soc: A Slicer for CSP Specifications’

[System Demonstration]

Michael Leuschel
Institut fir Informatik

Dusseldorf, Germany

leuschel@cs.uni-
duesseldorf.de

Josep Silva
Technical Univ. of Valencia

Camino de Vera S/N E-46022

Valencia, Spain
jsilva@dsic.upv.es

ABSTRACT

This paper describes SOC, a program slicer for CSP speci-
fications. In order to increase the precision of program slic-
ing, SOC uses a new data structure called Context-sensitive
Synchronized Control Flow Graph (CSCFG). Given a CSP
specification, SOC generates its associated CSCFG and pro-
duces from it two different kinds of slices; which correspond
to two different static analyses. We present the tool’s archi-
tecture, its main applications and the results obtained from
experiments conducted in order to measure the performance
of the tool.

Categories and Subject Descriptors

F.3.1 [Theory of Computation]: Logics and meaning of
programs—specifying and verifying and reasoning about pro-
grams

; D.3.1 [Software]: Programming Languages—formal def-
initions and theory

General Terms
Languages, Theory

Keywords

Program slicing, Software engineering

*This work has been partially supported by the EU
(FEDER) and the Spanish MEC/MICINN under grants
TIN2005-09207-C03-02, TIN2008-06622-C03-02, and Accion
Integrada HA2006-0008.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PEPM 09 Savannah, Georgia USA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Marisa Llorens
Technical Univ. of Valencia
Universitatsstrasse 1, D-40225 Camino de Vera S/N E-46022

Valencia, Spain
mllorens@dsic.upv.es

Javier Oliver
Technical Univ. of Valencia
Camino de Vera S/N E-46022
Valencia, Spain
fioliver@dsic.upv.es

Salvador Tamarit
Technical Univ. of Valencia

Camino de Vera S/N E-46022

Valencia, Spain
stamarit@dsic.upv.es

1. INTRODUCTION

Program slicing is a well-known technique to extract the
part of a program which is related to some point of interest
known as slicing criterion. It was first proposed as a de-
bugging technique [9] to allow a better understanding of the
portion of code which revealed an error; nowadays, it has
been successfully applied to a wide variety of software en-
gineering tasks, such as program understanding, debugging,
testing, specialization, etc. (See [8, 1] for a survey).

Recently, two new static analysis based on program slicing
has been proposed in the context of concurrent and explicitly
synchronized languages [6]. The first analysis is called MEB
(which stands for Must be Ezecuted Before), and it allows
us to extract those parts of a specification that must be
executed (in any execution) before a given point (thus they
are an implicit precondition). The second analysis is called
CEB (which stands for Could be Executed Before), and it
allows us to extract those parts of a specification that could
(in some execution), and could not, be executed before a
given point.

This paper describes the implementation of both tech-
niques for the Communicating Sequential Processes (CSP)
[4] language. SOC has been integrated in the system ProB
[5, 2] a CSP development environment and animator. Our
experiments have demonstrated the usefulness of the tool
with three main clear applications: debugging, program com-
prehension and program simplification (the tool can be used
as a preprocessing stage of other analyses and/or transfor-
mations in order to reduce the complexity of the CSP spec-
ification). A clear advantage of SOC is that it relays on the
construction of an internal data structure which is language-
independent. Therefore, SOC could be easily adapted to
other languages.

In Section 2 we show the applications of this tool and an
example of use. In Section 3 we describe the architecture
of SOC. Finally, in Section 4 we show a summary of some
experiments which show the speedup and performance of
our tool.

2. SOC INPRACTICE

In this section, we describe the purpose of our tool and

File Animate Verify Analyse Preferences Debug Files About

channel yearl, yearZ, year3, pass, fail, graduate, present, prize

MAIN = (STUDENT [| {|pass,faill} |] COLLEGE) [| [l[pass|} [] BARENT

STUDENT = yearl -» [pass -» YEARZ [] fail -> STUDENT)

YEARZ = yearZ -> (pass -> YEAR3 [] S -- vEAR2)

YEAR3 = year3 -> (pass -> graduate -> BTOP [] fail -> YEAR3)

PARENT = pass —> present —» pass —> present —* pass —» present ->» EBTOP

COLLEGE = fail -> 8TOP [] pass —= €1

€l = fail -> STOP [] pass —-> CZ2

c2 = fail -> STOP [] pass -> prize —-> ETOP

| 1= |
o State Properties EnabledOperations \ History

start_cspm_MAIN
start_cspm(STUDENT)
start_cspm(YEARZ)
start_cspm(YEAR3)
start_cspm(PARENT)

L
=

L b B

Figure 1: Slice of a CSP specification produced by SOC

how it can be used to extract slices from CSP specifications.
Let us consider the following example to show the usefulness
of the technique.

EXAMPLE 2.1. Consider the CSP specification’ of Fig-
ure 1. In this specification we have three processes (STUDENT,
PARENT and COLLEGE) executed in parallel and synchronized
on common events. Process STUDENT represents the three-
year academic courses of a student; process PARENT repre-
sents the parent of the student who gives her a present when
she passes a course; and process COLLEGE represents the col-
lege who gives a prize to those students which finish without
any fail.

In this specification, we are interested in determining what
parts of the specification must be executed before the stu-
dent fails in the second year, hence, we mark event fail of
process YEAR2 (thus the slicing criterion is (YEAR2, fail)).
Our slicing technique automatically extracts the slice com-
posed by the highlighted parts. This is called MEB analysis.
Therefore, SOC is a powerful tool for program comprehen-
sion. Note, for instance, that in order to fail in the second
year, the student has necessarily passed the first year. But,
the parent could or could not give a present to his son (in-
deed if he passed the first year) because this specification does
not force the parent to give a present to his son until he has
passed the second year. This is not so obvious from the spec-
ification, and SOC can help to understand the real meaning
of the specification.

We can additionally be interested in knowing what parts

E\]Ne refer those readers non familiarized with CSP to, e.g.,
4].

could be executed before the same event. This is called CEB
analysis. In this case, our technique adds to the slice the
underscored parts because they could be executed (in some
executions) before the marked event. This can be useful,
e.g., for debugging. If the slicing criterion is an event that
executed incorrectly (i.e., it should not happen in the exe-
cution), then the slice produced contains all the parts of the
specification which could produce the wrong behavior.

A third application of our tool is program specialization.
SOC is able to extract executable slices with a program trans-
formation applied to the generated slices. The specialized
specification contains all the necessary parts of the original
specification whose execution leads to the slicing criterion
(and then, the specialized specification finishes).

Note that, in the slices produced by both analyses in Fig-
ure 1, the slice produced could be made erecutable by re-
placing the removed parts by “STOP” or by “— STOP” if the
removed expression has a prefic.

As described in the previous example, the slicing process
is completely automatic. Once the user has loaded a CSP
specification, she can select (with the mouse) the event or
process call she is interested in. Obviously, this simple action
is enough to define a slicing criterion because the tool can
automatically determine the process and the source position
of interest. Then, the tool internally generates an internal
data structure which represents all possible computations,
and uses the MEB and CEB algorithms to construct the
slices. The result is shown to the user by highlighting the
part of the specification that must (respectively could) be
executed before the specified event.

There is another application of SOC which was our origi-

Graph
Generation

ProB GUI

Slicing Module

MEB Analysis
CEB Analysis

Figure 2: Slicer’s Architecture

nal aim when we developed this tool. ProB is able to perform
different static analyses over CSP specifications. However,
due to the complexity of the specifications and to the parallel
and non-deterministic execution of processes, these analyses
usually become too costly as to be used with real programs.
SOC can be used as a preprocessing stage of these analyses
in order to reduce the size of the specification and, thus, the
size of the data structures used in, and the complexity of,
the static analyses.

The technical details of this slicing technique, including
the algorithm for the MEB and CEB analyses, and the inter-
nal data structure used—the contezt-sensitive synchronized
control flow graph—can be found in [7].

3. ARCHITECTURE

In this section, we describe the internal structure of SOC.
ProB [5] is an animator for the B-Method which also sup-
ports other languages such as CSP [2]. ProB has been im-
plemented in Prolog and it is publicly available at
http://www.stups.uni-duesseldorf.de/ProB.

SOC has been implemented in Prolog and it has been
integrated in ProB. Therefore, SOC can take advantage of
ProB’s graphical features to show slices to the user. In order
to be able to color parts of the code, it has been necessary
to implement the source code positions detection; in such a
way that ProB can color every subexpression which is sliced
by SOC. Apart from the interface module for the communi-
cation with ProB, SOC has three main modules which we
describe in the following:

Graph Generation

The usual data structure for program slicing (the system
dependence graph) cannot be used in CSP. In contrast, it is
needed a new data structure called Context-sensitive Syn-
chronized Control Flow Graph (CSCFG) as described in [7].
Therefore, the first task of the slicer is to build a CSCFG.
The module which generates the CSCFG from the source

program is the only module which is ProB dependent. This
means that SOC could be used in other systems by only
changing the graph generation module.

Graph Compactation

The original definition of the CSCFG is inaccurate from an
implementation point of view. Therefore, we have imple-
mented a module which reduces the size of the CSCFG by
removing unnecessary nodes and by joining together those
nodes that form paths that the slicing algorithms must tra-
verse in all cases. This compactation not only reduces the
size of the stored CSCFG, but it also speeds up the slicing
process due to the reduced number of nodes to be processed.

Slicing Module

This is the main module of the tool. It is further composed of
two submodules which implement the algorithms to perform
the MEB and CEB analyses on the compacted CSCFGs.
Depending on the analysis selected by the user this module
extracts a subgraph from the compacted CSCFG using ei-
ther MEB or CEB. Then, it extracts from the subgraph the
part of the source code which forms the slice. If the user
has selected to produce an executable slice, then the slice
is transformed to become executable (it mainly fills gaps in
the produced slice in order to respect the syntax of the lan-
guage). The final result is then returned to ProB in such a
way that ProB can either highlight the final slice or save a
new CSP executable specification in a file.

Figure 2 summarizes the internal architecture of SOC.
Note that both the graph compactation module and the
slicing module take a CSCFG as input, and hence, they are
independent of ProB.

4. BENCHMARKING THE SLICER

In order to measure the performance and the slicing ca-
pabilities of our tool, we conducted some experiments over
a subset of the examples listed in

chmark time results

Table 1: Ben
benchmark CSCFG MEB Analysis CEB Analysis Total
ATM.csp 1239 ms. 7083 ms. 438 ms. 8760 ms.
RobotControlling.csp 586 ms. 923 ms. 2175 ms. 3684 ms.
Buses.csp 11 ms. 17 ms. 2 ms. 30 ms.
Prize.csp 23 ms. 116 ms. 17 ms. 156 ms.
Phils.csp 39 ms. 11 ms. 152 ms. 202 ms.
TrafficLights.csp 245 ms. 115 ms. 631 ms. 991 ms.
Processors.csp 7 ms. 7 ms. 7 ms. 21 ms.
ComplexSynchronization.csp | 1365 ms. 98107 ms. 250 ms. 99722 ms.
Computers.csp 40 ms. 426 ms. 11 ms. 477 ms.
Highways.csp 4555 ms. 92 ms. 40 ms. 4687 ms.
Table 2: Benchmark size results
benchmark Ori_CSCFG Com_CSCFG MEB Slice CEB Slice @A)
ATM. csp 9855 bytes 7533 bytes 332 bytes 448 bytes 34.94 %
RobotControlling.csp 19103 bytes 8738 bytes 309 bytes 1053 bytes 240.78 %
Buses.csp 2112 bytes 1572 bytes 114 bytes 114 bytes 0.00 %
Prize.csp 4534 bytes 3606 bytes 83 bytes 94 bytes 13.25 %
Phils.csp 10209 bytes 4417 bytes 80 bytes 594 bytes 642.50 %
TrafficLights.csp 11587 bytes 7668 bytes 110 bytes 578 bytes 425.45 %
Processors.csp 1683 bytes 1035 bytes 78 bytes 91 bytes 16.67 %
ComplexSynchronization.csp | 13338 bytes 10780 bytes 634 bytes 717 bytes 13.09 %
Computers.csp 3361 bytes 2521 bytes 260 bytes 260 bytes 0.00 %
Highways.csp 7450 bytes 5642 bytes 85 bytes 151 bytes 77.65 %

http://wuw.dsic.upv.es/~jsilva/soc/examples.

For each benchmark, Table 1 summarizes the time spent to
generate the compacted CSCFG (this includes the genera-
tion plus the compactation phases), to produce the MEB
and CEB slices, and the total time. Table 2 summarizes the
size of all objects participating in the slicing process: Col-
umn Ori_CSCFG shows the size of the CSCFG of the original
program. Column Com_CSCFG shows the size of the com-
pacted CSCFG. Columns MEB Slice and CEB Slice show
respectively the size of the MEB and CEB slices. Finally,
column (%) shows the difference in size between the MEB
and CEB slices. Clearly, CEB slices are always equal or
greater than their MEB counterparts.

The CSCFG compactation technique has not been pub-
lished. We have implemented it in our tool and the ex-
periments show that the size of the original specification is
substantially reduced using this technique. The size of both
MEB and CEB slices obviously depends on the slicing crite-
rion selected. This table compares both slices with respect
to the same criterion and, therefore, gives an idea of the
difference between them.

All the information related to the experiments, the source
code of the benchmarks, the slicing criteria used, the source
code of the tool and other material can be found at:
http://www.dsic.upv.es/~jsilva/soc.

S. ACKNOWLEDGMENTS

We want to thank Mark Fontaine for his help in the im-
plementation. He adapted the ProB module which detects
source code positions.

6. REFERENCES

[1] D. Binkley and K. B. Gallagher. Program slicing.
Advances in Computers, 43:1-50, 1996.

[2] M. Butler and M. Leuschel. Combining CSP and B for

specification and property verification. In Proceedings

of Formal Methods 2005, LNCS 3582, pages 221-236,

Newcastle upon Tyne, 2005. Springer-Verlag.

D. Callahan and J. Sublok. Static analysis of low-level

synchronization. In In proceedings of the 1988 ACM

SIGPLAN and SIGOPS workshop on Parallel and

distributed debugging (PADD’88), pages 100-111, New

York, NY, USA, 1988. ACM.

[4] C. A. R. Hoare. Communicating sequential processes.
Commun. ACM, 26(1):100-106, 1983.

[5] M. Leuschel and M. J. Butler. ProB: an automated
analysis toolset for the B method. STTT,
10(2):185-203, 2008.

[6] M. Leuschel, M. Llorens, J. Oliver, J. Silva, and
S. Tamarit. Static Slicing of CSP Specifications. Proc.
of the 18th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR’08),
pages 141-150, 2008.

[7] M. Leuschel, M. Llorens, J. Oliver, J. Silva, and

S. Tamarit. The MEB and CEB Static Analysis for

CSP Specifications. Technical report, Department of

Computer Science, Technical University of Valencia.

Accessible via http://www.dsic.upv.es/~jsilva,

Valencia, Spain, October 2008.

F. Tip. A Survey of Program Slicing Techniques.

Journal of Programming Languages, 3:121-189, 1995.

[9] M. Weiser. Program Slices: Formal, Psychological, and
Practical Investigations of an Automatic Program
Abstraction Method. PhD thesis, The University of
Michigan, 1979.

3

[8

APPENDIX
A. OUTLINE OF DEMO PRESENTATION

This appendix summarizes the system demonstration we
will present in case of acceptance. Firstly, we will explain
the motivation of our tool SOC, and we will present the
theoretical framework needed to contextualize the technical
background of this tool. Secondly, we will describe SOC’s
implementation by discussing its architecture and how it has
been integrated in the system ProB. Next, we will show how
SOC can be used to extract slices from CSP specifications
following an example. In this part we will show the appli-
cations of SOC. Finally, we will show a summary of some
experiments which show the speedup and performance of the
tool.

A.1 Introduction

SOC is a program slicing tool for Communicating Sequen-
tial Processes (CSP) [4] specifications. Program slicing [1]
is a method for decomposing programs by analyzing their
data and control flow. Roughly speaking, a program slice
consists of those parts of a program which are (potentially)
related with the values computed at some program point
and/or variable, referred to as a slicing criterion. We use
slicing in order to perform static analysis in concurrent and
explicitly synchronized languages. In particular, we focuss
on the CSP language. CSP allows the programmer to specify
complex systems with multiple interacting processes. Fig-
ure 3 summarizes the syntax constructions used in our CSP
specifications.

Our technique uses program slicing to extract the part
of a CSP specification which is related to a given event (the
slicing criterion) in the specification. In particular, we are in-
terested in performing two kinds of analyses. Given an event
or a process in the CSP specification, we want, on the one
hand, to determine what parts of the specification MUST
be executed before (MEB) it; and, on the other hand, we
want to determine what parts of the specification COULD
be executed before (CEB) it. This technique can be very
useful to debug, understand, maintain and reuse specifica-
tions; but also as a preprocessing stage of other analyses
and/or transformations in order to reduce the complexity of
the CSP specification. Its usefulness can be easily shown
with an example.

ExXAMPLE A.1. Consider the specification shown in Fig-
ure 1. In this specification there are three processes (STU-
DENT, PARENT and COLLEGE) executed in parallel and syn-
chronized on common events. Process STUDENT represents
the three-year academic courses of a student; process PARENT
represents the parent of the student who gives her a present
when she passes a course; and process COLLEGE represents
the college who gives a prize to those students which finish
without any fail.

Let us assume that we are interested in determining what
parts of the specification must be executed before the student
fails in the second year, hence, we mark event fail of process
YEAR2 (thus the slicing criterion is (YEAR2, fail)). Our
slicing technique automatically extracts the slice composed
by the highlighted parts. We can additionally be interested in
knowing which parts could be executed before the same event.
In this case, our technique adds to the slice the underscored
parts because they could be executed (in some executions)

before the marked event.

As it is usual in static analysis, we need a data structure
able to finitely represent the (often infinite) computations
of our specifications. We adapt for CSP a data structure [3]
introduced by Callahan and Sublok, the Synchronized Con-
trol Flow Graph (SCFG), which explicitly represents syn-
chronizations between threads with a special edge for syn-
chronization flows. We proposed in [7] a new version of
the SCFG, the Context-sensitive Synchronized Control Flow
Graph (CSCFG) which is context-sensitive because it takes
into account the different contexts on which a process can
be executed. Intuitively speaking, the context of a node
represents the set of processes in which a particular node is
being executed. The key difference between the SCFG and
the CSCFG is that the latter unfolds every process call node
except those that belong to a loop. This is very convenient
for slicing because every process call which is executed in
a different context is unfolded, thus, slicing does not mix
computations. Moreover, it allows to deal with recursion
and, at the same time, it prevents from infinite unfolding
of process calls; because loop edges prevent from infinite
unfolding. One important characteristic of the CSCFG is
that loops are unfolded once, and thus all the source posi-
tions inside the loops are in the graph and can be collected
by slicing algorithms. For slicing purposes, this representa-
tion also ensures that every possibly executed part of the
specification belongs to the CSCFG because only loops (i.e.,
repeated nodes) are missing.

We can see the difference between the SCFG and the
CSCFG with an example.

ExXAMPLE A.2. Figure 4 shows the SCFG and the CSCFG—
for the time being, the reader can ignore the color distinction
of nodes—of the following specification:

MAIN = (P |lgpy Q@ 5 (P |l R)
P =a — b — SKIP
Q =b — c — SKIP
R=d — a — SKIP

Each node is labeled with the source position it represents.
The SCFG represents every source position with a single
node. In contrast, the CSCFG provides a different repre-
sentation for each context in which a procedure call is made.
This can be seen in Figure 4 (right) where process P appears
twice to account for the two contexts in which it is called. In
particular, in the CSCFG we have a fresh node to represent
each different process call, and two modes point to the same
process if and only if they are the same call (they are labelled
with the same source position) and they belong to the same
loop. This property ensures that the CSCFG is finite.

Given a slicing criterion (a set of nodes in the CSCFG), we
use the CSCFG to calculate MEB and CEB analyses. The
MEB analysis computes, for each node in the slicing cri-
terion, a set containing the part of the specification which
must be executed before it. Then, it returns MEB as the
intersection of all these sets. Each set is computed with an
iterative process that takes a node and (i) it follows back-
wards all the control-flow edges. (ii) Those nodes that could
not be executed before it are added to a black list (i.e., they
are discarded because they belong to a non-executed choice).
And (iii) synchronizations are followed in order to reach new
nodes that must be executed before it.

Domains
P,Q,R... (processes)
a,b,c... (events)

where a,, = a1,...,an

S = Di...Dp (entire specification)
D = P=mnw (definition of a process)
T ou= Q (process call)
| a—m (prefixing)
| m N om (internal choice)
| m Om (external choice)
R (interleaving)
| 7 |lf@zy ™2 (synchronized parallelism)
| w1 o (sequential composition)
| SKIP (skip)
| STOP (stop)

Figure 3: Syntax of CSP specifications

control flow synchronization
E— <« >

Figure 4: SCFG (left) and CSCFG (right) of the program in Example A.2

The CEB analysis computes the set of nodes in the CSCFG
that could be executed before a given node n. This means
that all those nodes that must be executed before n are in-
cluded, but also those nodes that are executed before n in
some executions, and they are not in other executions (e.g.,
due to non synchronized parallelism). The MEB slices ob-
tained from the CSCFGs of Figure 4 are colored in gray.
Note that the CSCFG is much more precise than the SCFG.

A.2 S0cC’s Architecture

SOC is a slicer for CSP specifications which implements
both MEB and CEB analyses. Our experiments have demon-
strated the usefulness of the tool with three main clear ap-
plications: debugging, program comprehension and program
simplification. In particular, using SOC for program sim-
plification allows to reduce the complexity of CSP specifi-
cations in such a way that other analyses can be applied to
the simplified specification. Therefore, SOC can be used as
a preprocessing stage of other analyses and/or transforma-
tions.

SOC has been integrated in the system ProB [5, 2], a CSP
development environment and animator for the B-Method
which also supports other languages such as CSP. ProB has
been implemented in Prolog and it is publicly available at
http://www.stups.uni-duesseldorf.de/ProB. ProB en-
ables a user to animate a specification, either interactivally

or automatically. ProB was developed using SICStus Prolog
[13]. It uses Tcl/Tk for the Graphical User Interface (a Java
version is also available) and dot/dotty from the Graphviz
package. In Figure 5 we show the graphical user interface
of ProB. The menu bar contains the various commands to
access the features of ProB. It includes the File menu, with
a submenu Recent Files to quickly access the files previ-
ously opened in ProB. Notice the two couples of commands
Open/Save and Reopen/Save and Reopen, the latter reopen-
ing the currently opened file and reinitialising completely the
state of the animation and the model checking processes.
The About menu provides help on the tool, including a com-
mand to check if an update is available on the ProB website.
By default, ProB starts with a limited set of commands
in the Beginner mode. The Normal mode gives access to
more features and can be set in the menu Preferences —
User Mode. Under the menu bar, the main window contains
four panes:

e In the top pane, the specification of the machine is dis-
played with syntax highlight, and can also be edited by
typing directly in this pane;

e At the bottom, the animation window is composed of
three panes which display, at the current point during
the animation:

— The current state of the machine (State Proper-
ties), listing the current values of the machine

Fle Animate Verify Analyse Preferences Debug Fles About

channel yearl, year2, vear3, pass, fail, graduate, present, prize I
MATN = (STODENT [| {|pass,faill} |] COLLEGE) [| {[lpass|} |] PARENT
STUDENT = yearl -> (pass -> YERRZ [] fail -> STUDENT)
VEARZ = year2 —> (pass —> YEAR3 [] fail -> YE&RZ)
YEARZ = year3 -> (pass —-> graduate -> STCOP [] fail -> YEAR3)
PARENT = pass —-- present -- pass —-- present -- pass —- present -- ETOP
COLLEGE = fail -> B8TOP [] pass -> Cl
¢l = fail -> STOP [] pass -> CZ
CZs= fall == STOP [] pags => prizes=> BTAP
K =7
@ 2oy State Properties 3 Enabled Operations History
root start cspm_MAIN Al
start_cspm(STUDENT)
start_cspm(YEARZ)
start_cspm(YEAR3)
start_cspm(PARENT)
= L=k R I = [¥

Figure 5: Graphical user interface of ProB

variables;

— The enabled operations (Enabled Operations), list-
ing the operations whose preconditions and guards
are true in this state;

— The history of operations that leaded to this state
(History).

The animation facilities of ProB allow users to gain confi-
dence in their specifications. These features are user-friendly
as the user does not have to guess the right values for the
operation arguments or choice variables, and she uses the
mouse to operate the animation. At each point during the
animation process, several useful commands displaying vari-
ous information on the machine are available in the Analyse
menu.

SOC has been implemented in Prolog and it has been
integrated in ProB. Therefore, SOC can take advantage of
ProB’s graphical features to show slices to the user. In order
to be able to color parts of the code, it has been necessary
to implement the source code positions detection; in such a
way that ProB can color every subexpression which is sliced
by SOC. Apart from the interface module for the communi-
cation with ProB, SOC has three main modules which we
can see in Figure 2.

Graph generation. The first task of the slicer is to
build a CSCFG. The module which generates the CSCFG
from the source program is the only module which is ProB
dependent. This means that SOC could be used in other
systems by only changing the graph generation module.

Graph compactation. The original definition of the
CSCFG is inaccurate from an implementation point of view.
Therefore, we have implemented a module which reduces the
size of the CSCFG by removing unnecessary nodes and by
joining together those nodes that form a paths that the slic-

ing algorithms must traverse in all cases. This compactation
not only reduces the size of the stored CSCFG, but it also
speeds up the slicing process due to the reduced number of
nodes to be processed. For instance, the graph of Figure 6
is the compacted version of the CSCFG in Figure 4.

Figure 6: Compacted version of the CSCFG in Fig-
ure 4

Slicing module. This is the main module of the tool.
It is further composed of two submodules which implement
the algorithms to perform the MEB and CEB analyses on
the compacted CSCFGs. Depending on the analysis selected
by the user this module extracts a subgraph from the com-
pacted CSCFG using either MEB or CEB. Then, it extracts
from the subgraph the part of the source code which forms
the slice. If the user has selected to produce an executable
slice, then the slice is transformed to become executable (it
mainly fills gaps in the produced slice in order to respect the
syntax of the language). The final result is then returned to
ProB in such a way that ProB can either highlight the final
slice or save a new CSP executable specification in a file.

A clear advantage of SOC is that almost all the modules

of the tool are language-independent. They relay on the
construction of the CSCFG of the program. Therefore, SOC
could be easily adapted to other languages by only modifying
the module which constructs the CSCFG.

A.3 soc in Practice

Let us consider the example A.1 to show how SOC can
be used to extract slices from CSP specifications. The user
has two possibilities: to edit the specification directly in the
top pane or to load it from a file (if it exists as a previously
edited file). Once the program is loaded, the user can slice it
with a process which is fully automatic. Concretely, the user
can select (with the mouse) the event or process call she is
interested in. This simple action is enough to define a slicing
criterion because the tool can automatically determine the
process and the source position of interest. In our example,
the slicing criterion is event fail of process YEAR2, as we
can see in Figure 7.

Then, she selects command Highlight Slice from Analyse
— Slicing menu. The tool internally generates the CSCFG
of the specification (saved in a file .dot) and uses the MEB
and CEB algorithms to construct the slices. The result is
shown to the user by highlighting the part of the specifica-
tion that must (respectively could) be executed before the
specified event. Figure 1 shows a screenshot of ProB showing
a slice of our CSP specification example w.r.t. the slicing cri-
terion (YEAR2,fail). We can observe highlighted in green
the MEB slice and underlined the CEB slice which coincide
with the expected results.

Finally, the user can view the generated CSCFG opening
the corresponding .dot file. In Figure 8, the CSCFG gener-
ated when Analyse — Slice is selected is shown. The nodes
of the MEB slice are dark.

A.4 Benchmarking the slicer

In order to measure the specialization capabilities of our
tool, we conducted some experiments over a subset of the
examples listed in

http://www.dsic.upv.es/~ jsilva/soc/examples.

Results are summarized in Table 1 and Table 2. For each
benchmark, Table 1 summarizes the time spent to generate
the compacted CSCFG (this includes the generation plus the
compactation phases), to produce the MEB and CEB slices,
and the total time. Table 2 summarizes the size of all ob-
jects participating in the slicing process: Column Ori_CSCFG
shows the size of the CSCFG of the original program. Col-
umn Com_CSCFG shows the size of the compacted CSCFG.
Columns MEB Slice and CEB Slice show respectively the
size of the MEB and CEB slices. Finally, column (%) shows
the difference in size between the MEB and CEB slices. Ob-
viously, CEB slices are always equal or greater than their
MEB counterparts.

The benchmarks selected for the experiments are the fol-
lowing:

e ATM.csp. This specification represents an Automated
Teller Machine. The slicing criterion is (Menu, getmoney)
i.e., we are interested in determining what parts of the
specification must be executed before the menu option
getmoney is chosen in the ATM.

e RobotControlling.csp. This example describes a game
in which four robots move in a maze. The slicing crite-
rion is (Referee,winner2), i.e., we want to know what

parts of the system could be executed before the second
robot becomes the winner.

Buses.csp. This example describes a bus service with
two buses running in parallel. The slicing criterion is
(BUS37, pay90), i.e., we are interested in determining
what could and could not happen before the user payed
at bus 37.

Prize.csp. This is the specification of Example A.1.
The slicing criterion is (YEAR2,fail), i.e., we are in-
terested in determining what parts of the specification
must be executed before the student fails in the second
year.

Phils.csp. Thisis a simple version of the dining philoso-
phers problem. In this example, the slicing criterion
is (PHIL221,DropFork2), i.e., we want to know what
happened before the second philosopher dropped the
second fork.

TrafficLights.csp. This specification defines two cars
driving in parallel on different streets. The first car
can only circulate in two streets. The second car can
only circulate in a third street. Each street has one
traffic light for cars controlling. The slicing criterion is
(STREET3,park), i.e., we are interested in determining
what parts of the specification must be executed before
the second car parks on the third street.

Processors.csp. This example describes a system that,
once connected, receives data from two machines. The
slicing criterion is (MACH1,datreq) to know what parts
of the example must be executed before the first ma-
chine requests data.

ComplexSynchronization.csp. This specification de-
fines five routers working in parallel. Router i can only
send messages to router i+1. Each router can send a
broadcast message to all routers. The slicing criterion
is (Process3,keep), i.e., we want to know what parts
of the system could be executed before router 3 keeps
a message.

Computers.csp. This benchmark describes a system in
which a user can surf internet and download files. The
computer can control if files are infected by virus. The
slicing criterion is (USER,consult_file), i.e., we are
interested in determining what parts of the specification
must be executed before the user consults a file.

Highways.csp. This specification describes a net of
spanish highways. The slicing criterion is (HW6,Toledo),
i.e., we want to determine what cities must be traversed
in order to reach Toledo from the starting point.

channel yearl,

YEAR3 = year3 —-»

Animate Verify Analyse

ProGsP:a1 20y

Leuschel s Font

Preferences Debugy es Ahout

yearZ, yeard, pass, fall, graduate, present, prize

MATH = (STUDENT [| {|pass,faill} |] COLLEGE) [| [lpass|} |] PARENT
STUDENT = yearl —> (pass -> YERRZ [] fail -> STUDENT)
YEARZ = year2 -> (pass —> YEAR3 [] EEHE -> vEARZ)

(pass —-> graduate -> BTCOP [] fail -> YEAR3)

_\ |start_cspm_MAIN
start_cspm(STUDENT)
start_cspm(YEARZ)
start_cspm(YEAR3)
start_cspm(PARENT)

PARENT = pass -> present —-> pass —> present —> pass —-> present -> STOP

COLLEGE = fail -> B8TOP [] pass -> Cl

¢l = fail -> STOP [] pass -> CZ

c2 = fail -> STOP [] pass -> prize —-> STOP

=0

i Zno| State Properties | Enabled Operations History
root

[|

Figure 7: Selecting the slicing criterion

ot i Ty

<t Ty

f<Tran

Figure 8: CSCFG of Example A.1

