96.06 96.06
20 60.47 | 60.60 62.93 60.07 63.40
21 99.24 | 99.37 99.26 99.23 99.19
22 77.21 76.97 82.01 78.13 84.94
23 92.94 | 92.59 93.06 94.00 90.00
Geomean|| 80.56 | 80.70 82.45 80.69 83.61

Table 2. Accuracy of combination depending on the second tree criterion.

Node forgetting Despite the advantages of the multi-tree structure, many
suspended nodes are never ‘woken’, occupying memory needlessly. An additional
criterion can be specified to forget some of the suspended nodes and, hence, to
use less memory. Since we have seen that a good criterion is to select the nodes
to be explored randomly, a random strategy of node forgetting will not alter
the suspended node selection criterion, and therefore the accuracy of the multi-
classifier will not be degraded.
We have studied several methods to restrict the nodes to be selected:

— Constant: We only store a constant minimum number of nodes.

— Logarithmic: A logarithmic number of nodes is selected (there is a constant
minimum too).

— Logarithmic + depth: A logarithmic number of nodes is selected corrected
by the depth of the nodes (there is a constant minimum too). This correction
tends to store more nodes at the top positions, where the exploration of
suspended nodes permits models to become more diverse.

A comparison of some of these criteria according to the accuracy of the classifiers
obtained are presented in Table 4. These criteria are: no forgetting, limiting a
constant number of nodes (5) in each OR-node, leaving a logarithmic number of
nodes, and finally a correction of the last method depending on the node depth.
The results of Table 4 indicate that, as expected, the forgetting process does not
produce significant modifications on the quality of the classifiers.

Table 5 contains the average learning time for each classifier and dataset,
and the geometric mean of all the datasets. The experiments demonstrate the
usefulness of node forgetting, because it reduces the learning time. The best
forgetting method is the one based on the selection of a logarithmic number of
all possible nodes. The corrected version (log + depth) is a bit slower because
it selects nodes at the top of the multi-tree. The method based on a constant



# Bottom|Optimal|Random|Rival Ratio|Top most
1 0.05 0.06 1.10 0.08 31.41
2 0.81 0.34 2.47 0.29 21.92
3 0.09 0.56 11.86 8.77 136.39
4 0.39 0.63 5.78 0.91 0.30
5 0.56 0.46 5.64 40.11 939.99
6 0.30 0.33 3.51 1.09 16.03
7 0.04 0.02 0.07 0.03 0.03
8 0.40 0.36 5.00 5.64 255.20
9 0.06 0.07 1.52 0.13 7.92
10 0.21 0.18 3.59 0.58 83.75
11 0.17 0.14 3.19 0.26 41.93
12 0.02 0.08 0.54 0.07 2.62
13 0.03 0.12 0.35 0.05 1.59
14 0.16 0.02 0.16 0.04 0.26
15 0.02 0.03 0.29 0.07 1.05
16 0.03 0.02 0.15 0.02 0.18
17 0.01 0.16 0.91 0.96 6.93
18 0.01 0.02 0.21 0.03 0.49
19 1.32 2.71 15.92 28.78 15.82
20 0.03 0.04 0.85 11.40 118.58
21 1.24 2.17 11.31 7.56 14.62
22 0.05 0.05 0.46 0.06 9.02
23 0.06 0.57 1.99 0.68 880.00
Geomean|| 0.10 0.14 1.34 0.46 9.12

Table 3. Average learning time (in seconds) depending on the second tree
criterion.

number also improves the learning time, however the results in accuracy are a
bit worse than the logarithmic method.

Regarding the improvement of memory, Table 6 shows the memory (in Kilo-
bytes) required by the system to learn the multi-trees for some datasets. We
also include the percentage of memory employed by the forgetting method with
respect to the original method (no forgetting). For big and medium problems
the use of forgetting reduces drastically the use of memory. However, for small
problems the reduction is more limited. The forgetting method that requires less
memory is “logarithmic”.

According to these experiments, the best suspended-node forgetting criterion
seems to be randomly leaving a logarithmic number of nodes, without taking
depth into account.

3.1 Comparison with other ensemble methods

Let us compare the behaviour of the shared ensemble technique using forgetting
with other popular ensemble methods: Bagging and Boosting (Adaboost). We
have employed the Weka (version 3.2.3)! implementation of these two ensemble
methods. The ensemble methods use J48 as base classifier (the Weka version of
C4.5), and we have used the default settings.

Pruning is only enabled for Boosting, since this method requires pruning to
get good results.

Figure 1 shows the average accuracy obtained by the three methods depend-
ing on the number of the iterations. Initially, the best results are obtained by
Boosting, whereasBagging and Multi-tree stay slightly lower. This is most prob-
ably because they do not use pruning. When the number of iterations of the

! nttp://www.cs.waikato.ac.nz/~ml/weka/



# No forgetting|Const=>5|Logarithmic|Log. 4+ depth
1 82.61 81.40 82.24 85.11
2 94.88 95.16 94.93 94.81
3 93.07 93.36 93.41 93.80
4 99.38 99.39 99.37 99.34
5 49.73 49.30 49.51 52.65
6 94.03 94.53 94.42 94.39
7 76.75 76.75 76.44 75.94
8 54.43 54.09 54.26 55.58
9 81.40 81.53 80.67 81.67
10 67.28 66.00 67.42 67.06
11 83.36 83.36 83.19 83.67
12 95.67 95.86 95.91 95.79
13 95.33 95.07 95.00 95.13
14 99.78 99.78 99.89 97.56
15 75.67 75.67 76.38 71.50
16 97.85 97.85 97.75 97.67
17 93.29 93.29 93.57 92.29
18 63.25 62.00 61.88 62.13
19 96.40 96.31 96.61 96.43
20 62.93 62.40 62.87 63.40
21 99.26 99.28 99.33 99.24
22 82.01 82.22 81.78 83.96
23 93.06 92.88 93.76 92.76
GeoMean 82.45 82.22 82.38 82.55

Table 4. Accuracy of the combination in the multi-tree depending on the
forgetting method.

# No forgetting|Const=>5|Logarithmic|Log + depth
1 1.10 0.60 0.62 1.71
2 2.47 1.62 1.66 2.82
3 11.86 12.47 12.00 15.20
4 5.78 5.68 4.77 9.97
5 5.64 3.74 2.48 12.49
6 3.51 3.36 3.10 4.02
7 0.07 0.07 0.02 0.01
8 5.00 2.66 2.64 5.54
9 1.52 1.38 1.36 1.87
10 3.59 2.34 2.45 3.70
11 3.19 2.33 2.28 3.58
12 0.54 0.51 0.47 0.94
13 6.10 6.66 4.62 10.46
14 0.16 0.17 0.14 0.04
15 0.29 0.30 0.29 0.08
16 0.15 0.16 0.12 0.03
17 12.26 18.81 9.96 11.09
18 0.21 0.18 0.16 0.08
19 15.92 17.34 16.17 17.44
20 0.85 0.63 0.57 1.28
21 11.31 12.14 9.79 15.36
22 0.46 0.44 0.37 0.55
23 1.99 2.06 1.70 2.05
Geomean 1.70 1.52 1.25 1.54

Table 5. Average learning time for the combined solution in the multi-tree
depending on the forgetting method.



# || Original [[Const=5] % Logarithmic| % Log + depth| %

5 [49512.00|[10892.00]22.0%0]|| 6388.00 |12.90%]|| 8328.00 |16.82%
19|| 4880.00 || 4820.00 [98.77% 1484.00 [30.41% 3472.00 71.15%
28((18800.00(| 3268.00 [17.38% 2272.00 12.09% 2608.00 13.87%
Table 6. Average memory (in Kbytes) for the combined solution in the

multi-tree depending on the forgetting method.
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Fig. 1. Accuracy obtained by the ensemble methods depending on the num-
ber of iterations.

ensemble methods is increased, all methods improve the accuracy as expected.
In this case, we can see that multi-tree is the method that further enhances the
results, it even overpasses Boosting with more than 80 iterations. Note that the
accuracy of Bagging with 100 classifiers is not in the figure, the cause of this
absence is that the computer ran out of memory for such configuration.

Finally, although the shared ensemble method has suitable properties in the
accuracy of the combined classifier, the most attractive feature of this algorithm
is the sharing of some parts of the members of the ensemble. This fact permits
a good dealing of computational resources. Figure 2 shows the average training
time of Bagging, Boosting, and Multi-tree (shared ensemble) depending on the
size of the ensemble. While Bagging and Boosting® present a linear increase of
time, for the shared ensemble technique it is sub-linear. Note that the imple-
mentation features of the methods (Weka is implemented in Java, while Smiles
is implemented in C++) clearly affect the training time, however this does not
produce significant changes in the asymptotic behaviour of the algorithms when
varying the number of iterations.

2 The observed non-liner behaviour of Boosting is due to a technique implemented in
Boosting that stops the algorithm when accuracy does not improves further from
iteration to iteration.
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Fig. 2. Training time required by the ensemble methods depending on the
number of iterations.

4 Conclusions

This work has presented a novel ensemble method. The main feature of this
technique is the use of a structure called multi-tree that permits sharing common
parts of the single components of the ensemble. For this reason, we call it shared
ensemble.

We have introduced some criteria to populate the multi-tree. These criteria
are variations of a beam search over the multi-tree structure. We have imple-
mented this algorithm and an experimental evaluation has been performed in
order to analyse the performance of these criteria. We have also studied an opti-
misation that permits a better use of resources based on a selection of the nodes
to be stored.

Lastly, we have included a comparison of the ensemble method with some
well-known ensemble methods, namely Boosting and Bagging. Due to the sharing
of the common parts, much less time is required than with classical ensemble
approaches to perform the same number of iterations, thus our system is very ap-
propriate for complex problems where other ensemble methods such as Boosting
or Bagging require huge amounts of memory and time.

As future work, we propose the study of a new strategy for generating trees.
This strategy would be different from the current random technique we have
employed to explore OR-nodes, and would probably be based on the semantic
discrepancy of classifiers. This technique would provide a way to improve the
results of our ensemble method with fewer iterations.
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