DEPARTAMENTO DE SISTEMAS INFORMATICOS Y COMPUTACION
UNIVERSIDAD POLITECNICA DE VALENCIA

P.O. Box: 22012 E-46071 Valencia (SPAIN)

Departamento de Sistemas
Informéticos y Computacion

Informe Técnico / Technical Report

Ref. No.: DSIC-1I/01/10 Pages: 41

Title: A Semantics to Generate the Context-sensitive Synchronized
Control-Flow Graph (extended)

Author(s): M. Llorens, J. Oliver, J. Silva and S. Tamarit

Date: January, 2010

Keywords: Concurrent Programming, Semantics, CSP, CSCFG

VO BO
Leader of research Group Author(s)

A Semantics to Generate the Context-sensitive
Synchronized Control-Flow Graph (extended)*

Marisa Llorens, Javier Oliver, Josep Silva, and Salvador Tamarit

Universidad Politécnica de Valencia, Camino de Vera S/N, E-46022 Valencia, Spain
{mllorens,fjoliver, jsilva,stamarit}@dsic.upv.es

Abstract. ProB is an automated analysis tool set that allows the ani-
mation and verification of complex systems specified with the CSP lan-
guage. This tool has been successfully applied in different industrial
projects for the verification of systems with many concurrent and syn-
chronized components. However, the cost of the analyses performed by
ProB is usually very high, and sometimes prohibitive, due to the com-
plexity imposed by the non-deterministic execution order of processes
and to the restrictions imposed on this order by synchronizations. To
overcome this problem, there has been a recent proposal that allows to
statically simplify a specification before the analyses. This simplifica-
tion allows to drastically reduce the time needed by ProB’s analyses.
Unfortunately, the approach has been implemented but it has not been
formalized neither proved correct. In this paper, we formally define the
data structures needed to automatically simplify a CSP specification and
we define an algorithm able to automatically generate these data struc-
tures. The algorithm has been proved correct and its implementation for
ProB is publicly available.

1 Introduction

The Communicating Sequential Processes (CSP) [2,11] language allows us to
specify complex systems with multiple interacting processes. The study and
transformation of such systems often implies different analyses (e.g., deadlock
analysis [4], reliability analysis [3], refinement checking [10], etc.) which are often
based on a data structure able to represent all computations of a specification.

Recently, a new data structure called Context-sensitive Synchronized Control-
Flow Graph (CSCFG) has been defined [6]. This data structure is a graph that
allows us to finitely represent possibly infinite computations, and it is particu-
larly interesting because it takes into account the context of process calls, and
thus it allows us to produce analyses that are very precise. In particular, some
analyses (see, e.g., [7,8]) use the CSCFG to simplify a specification with respect

* This work has been partially supported by the Spanish Ministerio de Ciencia e In-
novacton under grant TIN2008-06622-C03-02, by the Generalitat Valenciana under
grant ACOMP/2009/017, and by the Universidad Politécnica de Valencia (Pro-
grams PAID-05-08 and PAID-06-08). Salvador Tamarit was partially supported by
the Spanish MICINN under FPI grant BES-2009-015019.

to some term by discarding those parts of the specification that cannot be ex-
ecuted before the term and thus they cannot influence it. This simplification is
automatic and thus it is very useful as a preprocessing stage of other analyses.

However, computing the CSCFG is a complex task due to the non-determinis-
tic execution of processes, due to deadlocks, due to non-terminating processes
and mainly due to synchronizations. This is the reason why there does not exist
any correctness result which formally relates the CSCFG of a specification to its
execution. This result is needed because it would allow us to prove important
properties (such as correctness and completeness) of the techniques based on the
CSCFG.

In this work, we instrument the CSP standard semantics (Chapter 7 in [11])
in such a way that the execution of the instrumented semantics produces as
a side-effect the portion of the CSCFG which is associated to the performed
computation. Then, we define an algorithm which uses the semantics to build the
complete CSCFG associated to a CSP specification. This algorithm executes the
semantics several times to explore all possible computations of the specification.
Each computation produces a part of the CSCFG, and finally, the algorithm
joins all the parts so that a complete CSCFG is produced.

The rest of the paper has been organized as follows. Section 2 recalls CSP syn-
tax and presents its standard operational semantics as defined by A.W. Roscoe
[11]. Section 3 introduces some notation that will be used along the paper and
it formally defines the CSCFG. Section 4 presents an algorithm able to generate
the CSCFG associated to a CSP specification. To obtain the CSCFG, the al-
gorithm uses an instrumentation of the standard operational semantics of CSP
which is also introduced in this section. In Section 5, two theorems are proved
that ensure that the algorithm is correct and terminating. Finally, Section 6
concludes.

2 The syntax and semantics of CSP

In order to make the paper self-contained, this section recalls CSP’s syntax and
semantics.

Figure 1 summarizes the syntax constructions used in CSP specifications.
A specification is a finite collection of definitions. The left-hand side of each
definition is the name of a different process, which is defined in the right-hand
side (abbrev. rhs) by means of an expression that can be a call to another process
or a combination of the following operators:

Prefixing It specifies that event a must happen before process P.

Input It is used to receive a message from another process. Message a is received
through channel b; then P is executed.

Output It is analogous to the input, but this is used to send messages. Message
a is sent through channel b; then process P is executed.

Internal choice The system (e.g., non-deterministically) chooses to execute
one of the two processes P or Q).

Domains
M,N...e N (Process names)
P,Q...€P (Processes)
a,b...€ X (Events)

S = D;i...D, (Entire specification)

P[f]
SKIP

STOP

Renaming) f:X—=X
Skip)
Stop)

(
D:=N=P (Process definition)
P =M (Process call)
| a— P (Prefixing)
| a?— P (Input)
| alb— P (Output)
| P @Q (Internal choice)
| POQ (External choice)
| Pl Q@ (Synchronized parallelism) X C ¥
b
| Pl @ (Interleaving)
| P;Q (Sequential composition)
| P\X (Hiding) Xcy
| (
| (
| (

Fig. 1. Syntax of CSP specifications

External choice It is identic to internal choice but the choice comes from out-
side the system (e.g., the user).

Synchronized parallelism Both processes are executed in parallel with a set
X of synchronized events. In absence of synchronizations both processes can
execute in any order. Whenever a synchronized event a € X happens in
one of the processes it must also happen in the other at the same time.
Whenever the set of synchronized events is not specified, it is assumed that
processes are synchronized in all common events. A particular case of parallel
execution is interleaving where no synchronizations exist (i.e., X = 0).

Interleaving Both expressions are executed in parallel and independently.

Sequential composition It specifies a sequence of two processes. When the
first (successfully) finishes, the second starts.

Hiding Process P is executed with a set of hidden events X C X. Hidden
events are not observable from outside the process, and thus, they cannot
synchronize with other processes.

Renaming Process P is executed with a set of renamed events specified with
the mapping f. An event a renamed as b behaves internally as a but it is
observable as b from outside the process.

Skip It finishes the current process. It allows us to continue the next sequential
process.

Stop Synonym of deadlock: It finishes the current process.

(Process Call)

N = rhs(N)

(Prefixing)

(a—P)-% P

(Internal Choice 1)

(PNQ) =P

(Internal Choice 2)

(PNQ)—Q

(External Choice 1)

.

P p
(POQ) — (P UQ)
(External Choice 3)

P P

S — c X
POQ =P ¢

(External Choice 2)
Q—c
(POQ) — (POQ)

(External Choice 4)

Q-

—————— e XY
(rPUQ) —

(Synchronized Parallelism 1)
PS5 p

e o ©€

(PlIQ) = (P|@

X X
(Synchronized Parallelism 3)
PSP QN

e
(P|Q) = (P'[|Q")
X X

IT\X

(Synchronized Parallelism 2)
Q=Q
. wTmx .
(PllQ) — (P[lQ")
X X
(Synchronized Parallelism 4)

IT\X

@) % e
X

(Sequential Composition 1)

(Sequential Composition 2)

P p . rL0
(P;Q) —— (P';Q) (P;Q) —Q
(Hiding 1) (Hiding 2)

P p' P p

I —— € B
(P\B) — (P'\B)
(Hiding 3)

rL0
(P\B) -5

(P\B) = (P'\B)
(v=a N agB)V (v=r)

(Renaming 1)

P2 p
(P[RI) = (P'[RI)

v=b A v =a A aRb
Vo=v =71

(Renaming 2)

rL0
(PIR]) % @

(SKIP)

sk1P - @

Fig. 2. CSP’s operational semantics

We now recall the standard operational semantics of CSP as defined by
Roscoe [11]. It is presented in Fig. 2 as a logical inference system. A state

of the semantics is a process to be evaluated called the control. In the follow-
ing, wlog we assume that the system starts with an initial state MAIN, and the
rules of the semantics are used to infer how this state evolves. When no rules
can be applied to the current state, the computation finishes. The rules of the
semantics change the states of the computation due to the occurrence of events.
The set of possible events is X7 = X' U {r}. Events in X are visible from the
external environment, and can only happen with its co-operation (e.g., actions
of the user). Event 7 is an internal event that cannot be observed from outside
the system and it happens automatically as defined by the semantics.

In order to perform computations, we construct an initial state (e.g., MAIN)
and (non-deterministically) apply the rules of Fig. 2. The intuitive meaning of
each rule is the following:

(Process Call) The call to process N is unfolded and its right-hand side is added
to the control.

(Prefixing) When event a occurs, process P is added to the control. This rule is
used both for prefixing and communication operators (input and output).
Given a communication expression, either a?b — P or a! b — P, this rule
treats the expression as a prefixing except for the fact that the set of b’s
appearing in P is replaced by the communicated events.

(SKIP) After SKIP, the only possible event is v, which denotes the successful
termination of the (sub)computation with the special symbol §2. There is no
rule for 2 (neither for STOP), hence, this (sub)computation has finished.

(Internal Choice 1 and 2) The system, with the occurrence of the internal event
7, (non-deterministically) selects one of the two processes P or @ which is
added to the control.

(External Choice 1, 2, 3 and 4) The occurrence of 7 develops one of the branches.
The occurrence of an event e € X' is used to select one of the two processes
P or @ and the control changes according to the event.

(Sequential Composition 1) In P; @, P can evolve to P’ with any event except v'.
Hence, the control becomes P’; Q.

(Sequential Composition 2) When P finishes (with event v'), @ starts. Note that
v is hidden from outside the whole process becoming 7.

(Synchronized Parallelism 1 and 2) When a non-synchronized event happens, one of
the two processes P or () evolves accordingly.

(Synchronized Parallelism 3) When a synchronized event (a € X) happens, it is
required that both processes synchronize; P and () are executed at the same
time and the control becomes P’||Q’.

X

(Synchronized Parallelism 4) When both processes have successfully terminated the
control becomes (2, performing v".

(Sequential Composition 1) In P; @, P can evolve to P’ with any event except v'.
Hence, the control becomes P’; Q.

(Sequential Composition 2) When P finishes (with event v'), @ starts. Note that
v' is hidden from outside the whole process becoming 7.

(Hiding 1) When event a € B occurs in P, it is hidden, and thus changed to 7 so
that it is not observable from outside P

(Hiding 2 and Hiding 3) P can normally evolve (using rule 2) until it is finished
(v happens). When P finishes, the control becomes (2.

(Renaming 1 and 2) Whenever a renamed event a happens in P, it is renamed to
b so that, externally, only b is visible. Renaming has no effect on either 7 or
v’ events.

3 Context-sensitive Synchronized Control-Flow Graphs

A CSCFG [6, 8] is a data structure able to finitely represent all possible (often
infinite) computations of a CSP specification. This data structure is particularly
useful to simplify a CSP specification before its static analysis. The simplifica-
tion of industrial CSP specifications allows to drastically reduce the time needed
to perform expensive analyses such as model checking. Algorithms to construct
CSCFGs have been implemented [7] and integrated into the most advanced CSP
environment ProB [5]. In this section we present a formalization of the CSCFG
which directly relates the graph construction with the control-flow of the com-
putations it represents.

A CSCFG is formed by the sequence of expressions that are evaluated during
an execution. These expressions are conveniently connected to form a graph. In
addition, the source position (in the specification) of each literal is also included
in the CSCFG. This is very useful because it provides the CSCFG with the
ability to determine what parts of the source code have been executed and in
what order. The inclusion of source positions in the CSCFG implies an additional
level of complexity in the semantics, but the benefits of providing the CSCFG
with this additional information are clear and, for some applications, essential.
Therefore, we use labels (that we call specification positions) to identify each
literal in a specification (e.g., events, operators and process names). Formally,

Definition 1. (Specification position) A specification position is a pair (N, w)
where N € N and w is a sequence of natural numbers (we use A to denote the
empty sequence). We let Pos(P) denote the specification position of a CSP pro-
cess P. Each process definition N = P of a CSP specification is labeled with spec-
ification positions with the call AddSpPos(P, (N, A)); where function AddSpPos
1s defined as follows:

AddSpPos(P, (N,w)) =

PN w) if PeN
SKIP(y) if P=SKIP
STOP(x) if P=STOP
A(N,w.1) = (N,w) AddSpPos(Q, (N, w.2)) if P=a—Q
AddSpPos(Q, (N, w.1)) op if P=Qop VYope{\,[]}
AddSpPos(Q, (N,w.1)) op(n,.) AddSpPos(R, (N,w.2))
if P=QopR Vope{nolll;}

We refer to a CSP process P with the specification position of its root, i.e.,
Pos(a — Q) = Pos(—) and Pos(Q op R) = Pos(op) ¥ op € {1,0,|],|],;}. We
often use Pos(S) to denote a set containing all positions in a specification S.

Ezample 1. Consider the following CSP specification where literals are labeled
with its associated specification positions (in grey color) so that labels are unique:

MAIN = (a — STOP)l
{a}
(P a (a — STOP)
P=b,, — STOP

Note that the specification positions of each process can be viewed as a tree
whose root is A. We often use indistinguishably an expression and its associated
specification position, when it is clear from the context (e.g., in Example 1 we
will refer to (P,1) as b).

In order to introduce the definition of CSCFG, we need first to define the
concepts of control-flow, path and context.

Definition 2. (Control-flow) Given a CSP specification S, the control-flow is a
transitive relation between the specification positions of S. Given two specification
positions «, B in S, we say that the control of o can pass to 8 iff

i) a=N A B= first(N,A)) with N=rhs(N)e S

i) ae{N,0,||} A B e{first(a.l), first(e.2)}

iii)a € {—,;} N B=first(a.2)

iv)a=p1 AN = —

v) a € last(f.1) N B=;

vi)aw e {\,[]} N B = first(a.l)

where first(«) is defined as follows:

.l fa= —
first(a) = { first(a.l) if a= ;
« otherwise

and where last(a) is the set of all possible termination points of the subpro-
cess denoted by a:

{a} if o = SKIP
1] if @« =STOP V
(a € {||} A (last(a.1) = OV last(a.2) = ()
last(a) = ¢ last(e.1) Ulast(e.2) if o € {N,0} Vv
(a € {]|} A last(a.1) # 0 A last(@.2) # 0)
last(c.2) if ae{—,;}
last((N, A)) ifa=N

We say that a specification position « is executable in S iff the control can pass
from the initial state (i.e., MAIN) to .

For instance, in Example 1, the control can pass from (MAIN,2.1) to (P,1)
due to rule i), from (MAIN,2) to (MAIN,2.1) and (MAIN, 2.2.1) due to rule ii), from
(MAIN,2.2.1) to (MAIN,2.2) due to rule iii), and from (MAIN,2.2) to (MAIN,2.2.2)
due to rule iv).

As we will work with graphs whose nodes are labeled with positions, we use
I(n) to refer to the label of node n.

Definition 3. (Path) Given a labeled graph G = (N, E), a path between two
nodes ny, m € N, Path(ny,m), is a sequence ny,...,ny such that n, — m € E
and for all 1 <i<k we have n; — n;y1 € E. The path is loop-free if for all i # j
we have n; # n;.

Definition 4. (Context) Given a labeled graph G = (N, E) and a node n € N,
the context of n, Con(n) = {m | I(m) =M with (M = P) € S and ezists a
loop-free path m —* n with last(m) € 7}.

Intuitively speaking, the context of a node represents the set of processes
in which a particular node is being executed. This is represented by the set of
process calls in the computation that were done before the specified node. For
instance, the CSCFG associated to the specification in Example 1 is shown in
Fig. 3. In this graph we have that Con(4)={0, 3}, i.e., b is being executed after
having called processes MAIN and P. Note that focussing on a process call node we
can use the context to identify loops; i.e., we have a loop whenever n € Con(m)
with I(n) =1(m) = M.

Definition 5. (Context-sensitive Synchronized Control-Flow Graph) Given a
CSP specification S, its Context-sensitive Synchronized Control-Flow Graph
(CSCFG) is a labeled directed graph G = (N, E., E|, Es) where N is a set of
nodes such that ¥V n € N. l(n) € Pos(S) and l(n) is executable in S; and edges
are divided into three groups: control-flow edges (E.), loop edges (E;) and syn-
chronization edges (F).

— E. is a set of one-way edges (denoted with —) representing the possible
control-flow between two nodes. Control edges do not form loops. The root of
the tree formed by E. is the position of the initial call to MAIN.

— Ej is a set of one-way edges (denoted with ~~) such that (ny ~ ng) € Ey iff
l(n1) and l(n2) are (possibly different) process calls that refer to the same
process M € N and na € Con(nq).

— E is a set of two-way edges (denoted with <>) representing the possible
synchronization of two (event) nodes.

Given a CSCFG, every node labeled (M, A) has one and only one incoming edge
i FB.; and every process call node has one and only one outgoing edge which
belongs to either E. or Fj.

Ezample 2. Consider again the specification of Example 1 and its associated
CSCFG shown in Fig. 3. For the time being, the reader can ignore the numbering

Fig. 3. CSCFG associated to the specification of Example 1

and color of the nodes; they will be explained in Section 4. Each process call is
connected to a subgraph which contains the right-hand side of the called process.
For convenience, in this example there are no loop edges; there are control-flow
edges and one synchronization edge between nodes (MAIN,2.2.1) and (MAIN,1.1)
representing the synchronization of event a.

Note that the CSCFG shows the exact expressions that have been evaluated
with an explicit causality relation; and, in addition, it shows the specification
positions that have been evaluated and in what order. Therefore, it is not only
useful as a program comprehension tool, but it can be used for program simpli-
fication. For instance, with a simple backwards traversal from a, the CSCFG of
Fig. 3 reveals that the only part of the code that can be executed before a is the
black part:

MAIN = (a a

I (7O
{a}

Hence, the specification can be significantly simplified for those analyses fo-
cussing on the occurrence of event a.

4 An algorithm to generate the CSCFG

This section introduces an algorithm able to generate the CSCFG associated to
a CSP specification. The algorithm uses an instrumented operational semantics

10

of CSP which (i) generates as a side-effect the CSCFG associated to the com-
putation performed with the semantics; (ii) it controls that no infinite loops are
executed; and (iii) it ensures that the execution is deterministic.

Algorithm 1 controls that the semantics is executed repeatedly in order
to deterministically execute all possible computations—of the original (non-
deterministic) specification—and then, it joins all the graphs produced for each
computation in order to construct a complete CSCFG for the whole specifica-
tion. The key point of the algorithm is the use of a stack that records the actions
that can be performed by the semantics. In particular, the stack contains tuples
of the form (rule,rules) where rule indicates the rule that must be selected
by the semantics in the next execution step, and rules is a set with the other
possible rules that can be selected. The algorithm uses the stack to prepare each
execution of the semantics indicating the rules that must be applied at each
step. For this, function UpdStack is used; it basically avoids to repeat the same
computation with the semantics. When the semantics finishes, the algorithm
adds to G the set of synchronizations occurred (those in (), and it prepares a
new execution of the semantics with an updated stack. This is repeated until all
possible computations are explored (i.e., until the stack is empty).

The standard operational semantics of CSP [11] can be non-terminating due
to infinite computations. However, the CSCFG is finite, and thus, we must en-
sure that the algorithm to compute it always terminates. Therefore, the instru-
mentation of the semantics incorporates a loop-checking mechanism to ensure
termination.

Algorithm 1 General Algorithm
Build the initial state of the semantics:
state = (MAIN(um,0),0,e,(0,0),0,0)
repeat
repeat
Run the rules of the semantics with the state state
until no more rules can be applied
Get the new state state = (_, G, _, (0, 50), -, ¢)
YV (m <> n) € C. Glm <> n]
state = (MAIN 0, G, ®, (UpdStack(So), 0), 0, 0)
until UpdStack(Sy) =0
return G
where function UpdStack is defined as follows:
(rule,rules\{rule}) : S"if S = (_,rules): S’
and rule € rules
UpdStack(S") ifts = (L,0): 9
0 ifts =0

UpdStack(S) =

The instrumented semantics used by Algorithm 1 is shown in Fig. 5. It is
an operational semantics where we assume that every literal in the specification
has been labeled with its specification position (denoted by a subscript, e.g.,

11

P,). In this semantics, a state is a tuple (P,G,m, (S, S0), 4, (), where P is the
process to be evaluated (the control), G is a directed graph (i.e., the CSCFG
constructed so far), m is a numeric reference to the current node in G, (S, Sp) is
a tuple with two stacks (where the empty stack is denoted by @) that contains
the rules to apply and the rules applied so far, A is a set of references used to
draw synchronizations in G and (is a set which contains the synchronizations
performed in each execution of the semantics, and it is used to detect loops.
The basic idea of the graph construction is to record the current control with a
fresh reference! n by connecting it to its parent m. We use the notation G[nsa]
either to introduce a node in G or as a condition on G (i.e., G contains node n).
This node has reference n, is labeled with specification position « and its parent
is m. The edge introduced can be a control, a synchronization or a loop edge.
This notation is very convenient because it allows to add nodes to G, but also
to extract information from G. For instance, G[3™5a] allows to know the parent
of node 3 (the value of m), and the specification position of node 3 (the value of
Q).

Note that the initial state for the semantics used by Algorithm 1 has MAINya1y o
in the control. This initial call to MAIN does not appear in the specification, thus
we label it with a special specification position (MAIN,0) which is the root of
the CSCFG (see Fig. 3). Note that we use e as a reference in the initial state.
The first node added to the CSCFG (i.e., the root) will have parent reference e.
Therefore, here e denotes the empty reference because the root of the CSCFG
has no parent.

An explanation for each rule of the semantics follows:

=

(Process Call) The called process N is unfolded, node n (a fresh reference) is
added to the graph with specification position o and parent m. In the new state,
n represents the current reference. The new expression in the control is P,
computed with function LoopCheck which is used to prevent infinite unfolding
and is defined below. No event can synchronize in this rule, thus A is empty and
¢ does not change.

(O (rhs(N)),Gln ~ s]) if Is . >N € G

LoopCheck(N,n,G) = A s € Path(0,n)

(rhs(N), G) otherwise
Function LoopCheck checks whether the process call in the control has not been
already executed (if so, we are in a loop). When a loop is detected, the right-
hand side of the called process is labeled with a special symbol () and a loop
edge between nodes n and s is added to the graph. The loop symbol O is labeled
with the position s of the process call of the loop. This label is later used by
rule (Synchronized Parallelism 4) to decide whether the process must be stopped.
It is also used to know what is the reference of the process’ node if it is unfolded
again.
(Prefixing) This rule adds nodes n (the prefix) and o (the prefixing operator) to
the graph. In the new state, o becomes the current reference. The new control

! We assume that fresh references are numeric and generated incrementally.

12

X >2

(o¢ Tut Loy
OSIMID}O ,od lra \ _ Jd
T !

‘o X P
D5 {ev 285 vy 3 Ts | @ e Is} gt ((od e)|, 1a)dootun) 0
V(2w (98 4,,8) o ed) - (9705 4,8) u o fed) = by v (0w tu fo)uoweagatur = (Ju%D)
V(W08 1,8) it o d) o (97 (0 1 (91 ‘edS) f,8) w0 Td) = 4421 v (0w Tutp)woweagatur = (fu o)

X
({ev 28V Iy 3 T8 | 85 e s} N ,90y N Ty (99 08) ‘W0 id) —— (9 (05 (sa1m‘eds) : ,8) ‘w ‘D ‘ed 4 ¥ ™) || 1q)

wbwy a1
(¢ wsipa|eaRg PaZIUCIYDUASG)
(0 ‘w ‘Tu ‘H)yowergatur = (,u’,9)
b'e b's
(27 (05 us) w i d E T 1g) o= (97405 {(s91ma ‘2dS) +48) W o ‘ad (X) | 1)

(v, 8) D d) 5 (9705« (sa1maeds) *,8) ‘w0 ‘ad)
(z wsipd|eIRg PaZIUOIYDUAS)

xX\.x 202

(o ‘w ‘Tu‘p)youweagatur = (,u’,9)

‘o X CuTu‘o X
(v (95 u8) “w o o T |) = (57 4(05 (s91ma “TdS) ¢ 4S) ‘WD T LT T | 1)

(o'vi9s¢,8) u,pd) — (OO0 : (s9nt‘1dS) £,8) “ U ‘D “1d)
(T wsips|eiRy PaZIUOIYDUAS)

x\.x 32

AAom. r%v ‘@ P Lvnoz.mhmzuw._”ww = AAA_% “\%v JRV
(095 ,8) “w'o G ulp,d) — (57 (08 °8) ‘W'D 'O *u d)

(33104D)

OHu}(0gg)0fg «r oD ulp‘g) 5 (O(9g°g) ‘w D ‘g g ")

(Burxyaid)

(D ‘wN)AeupdooT = (,0°,d)
AV»SFAOW Fm‘v“:;d Aﬂ. :TUF\QV 4 AV TPADW FWVFEFUFEZV

(118D sseo0.yd)

Fig. 4. An instrumented operational semantics that generates the CSCFG

is P. The set A is {n} to indicate that event a has occurred and it must be

13

(Synchronized Parallelism 4)

(Pl)\l(am,],nz,y)PZ,G,m, (S’ : (SP4, rules), So), -, ¢) LN (P',G,m, (5",5(),0,¢)

P = LoopControl(Pl}H{(a‘nlynzyy)P2, m)

(Synchronized Parallelism 5)
(Pl)\l((a,nl,ng,r)Pl G, m, ([(rule, rules)], So), -, ¢) == (P, G',m, (8', 5), A,¢)

- ee X7
(Plll((y,'n,l,'n,z,'f)P2)G»m7 (0, S0),-¢) — (P, G',m, (5", 5(), A,¢")

rule € AppRules(P1|| P2) A rules = AppRules(P1| P2)\{rule}
X X

(STOP)

m

(STOPy,G,m, (S, S0), -, ¢) == (L,Gn ™ a],n, (S, So),0,)

Fig. 5. An instrumented operational semantics that generates the CSCFG (cont.)

synchronized when required by (Synchronized Parallelism 3). The set ¢ does not
change.

(Choice) The only sources of non-determinism are choice operators (different
branches can be selected for execution) and parallel operators (different order
of branches can be selected for execution). Therefore, every time the semantics
executes a choice or a parallelism, they are made deterministic thanks to the
information in the stack S. In the case of choices (both internal and external
can be treated with a single rule), this rule adds node n to the graph which is
labeled with the specification position « and has parent m. In the new state, n
becomes the current reference. No event can synchronize in this rule, thus A is
empty and ¢ does not change.

Function SelectBranch is used to produce the new control P’ and the new
tuple of stacks (S’, S{)), by selecting a branch with the information of the stack.
Note that, for simplicity, the lists constructor “:” has been overloaded, and it is
also used to build lists of the form (A : a) where A is a list and a is the last
element:

(P, (5", (C1,{C2}): Sp))if S = S":(C1,{C2})
SelectBranch(Pr,Q, (S, 50)) =< (@, (5", (C2,0): Sp)) if S = 5 :(C2,0)
(P, (0, (C1,{C2}):Sy)) otherwise

If the last element of the stack S indicates that the first branch of the choice
(C1) must be selected, then P is the new control. If the second branch must be
selected (C2), the new control is Q. In any other case the stack is empty, and
thus this is the first time that this choice is evaluated. Then, we select the first
branch (P is the new control) and we add (C1, {C2}) to the stack Sy indicating
that C1 has been fired, and the remaining option is C2.

For instance, when the CSCFG of Fig. 3 is being constructed and we reach
the choice operator (i.e., (MAIN, 2)), then the left branch of the choice is evaluated
and (C1,{C2}) is added to the stack to indicate that the left branch has been
evaluated. The second time it is evaluated, the stack is updated to (C2,)) and the

14

(Sequential Composition 1)

(P,G,m, (S, 50),0,¢) == (P',G',n,(5",5),4,¢)
(P;Q,G,m, (S, S0),-,¢) = (P",G",n,(5,5(), A,¢)
P" = 04 (P;Q) if P'=0 (P5)

P’ = P;Q otherwise

eec X’

(Sequential Composition 2)
(P,G,m, (8,50),0,¢) - (2,G",4,(5,50),0,¢)
(Pio Q,G,m, (S, S0),-,¢) == (Q,G[g™a], 7, (S, S0), 0, ¢)

(Hiding 1)

(P,Gr,mm,(S,5S0),0,¢) = (P',G',n, (S, So), -, <)
(P\aB,G,m, (S, S0),-,¢) — (P'\eB,G",n,(S,50),0,¢)
(Hiding 2)

(P,Gr,mim, (S, S0),0,¢) —— (P',G",n, (S, S),A,¢)
(P\aB,G,m,(8,50),-¢) == (P",G',n,(S',5), 4,)

a € B

eZB N ec X"

P’ = Op (P(/j\oB) if P'=0 (PQ/))
P = P/\.B otherwise
(Hiding 3)

(P,Gr,mim, (S, 80),0,¢) -5 (£2,G,n, (S, So), 0, ¢)
(P\aB,G,m, (5,50), - ¢) - (£2,G",n, (S, 50),0,¢)

where (Grr,mp) = II(G,a,m)

(Renaming 1)
(P,Gr,mi, (S, 50),0,¢) *“57 (P, G, n, (5, 50), 4,¢)

aRDb
(P[R]a, G, m, (S, 50), - ¢) "5 (P, G’ ,n, (S, 84), A, C)
P = Oy (P5[R]e) if P'=0 (P5)
P” = P'[R]. otherwise

(Renaming 2)
(PG, mi, (5,50),0,¢) = (2,G',n, (5, 50),0,¢)
(P[R]a,G,m, (S, So), -, ¢) - (2,G",n, (S, So), 0, ¢)

where (G,mp) = II(G,a,m)

(SKIP)

(SKIP,,G,m,(S,50),-¢) = (2,G[n % a],n, (S, 50),0,¢)

Fig. 6. An instrumented operational semantics that generates the CSCFG (cont.)

right branch is evaluated. Therefore, the selection of branches is predetermined
by the stack, thus, Algorithm 1 can decide what branches are evaluated by
conveniently handling the information of the stack.
(Synchronized Parallelism 1 and 2) The stack determines what rule to use when
a parallelism operator is in the control. If the last element in the stack is SP1,
then (Synchronized Parallelism 1) is used. If it is SP2, (Synchronized Parallelism 2) is
used.

In a parallelism, both parallel processes can be intertwiningly executed until
a synchronized event is found. Therefore, nodes for both processes can be added

15

interweaved to the graph. Hence, the semantics needs to know in every state
the references to be used in both branches. This is done by labeling parallelism
operators with a tuple of the form («a,n;,ns,7) where « is the specification
position of the parallelism operator; n; and ng are respectively the references of
the last node introduced in the left and right branches of the parallelism, and
they are initialized to e; and 7" is a node reference used to decide when to unfold
a process call (in order to avoid infinite loops), also initialized to e. The sets A
and (are passed down unchanged so that another rule can use them if necessary.
These rules develop the branches of the parallelism until they are finished or
until they must synchronize. They use function InitBranch to introduce the
parallelism into the graph the first time it is executed and only if it has not
been introduced in a previous computation. For instance, consider the State 1
of Fig. 8, where the parallelism operator is labeled with ((MAIN, A), e, e e). There-
fore, it is evaluated for the first time, and thus, when rule (Synchronized Parallelism

2) is applied, node 1 A (MAIN, A), which refers to the parallelism operator, is

added to G. After executing function InitBranch, we get a new graph and a
new reference. Its definition is the following:

m .
InitBranch(G,n,m,a)= { (Glo=a],0) if n = °
(G,n) otherwise

(Synchronized Parallelism 3) It is applied when the last element in the stack is
SP3. It is used to synchronize the parallel processes. In this rule, 7" is replaced by
e, meaning that a synchronization edge has been drawn and the loops could be
unfolded again if it is needed. All the events that have been executed in this step
must be synchronized. Therefore, all the events occurred in the subderivations
of P1 (A;) and P2 (Aj3) are mutually synchronized. In the case that all the
synchronizations occurred in the step are already in (", this rule detects that
the parallelism is in a loop; and thus, in the new control the parallelism operator
is labeled with O and all the other loop labels are removed from it. This is done
by a trivial function Unloop. The set ¢ is only changed by this rule. The rest
of the rules has no influence on it, but, contrarily, this rule adds to ¢ all the
synchronizations that happen with the occurrence of synchronized event e.
(Synchronized Parallelism 4) This rule is applied when the last element in the
stack is SP4. Tt is used when none of the parallel processes can proceed (because
they already finished, deadlocked or were labeled with (). When a process is
labeled as a loop with (9, it can be unlabeled to unfold it once? in order to
allow the other processes to continue. This happens when the looped process is
in parallel with other process and the later is waiting to synchronize with the
former. In order to perform the synchronization, both processes must continue,
thus the loop is unlabeled. Hence, the system must stop only when both parallel
processes are marked as a loop. This task is done by function LoopControl. It

2 Only once because it will be labeled again by rule (Process Call) when the loop
is repeated. In Section 4, we present an example with loops where this situation
happens.

16

decides if the branches of the parallelism should be further unfolded or they
should be stopped (e.g., due to a deadlock or an infinite loop):

Om(P(/)y((a;Poﬂo;')Qb)

if P'= Ope(Pl) A Q' =04g, (Ql)
Om(P(/D)”((avpoﬂlv.)J_)

if P = Op,(P)
LoopControl(P)H((mp’qI)Q, m) = ANQ =LV T =poNQ #0O()))
P(Sll(a»Povq’,po)Ql

lf P/ = Opo(P(/f))

ANQ'# LA Q #O()ANT #po

1 otherwise
where (P',p',Q',q") € {(P,p,Q,q),(Q,q, P,p)}.

‘When one of the branches has been labeled as a loop, there are three options:
(i) The other branch is also a loop. In this case, the whole parallelism is marked
as a loop labeled with its parent, and 7" is put to e. (ii) Either it is a loop that
has been unfolded without drawing any synchronization (this is known because
T is equal to the parent of the loop), or the other branch already terminated
(i.e., it is L). In this case, the parallelism is also marked as a loop, and the other
branch is put to L (this means that this process has been deadlocked). Also
here, 7" is put to e. (iii) If we are not in a loop, then we allow the parallelism to
proceed by unlabeling the looped branch. In the rest of the cases L is returned
representing that this is a deadlock, and thus, stopping further computations.
(Synchronized Parallelism 5) This rule is used when the stack is empty. It basically
analyzes the control and decides what are the applicable rules of the semantics.
This is done with function AppRules which returns the set of rules R that can
be applied to a synchronized parallelism P || Q:

X
{SP1} if 7 € FstEvs(P)

{SP2} if 7 ¢ FstEvs(P) AT € FstEvs(Q)
AppRules(P||Q) =< R if 7 ¢ FstEvs(P) AT ¢ FstEvs(Q)
X AN R#D

{SP4} otherwise

where

SPle R if dJe € FstEvs(P)Aed X
SP2 € R if Je € FstEvs(Q)Ne & X
SP3 € R if Je € FstEvs(P)

A Jde € FstEvs(Q) ANe € X

Essentially, AppRules decides what rules are applicable depending on the
events that could happen in the next step. These events can be inferred by using
function FstEvs. In particular, given a process P, function FstEvs returns the

17

set of events that can fire a rule in the semantics using P as the control.
{a} if P=a—Q
0 if P=0Q V P=1

{r} f P=M Vv P=STOP V P=QMNR
P=(L|L1) vV P:(OQ)H(OR)

P=(EQDVP=(L[OR)
(P= (0 Q| R)ANFstEvs(R) C X)
(P=(Q gR) AFstEvs(Q) C X)
(P = Q)H:;% AFstEvs(Q) C XA

FstEvs(P) =

< <K <K< L

FstEvs(R) C XA
FstEvs(Q) NFstEvs(R) = ()

E otherwise, where P = Q||R A
X

E = (FstEvs(Q) UFstEvs(R))\{e | e€ X
A ((e € FstEvs(Q) A e & FstEvs(R))
V (e & FstEvs(Q) A e € FstEvs(R))}

Therefore, rule (Synchronized Parallelism 5) prepares the stack allowing the
semantics to proceed with the correct rule.
(Sequential Composition 1 and 2) Sequential Composition 1 is used to evolve
process P until it is finished or until it enters into an infinite loop. P is evolved
to P’ which is put into the control. If P is an infinite loop (this is detected
thanks to the special constructor (9,), then the whole sequential composition is
marked as a loop. Sequential Composition 2 is used when P successfully finishes
(it becomes (2). In this case, @ is put into the control.
(SKIP and STOP) Whenever one of these rules is applied, the subcomputation
finishes because §2 (for rule (SKIP)) and L (for rule (STOP)) are put in the
control, and these special constructors have no associated rule. As in previous
rules, a node with the SKIP (respectively STOP) position is added to the graph.

We illustrate this semantics with some simple examples.

Ezample 3. Consider again the specification in Example 1. Due to the choice
operator, in this specification two different events can occur, namely b and a.
Therefore, Algorithm 1 obtains two computations, called respectively First it-
eration and Second iteration in Fig. 8. In this figure, for each state, we show
a sequence of rules applied from left to right to obtain the next state. Here, for
clarity, specification positions have been omitted from the control.

We first execute the semantics with the initial state (MAIN a0y, 0, o, (0,0),0,0)
and get the computation First iteration. This computation corresponds to the
execution of the left branch of the choice (i.e., P) with the occurrence of event
b. The final state is State 6 = (L, G5,0, (0, Ss),0,0). Note that the stack Sg

18

contains a pair (C1,{C2}) to denote that the left branch of the choice has been
executed.
Then, the algorithm calls function UpdStack and executes the semantics again
with the new initial state State 7 = (MAIN(aw 0, G5, ®, ([(C2,0), (SP2,0)],0),0, 0)
and it gets the computation Second iteration. After this execution the final
CSCFG (Gyg) has been computed. Figure 3 shows the CSCFG generated where
white nodes were generated in the first iteration; and grey nodes were generated
in the second iteration.

Next example 4 shows all computation steps executed by Algorithm 1 to
obtain the CSCFG associated to the specification in Example 1.

Ezample 4 (Example revisited (computing step by step)). Consider again the
specification in Example 1 and the computation of its CSCFG in Fig. 8. Each
state of Fig. 8 has associated a sequence of rules whose execution is detailed in
Fig. 9. In particular, this figure shows all computation steps executed by Algo-
rithm 1 to obtain the CSCFG associated to this specification. Here, for clarity,
specification positions have been omitted from the control and each computation
step is labeled with the applied rule.

Ezample 5 (CSCFG generation in presence of loops). In this example we show
a more interesting example where non-terminating processes appear.

Consider the following CSP specification where each literal has been labeled
(in grey color) with its associated specification position.

MAIN = a — a —
STOP I 3

{a}
P=a — P

Following Algorithm 1, we use the initial state (MAINuam o), 0, e, (0,0),0,0)
to execute the semantics and get the computation of Fig. 13. This computation
produces as a side effect the CSCFG shown in Fig. 11 for this specification. In
this CSCFG, there is a loop edge between (P,2) and (MAIN,2). Note that the
loop edge avoids infinite unfolding of the infinite process P, thus ensuring that
the CSCFG is finite. Loop edges are introduced by the semantics whenever the
context is repeated. In Fig. 13, when process P is called a second time, rule
(Process call) unfolds P, its right-hand side is marked as a loop and a loop edge
between nodes 7 and 2 is added to the graph. In State 4, the looped process
is in parallel with a process waiting to synchronize with it. In order to perform
the synchronization, the loop is unlabeled (State 5) by rule (SP4). Later, it is
labeled again by rule (Process Call) when the loop is repeated (State 8 in Fig.
13 (cont.)). Finally, rule (SP4) detects that the left branch of the parallelism is
deadlocked and the parallelism is marked as a loop (State 9), thus finishing the
computation.

19

(¥ds)(sdS)

(d01S)(2dS)(SdS)

(xy214)(¢dS)(SdS)

(118D ss9204d4)(2dS)(SdS)

(32104D)(2dS)(6dS)

(118D ssed04y)

[(02ds) ‘({zD} ‘12) ‘(0 ‘edS) ‘(0 ‘edS) (0 ‘TdS) (‘¥dS)] = S : (9 ‘vdS) = 95 e10yM
(00°(°s ‘) ‘0o ‘T) = 9 23018

S (p‘edS) = 95 pue [(g'd) ¢ 9]VD = 9o oroum
(PP (es‘p) ‘0 ¢O FﬁA.,wnobAa\“zH«.szAmyAmon «— ®)) =g 9019
851 (0 ‘eds) = Vs pue [(V ') 42 ¢ (1 ') ¢ V]¥D = 7D sreym
(0 {r}("s‘p) oo doam?,m;é.z:z:%EEm —®) =7 2wis
25 ¢ (p ‘edS) = &5 pue [(1°¢ ‘NIVH) < €]eD = £p orouym
(0°0" (55) 020 *(aoss —) o s [(aozs — ¥)) = g 29mas
(9 ‘2ds) ‘({22} ‘12)] = @5 pue [(¢ NIVW) < T “(V ‘NIVH) < 1] 1D = &9 d1oum
(00 (es ‘@) ‘0°eo &?&iAYE;:ﬂyQon «— ®)) =g 21018
[0 kW) — 010 = 1 2wt (9°0*(0°0) 01 *((d0zS — #)a) (*++) | (angs — w)) = 1 23035

) = 05 oToym ASS FAS»SV ‘005 ;o.zH<zv2H<Zv = (290318

uo[yRIDI] ISILT

Fig. 7. An example of computation with Algorithm 1

5 Correctness

In this section we state the correctness of the proposed algorithm by showing that

(i) the graph produced by the algorithm for a CSP specification S is the CSCFG

20

(rds)(sds)

(doLS)(zds)(sds)

(doLS)(1dS)(sdS)

xiy21d) (x1)21d) (£d5)(5dS)

(32104D)(2dS)

(118D ssed0.)

(00 (pp) 6o ONMNTYR) = (9 (g (ETs)7oraspdn) ‘@ ‘[6 <> L]8p < (O'NVINTyR) = $T 201G
[(9 2dS) (9 22) (0 ‘edS) ‘(9 ‘TdS) ‘(P ‘2dS) ‘(0 ‘vdS)] = C1 : () ‘vdS) = £LG o1ouM
({6 <> L} ‘9 (ET5‘p) ‘08D ‘T) = €1 21018
115 (9 ‘edS) = ?'s pue [(2T°E ‘NIVW) 57 TT]4D = 8D osoym
; =}
({6 > L} @ (215 p) ‘0 8o T (e TV || T) = g1 29028
0TS (9 ‘1dS) = TTS pue [(¢°1 ‘NIVH) < T1]9D = 4D o1oym
o (e}
({6 & 2} ‘0* (15 ‘p) ‘04D ‘doas (¢ OV THWVIMI) ||) = 11 2035
65 (‘edS) = 015 pue
(@2 ‘NIvW) < 0T (T'2°2 ‘NIVM) < 6 (T “NIVW) <+ 8 (T'T ‘NIVH) < L]9D = 9 d1oym
o =)
({6 <> L} {62} (015 ‘p) ‘0 ‘9o ‘dors (*'0T'8 (V'NIv)) || gp1s) = 0T 29018
=)
[(p‘2dS) ‘(9 2d)] = 65 emoum ((‘p ‘(65 ‘p) ‘0o ‘(dors « e)(*'a'® (VW) || (4o15 — ®)) =6 29015
(e}
[(9‘cdS) (9 D)) = 85 21oum (g p*(p8) ‘0% ‘((doLs « e)md)(*'*"® (VUM0) || (401§ — ®)) = § 29035
(0°0“(0°[(p‘2ds) ‘(p‘2D)]) ‘@ ‘% (OMNTyR) = (g ‘g ‘(¢ ‘(°5)%oraspdn) ‘e ‘2 < (OMVNTyY) = 1 2018

UOI1eI8)T PUOIDS

Fig. 8. An example of computation with Algorithm 1 (cont.)

of §; and (ii) the algorithm terminates, even if non-terminating computations

exist for the specification associated to the CSCFG. We need some preliminary

definition and lemmas.

21

(=}
[(9‘eds) ({22} ‘1) “(p “2dS)] = €5 pue (¢ ‘9 “(£5 ‘D) ‘0 %o (doLs « Q) (*'€' ¢ (VWD) || (qo15 — ®)) = ¢ 2Jv}g o1OUM
€ 211G - g 211G

= (ds)
g o115 «— (90 ‘(35 ‘[(p ‘2dS)]) ‘0 ‘Tn ‘ale’e e (Vi) || (qo1s —))

(zds)
(00°(5s ‘) ‘€ ‘(172 ‘NIVW) = €]%D ‘doLs «—) «— (0“9 ‘(S : (p ‘2dS) ‘D) ‘2 %D ‘d)

(18D ssed044)

(e
[(9‘2dS) ‘({z2} ‘12)] = &5 pue (p ‘g ‘(55 ‘p) ‘0 ‘eo ‘alea® (VWD) || (401§ — ®)) = g 29v3g o10UM

T 2101S T 21018

™
g 2115 — (0°0 (0 ‘[(0 ‘2dS)]) ‘0“1 “((dors — e)ma) (*'*"* (VMWD || (do1s — ®))

(00 (25 ‘) ‘g *[(g ‘N1vm) < el ™D ‘d) —— (00 “([(0 ‘edS)] ‘D) ‘T [(v ‘N1vW) <5 T]TD ‘(dois — ®=)Od)

(33104)

B
(00°(0°p) ‘0 ‘[(0‘NIVW) < 0]°9 ‘((doLs « ©)md)(®'*"® (VNM) || (401§ « ®)) = [29p3g o10ym

129018 < (9“0 (0 ‘p) ‘e ‘@ (OMWyTyN)

(118D ssed04d)

Fig. 9. An example of computation (step by step) with Algorithm 1

Definition 6. (Rewriting Step, Derivation) Given a state s of the instrumented

semantics, a rewriting step for s (s g s') is the application of a rule of the

where © is a (possibly

!

C)

—

semantics with the occurrence of an event e,

S

S

[EN)

empty) set of rewriting steps. Given a state sg, we say that the sequence sg ~

22

[(02ds) “({z2} ‘1) (0 ‘edS) (0 ‘edS) (0 ‘¢dS) ‘(P ‘vdS)] = 25 pue (¢ ‘9 (25 ‘P) ‘09O ‘T) = 9 29015 dI1OYM
9 211G~ G 29035

= (5ds)
(0°0°(55 = (p“vdS) ‘D) 0 =D *T) — (90 (55 “[(p ‘vdS)]) ‘0 ‘S T (*9°¢ (V'MW || (q015 « ®))

(vds)

R)
(9 ‘zdS) ({22} ‘12) (0 “2dS) (0 ‘2dS) (0 ‘TdS)] = &5 pue (¢ (85 ‘p) ‘0 ‘<o ‘T (*'97 (VIHV) || (401§ «— ®)) = ¢ 29935 210UYM

I e L0

pecy (5ds)
g om1g — (p{r} (*s‘[(9 ‘¢dS)]) ‘0 ‘7 ‘dors(*'"® (VM) || (4015 « e))

(zds)
(00 (55 *0) 9 [(g‘a) < 91O T) < (0 {¥} ("S : (0 ‘2dS) ‘p) ‘¢ ‘"o ‘doLs)

(do1s)

o {=}
[(9‘2dS) ‘({22} ‘12) (0 ‘2¢dS) (0 ‘¢dS)] = ¥s pue (¢ {v} ‘(¥s ‘p) ‘0 ‘7o ‘dors(*'¢'*" (VN || (401§ «— ®)) = } 2903 o10UyM

¥ 21015~ € 21015

oy (ds)

72118 (0 (55 ‘[(0 ‘T2dS)]) ‘0 ‘€D “(doLs «— @) (*'&E"* (V'm0 | (qp1s « ®))

(@H{r}("s0) ¢ l(v:ia) 4 ¢ (1°d) ¢ PO ‘do1s) < (9“0 (85 : (0 ‘2dS) ‘D) ‘€ *#O ‘dois — a)

(zds)

(xyo1d)

Fig. 9. An example of computation (step by step) with Algorithm 1 (cont.)

ting

o,) .
, S~ 81 4S a rewrd

0<1<n

, is a derivation of sq iff V 1,
step. We say that the derivation is complete iff there is no possible rewriting step

for spy1. We say that two derivations D, D’ are equivalent (denoted D

.~ Spt1,n >0

@ 3

D') iff

all specification positions in the control of a rewriting step of D also appear in a

rewriting step of D' and viceversa.

23

o {=}
[(p2ds) ‘(0 2D) “(p‘eds)] = °tg pue ({6 «> L} {62} ‘(°T5 ‘p) ‘0 ‘9o ‘do1s(*'OT'8'(V'NW)) || 4o15) = T 29015 pue

(p{6}(°rsp) ‘01 ‘(2T ‘NIVH) <3 0T “(1°2°2 ‘NIVK) - 6]9D ‘d01s) —— (0 ‘0 “(°'S ‘) ‘T ‘9D ‘dois « ®)

(x1y21d) =y

(0 {2} (°rs) ‘8 “[(1 ‘NIvH) 4 8 (1T ‘NIVH) <]%D ‘d018) = (0D ‘(65 : (0 ‘€dS) ‘0) ‘T ‘[(V ‘NIVW) ' T]9D ‘doLs « ®)

(xyoud) =T

0T 29015 = 6 29015

Tt M = (5ds)
01 29935 (00 (55 ‘[(p ‘€dS)]) ‘0 ‘=D ‘(doLs « ®) (@ ® (VNI || (4015 « ®))

d T

(eds)

R)
[(p‘2ds) ‘(9 2D)] = 65 Pue (p‘p ‘(55 ‘p) ‘0 ‘%o ‘(doLs «— =) (*@ (VNI || (401§ « ®)) = 6 29D35 oIOUM

6 21018« 8 21118

(zds)
(0°0 (55 *0) ‘z *[(g ‘N1vm) - g]®D ‘dois) < (9“0 “([(0 ‘¢dS)] *[(0 ‘D)D) ‘T *[(V ‘NIVW) 5 T]%D “(dOLs < ©)nd)

(s2104D)

L
(9 ‘2dS) ‘(0 22)] = 85 Pue (90 ‘(9 *8) ‘0 ‘[(0 ‘NIVW) — 0]%D ‘((doLs « ©)md)(®'*'® (VNV) || (401§ « ®)) =8 29v1g oYM

8 290G L 293G

(118D sseo0.yd)

(0°0“(0“[(p‘2ds) ‘(p ‘2D)]) ‘e ‘%o (OMINTyR) = (g ‘(¢ ‘(95)%oraspdn) ‘e ‘9 < (ONVONTYY) = 1 27018

Fig. 9. An example of computation (step by step) with Algorithm 1 (cont.)

The following lemma ensures that all possible derivations of S are explored

by Algorithm 1.

24

(00“(p*p) ‘e G (OMMONTYR) = (g ‘g (¢ ‘(ST5)¥oraspdn) ‘e ‘[6 «> L]8 < (OMWINTyY) = §T 29038

[(p2dS) (0 22) “(p ‘€dS) ‘(9 ‘TdS) ‘(0 ‘2dS) (0 ‘vdS)] = €15 Pue ({6 <> L} ‘9 ‘(E15 ‘D) ‘0 ‘%D ‘T) = €1 29015 o10YM
€T 29D3G «— T 29015

oy (sds)

({6 > 2} 0 *(5T5 : (9 ‘vdS) ‘D) ‘08D “T) «— ({6 &> 2} ‘0 ‘(375 *[(p ‘vdS)]) ‘0 ‘8 ‘T (ear T (Vi) || T)

(vds)

S &
[(0“2dS) ‘(0 ‘2D) ‘(0 ‘edS) ‘(9 ‘1dS) ‘(p ‘zdS)] = 2Tg pue ({6 «> L} ‘9 (215 ‘) ‘0 8p ‘T (T IV (VM) || T) = 7T 2g025 d10Uym
TL 21018« 11 21018

oy (5ds)

g1 21018 — ({6 &> L} ‘9 (TTS *[(p ‘edS)]) ‘0 ‘4o ‘gnrs(® 0T T (Viwmwi0) ||)

(zds)
({6 > 2} 0 (crs*p) ‘et *[(c g g ‘NIvH) s 61140 T) <= ({6 <> 2} 0 *('15 : (0 2dS) P) ‘0T *4O ‘doLs)

(do1s)

{=}
[(0cds) “(p“22) ‘(0 *edS) ‘(9 ‘TdS)] = ig pue ({6 «> L} ‘0 (11 ‘p) ‘0 ‘Lo ‘dors(* OV T (VNIW) ||) = [T 9yv3g5 oroym

I1 29018 <= 01 29015

sy (dS)
11 29035« ({6 > 1} {62} ‘(T8 “[(p ‘1dS)]) ‘0 9o ‘dorg(* OT's (VNIM)) || gg18)

(1ds)
({6 «> L} 0 ("rs ') ‘11 *[(1 'N1vw) o 11199 T) = ({6 > L} {62} *(°Ts + (9 ‘1dS) ‘D) ‘6 ‘O ‘dOLs)

(do1s)

Fig. 10. An example of computation (step by step) with Algorithm 1 (cont.)

Lemma 1. Let S be a CSP specification and D a complete derivation of S

performed with the standard semantics. Then, Algorithm 1 performs a derivation

D’ such that D

=7

25

Fig. 11. CSCFG of the program in Example 5

Proof. We prove first that the algorithm executes the instrumented semantics
with a collection of initial states that explores all possible derivations. We prove
this showing that every non-deterministic application of a rule is stored in the
stack with all possible rules that can be applied; then, Algorithm 1 restarts the
semantics with a new state that forces the semantics to explore a new derivation.
This is done until all possible derivations have been explored.

Firstly, the standard semantics is deterministic except for two rules: (i) choice:
the choice rules are evaluated until one branch is selected; and (ii) synchronized
parallelism: the branches of the parallelism can be executed in any order.

In the case of choices, it is easy to see that the only applicable rule in the
instrumented semantics is (Choice). Let us assume that we evaluate this rule with
a pair of stacks (5, Sp). There are two possibilities in this rule: If S is empty,
this rule puts in the control the left branch, and [(C1,{C2})] is added to So,
meaning that the left branch of the choice is executed and the right branch
is pending. Therefore, we can ensure that the left branch is always explored
because the algorithm evaluates the semantics with an initially empty stack. If
the last element of S is either (C1,{C2}) or (C2,0), the semantics evaluates the
first (resp. second) branch and deletes this element from S, and adds it to Sy.

We know that none of the other rules changes the stacks except (Synchronized
Parallelism), and they both ((Synchronized Parallelism) and (Choice)) do it in the
same manner. Therefore, we only have to ensure that the algorithm takes the
stack Sy, selects another possibility (e.g., if C1 was selected in the previous
evaluation, then C2 is selected in the next evaluation, i.e., if the head of the
stack is (C1,{C2}) it is changed to (C2,0)), puts it in the new initial state as
the stack .S, and the other stack is initialized for the next computation. This is
exactly what the algorithm does by using function UpdStack.

In the case of synchronized parallelism, the semantics does exactly the same,
but this case is a bit more complex because there are five different rules than can

(p{e} (85 ‘0) ‘v (1 ‘NIVW) < 7 (1T "NIVH) - €]%D do1s — ®) < (90 ‘(35 * (9 ‘€dS) ‘@) ‘T ‘[(V ‘NIVW) <+ T]¥D ‘dOLs — & «— ®)

(xyoud) =71
€ 21015 < ¢ 21v1S
whwﬂa ﬁmv ﬁm&mv
€215 —— (9°0 ‘(%5 “[(p ‘€dS)]) ‘0 ‘%D (a — (0T (VMW) || qor5 — = ®))
(€ds)
y T
T
[(p‘2dS)] = &5 pue (p‘p (55 ‘D) ‘0‘eo ‘(d « e(*@® (VM) || qo1g « ® « ®)) = g 27D1G oIOYM
T 29015+ 1 21018
(gds)

; =}
g 2115 —— (0°0 (0 ‘(9 ‘¢dS)]) ‘@ 1o “(al® e (V) || qorg — & — ®))
(zds)

(0°0([(0 '2dS)] ‘) ‘T *[(g ‘N1vw) < &]™O ‘d) — (00 ‘([(0 ‘2dS)] ‘0) ‘T ‘[(V ‘NIvW) <5 T]TD ‘d)
(118D ssed044)

!
(0°0(0°0) ‘e “[(0 NIVW) «— 0]0p ‘(a(®®'® (VWD) || gp1s « ® «®)) = T 2905

1owig = (P9 (p°p) ‘e ‘9 O nIvi)
oIoY M (118D ssed0.4d)

26

Fig. 12. Computation of the specification in Example 5 with the instrumented

semantics

27

™
[(0“2dS) ‘(0 ‘€dS) (@ ‘2dS) ‘(0 ‘vdS)] = 5 pue ({g & €} ‘g (55 ‘p) ‘0¥ ‘(d «— ») @&V (VNIW) || (qo1g « ®)) = g 201G o1OYM
G 2ILG ¥ 211G

© (sds)
camig o ({g o e} 0 (7S [0 '7dS)]) ‘07O “(d &) 2O (2 (VN || (dp1s ®))

L

(vdS)

{=}
[(0“2dS) (0 ‘€dS) (0 ‘2dS)] = S pue ({g > £} 0 (¥ ‘P) ‘0¥ ‘(d « =) 8D (L7 (VWD) || (4o1s « ©)) = 2403g o10YM
¥ 21015 <+ € 21038

oy (sds)
v omis — ({g & g} {a'e} (55 ‘[(0 ‘TdS)]) ‘0 €p ale o'V (vVaIm) || go1g «)

(zds)
{geet'o'("s'0)Lie ~ L (2 d) 5 LIED(d =) 20) — ({g > €} {g'e} (55 : (9 2dS) ‘p) ‘9 '¥D ‘d)

(118D ssed0.4d)

R
[(0‘eds) ‘(0 ‘edS)] = €5 pue ({g > ¢} ‘{c e} (85 ‘p) ‘0 € ‘a(® o'V (VUMW) || 4o15) = ¢ 9yv3g pue

({55 0) 9 ((v'a) G 9°(1°d) ¢ elto’d) < (0'0* (55 °'0) ‘C e 'd —®)

(xy2ad)

Fig. 12. Computation of the specification in Example 5 with the instrumented

semantics (cont.)

28

[(‘zdS) “(p ‘€dS) ‘(0 ‘2dS) ‘(0 ‘vdS) “(p ‘€dS) »msMEmz = g pue
({g >8> e} P (48 p) 09 a9 0T (VNIM) || 1) =) 99035 or0UyM

L 21035~ 9 2938

S| (sds)
Lom1s o ({g & 8¢ & g} {g '8} (95 ‘[(p ‘TdS)]) ‘0 e ‘ale'0’6"(vuwd) || go18) (1d9)
1dS
({eegice e g(tsp) ot (et NIvi) < 01)%D T) «— ({g > 8¢ > €} ‘9 (95 : (p ‘1dS) ‘D) ‘6 D ‘d0Ls)
(do1s)
[(0‘2ds) (0 ‘€dS) “(p ‘TdS) “(p ‘vdS) ‘(0 fmn_m:v = 95 pue
({g e 8'g e g} {g‘8} (95 ‘p) ‘0 ‘s ‘ale’o'6’ (V) || qoig) = 9 ow3g pue
{g e el e} (o5 '0) 9’ [(Vv'a) g 9(1'd) < al"®'d) - ({g ¢ €} 0(95'0) ‘¢ "D 'd—®)
(x24d)
({g e e} {8} (95 ‘) ‘6 ‘[(2"1 ‘NIVW) 1 6 “(1°2'T ‘NIVM) <~ 8]"D ‘d01s) —— ({g &> €} ‘9 ‘(5 : (0 ‘edS) ‘0) ‘¥ ‘D ‘dois — mVA v
x1y2ud
9 29015 . G 2118
RN = (6dS)
92115 o ({g¢ €} 9 (55 [(9*edS)]) ‘07D ‘(d «— ®) @&T (V'NW) || (q015 — mVVA)
£ds

4 T

Il
[

=1

Fig. 12. Computation of specification in Example 5 with the instrumented semantics

(cont.)

be applied. In the standard semantics, non-determinism comes from the fact that

29

(@0 (pp) oL CMMyTyR) = (g (p (65)Hoeaspdn) ‘@ [g > 8 ‘G «» g9 (ONIVNTyR) = T 29028

[(p 2dS) ‘(9 ‘€dS) (0 ‘2dS) ‘(0 ‘vdS) “(p ‘€dS) ‘(9 ‘1dS) émmn_mv ‘(0 ‘vdS)] = 65 pue
({g > 86 e €} (55 0) ‘090 ((d =) (=0T (VI || T) 00)) = 6 24035 droyM

6 21015 <~ 8 2IDIS

IS (sds)
6 29035 ({5 © 8¢ & €} 0 (55 ‘[(0 ‘¥dS)]) ‘00D ‘(d — =) 2O (e r0r (Vi) iﬁ)
vdS

[(p 2dS) ‘(0 ‘€dS) (0 ‘2dS) ‘(0 ‘vdS) “(‘€dS) ‘(9 ‘1dS) Am.w%: = 8¢ pue
({g e 8'c o e} (850) 09D (d — =) 20 (Lo | T) = g 53035 oroum

8 211G« — L 29015

sy (sds)

82115 — ({g e 8 e €} 9 (45 (0 ‘TdS)]) ‘0 ‘0 “(a(e Lo (Vi) ||)

(zds)

({ge8Ge el P (85 0) L 9D (d2)20) < ({g e 8Ge> e} P (45 : (p ‘TdS) ‘D) ‘99D ‘d)

(11eD ssed044)

Fig. 13. Computation of specification in Example 5 with the instrumented semantics

(cont.)

both (Synchronized Parallelism 1) and (Synchronized Parallelism 2) can be executed

with the same state. If this happens, the instrumented semantics executes one

30

rule first and then the other, and all the way around in the next evaluation. When
a parallelism operator is in the control and the stack is empty, rule (Synchronized
Parallelism 5) is executed. This rule uses function AppRules to determine what
rules could be applied. If non-determinism exists in the standard semantics, it
also exists in the instrumented semantics, because the control of both semantics
is the same except for the following cases:

STOP Rule (STOP) of the instrumented semantics is not present in the standard
semantics. When a STOP is reached in a derivation, the standard semantics
stops the (sub)computation because no rule is applicable. In the instru-
mented semantics, when a STOP is reached in a derivation, the only rule
applicable is (STOP) which performs 7 and puts L in the control. Then,
the (sub)computation is stopped because no rule is applicable for L. There-
fore, when the control in the derivation is STOP, the instrumented seman-
tics performs one additional rewriting step with rule (STOP). Therefore, no
additional non-determinism appears in the instrumented semantics due to
(STOP).

1 This symbol only appears in the instrumented semantics. If it is in the control,
the computation terminates because no rule can be applied. Therefore, no
additional non-determinism appears in the instrumented semantics due to
1.

¢ This symbol is introduced in the computation by (Process Call) or (Synchronized
Parallelism 3). Once it is introduced, there are two possibilities: (i) it cannot be
removed by any rule, thus this case is analogous to the previous one; or (ii) it
is removed by (Synchronized Parallelism 4) because the O is the label of branch
of a parallelism operator. In this case, the control remains the same as in
the standard semantics, and hence, no additional non-determinism appears.

After (Synchronized Parallelism 5) has been executed, we have all possible ap-
plicable rules in the stack S, and Sy remains unchanged. Then, the semantics
executes the first rule, deletes it from S, and adds it to Sy. Therefore, the same
mechanism used for choices is valid for parallelisms, and thus all branches of
choices and parallelisms are explored.

Now, we have to prove that any possible (non-deterministic) derivation of
MAIN with the standard semantics is also performed by the instrumented seman-
tics as defined by Algorithm 1. We proof this lemma by induction on the length
of the derivation D.

In the base case, the initial state for the instrumented semantics induced by
Algorithm 1 is in all cases (MAINamy 0), G, @, (S,0),0,0) where S = () in the first
execution and S # () in the other executions. Therefore, both semantics can only
perform (Process Call) with an event 7. Hence, in the base case, both derivations
are equivalent. We assume as the induction hypothesis, that both derivations
are equivalent after n steps of the standard semantics, and we prove that they
are also equivalent in the step n + 1.

The most interesting cases are those in which the event is an external event.
All possibilities are the following;:

31

— (STOP) In this case, both derivations finish the computation. The instru-
mented semantics performs one step more with the application of rule (STOP)
(see the first item in the previous description).

— (Process Call) and (Prefixing) In these cases, both derivations apply the same
rule and the control is the same in both cases.

— (Internal Choice 1 and 2) In these cases, the control becomes the left (resp.
right) branch. They are analogous to the (Choice) rule of the instrumented
semantics because both branches will be explored in different derivations as
proved before.

— (External Choice 1,2,3 and 4) With (External Choice 1 and 2) only 7 events can be
performed several times to evolve the branches of the choice. In every step
the final control has the same specification position of the choice operator.
Finally, one step is applied with (External Choice 3 or 4). Then, the set of
rewriting steps performed with external choice are of the form:

Py P P, 5 Py

(Po0Q) —(POQ) (P.OQ) = Punr

We can assume that (External Choice 1) is applied several times and finally
(External Choice 3). This assumption is valid because (External Choice 2) is
completely analogous to (External Choice 1); (External Choice 3) is completely
analogous to (External Choice 4); and all combinations are going to be exe-
cuted by the semantics as proved before. Then, we have an equivalent set of
rewriting steps with the instrumented semantics:

(Pob0Q) Py Py P, P, P,y
Clearly, in both sequences, the specification positions of the control are the
same.

— (Synchronized Parallelism 1 and 2) Both rules can be applied interwound in the
standard semantics. As it has been already demonstrated, we know that the
same combination of rules will be applied by the instrumented semantics
according to the algorithm use of the stack. The only difference is that the
instrumented semantics performs an additional step with (Synchronized Paral-
lelism 5), but this rule keeps the parallelism operator in the control; thus the
specification position is the same and the claim holds.

— (Synchronized Parallelism 3) If this rule is applied in the standard semantics,
in the instrumented semantics we apply (Synchronized Parallelism 5) and then
(Synchronized Parallelism 3). The specification positions of the control do not
change.

Lemma 2. LetS be a CSP specification, and D = sqg % ... % Sn+1 @ derivation
of § performed with the instrumented semantics of Fig. 5. Then, ¥ rewriting

step s; 2 Siv1, 0 < i < n, with 8; = (Pa,G,m,(5,5),A4,¢), and s;x1 =
Q,G',n,(S",Sh), A, ¢'); we have that n ¥ o € G.
0

Proof. The lemma trivially holds for all rules of the semantics. The only inter-
esting case is synchronized parallelism. In the case of (Synchronized Parallelism 1, 2
and 3), function InitBranch inserts n rs o into G’, the first time it is evaluated.

32

In the case of (Synchronized Parallelism 4), function LoopCheck returns another
synchronized parallelism or a) only if one of the processes has been marked
as a loop. This only happens if a process call has been unfolded; and in turn,
this only happens if (Synchronized Parallelism 1, 2 or 3) has been performed. The
other possibility is that function LoopCheck returns a L. In this case, L cannot
be further unfolded because no rule is applicable. Then, it must be the control
of the sate s,41 and hence it is not required that n +> a € G’. Finally, (Syn-
chronized Parallelism 5) starts a subderivation with a parallelism operator in the
control and a non-empty stack. Therefore, another of the previous rules must be
applied after it, and thus, the claim follows.

Lemma 3. Let S be a CSP specification, and G = (N, E., E;, E;) the graph
produced for S by Algorithm 1. Then, for each two nodes n,n’ € N, (n—n') €
E. iff the control can pass from l(n) to l(n') and Zn” . (n — n") & E. and
(n"—n') ¢ E..

Proof. The fact that In” . (n — n”) € E. and (n” — n') € E. implies that
the control can pass from n to n’ directly, i.e., without a transitive relation.
This condition is needed because the CSCFG only contains control-flow edges
between those nodes where the control can pass from one to the other directly.
Moreover, all the arcs in E, are added to G by the instrumented semantics.
Therefore, we only have to proof that in every derivation D of the semantics, for
every new arc (n — n') added to E, the control can pass from I(n) to I(n"). We
proof this lemma by induction on the length of the derivation D. The base case
starts with the initial state (MAINuy o), 0, @, (0,0),0,0). Therefore the only rule

applicable is (Process Call). This case is trivial because in the new arc n > «,
I(m) = (MAIN,0) and I(n) = (MAIN, A). Hence, by item (i) of Definition 2 we
have that the control can pass from I(m) to I(n). We assume as the induction
hypothesis that the lemma holds in the 4 first rewriting steps of D, and we prove
that it also holds in the step i+ 1. In the rewriting step i+ 1, one of the following
rules must be applied:

— (Process Call) This case is analogous to the base case, because in the new
added arc n ¥ «, m must be the name of a process N, and n = (N, A).
Therefore, by item (i) of Definition 2 we have that the control can pass from
I(m) to l(n).

— (Prefixing) Two new arcs are added to G. n +> a and o +> 3. Trivially, the
control can pass from I(n) to (o) by item (iii) of Definition 2. Moreover,
by Lemma 2 we have that a node with the specification position of P and
parent o will be added to G in the next rewriting step. Therefore, the control
can pass from (o) to Pos(P) by item (iv) of Definition 2.

— (Choice) One of the branches P’ is the new control. Therefore, by Lemma 2
we have that a node with the specification position of P’ and parent n will
be added to G in the next rewriting step. Thus, the control can pass from
I(n) to the next fresh reference by item (ii) of Definition 2.

— (Synchronized Parallelism 1 and 2) They are analogous to the case of the choice.

33

— (Synchronized Parallelism 3) In this case, two new nodes are added. Each of
them corresponds to one branch and are exactly the same as in (Synchronized
Parallelism 1 and 2).

— (Synchronized Parallelism 4) This rule does not add new nodes to the graph.

— (Synchronized Parallelism 5) This rule starts a subderivation by applying one of
the other rules associated to synchronized parallelism, thus the claim follows
by the induction hypothesis.

Lemma 4. Let S be a CSP specification, D a derivation of S performed with
the instrumented semantics, and G = (N, E., E), Es) the graph produced by D.
Then, there exists a synchronization edge (a <> a’) € E for each synchronization
i D where a and a’ are the nodes of the synchronized events.

Proof. After every execution of the semantics, Algorithm 1 introduces in the
graph G all the synchronizations in the set (. Therefore, we have to prove that
at the end of the derivation D, all the synchronizations are in (.

We prove this lemma by induction on the length of the derivation D = sq 23
S1 & s Sp+1- We can assume that the derivation starts with the initial

state (MAIN a0y, 0, ®, (0,0),0,0), thus in the base case, the only rule applicable
is (Process Call) and hence no synchronization is possible. We assume as the
induction hypothesis that there exists a synchronization edge (a «» a') € Ej

for each synchronization in sg ... Ot s; with 0 < ¢ < n and prove that the
lemma also holds for the next rewriting step s; &4 Sit1-

Firstly, only (Synchronized Parallelism 3) allows the synchronization of events.
Therefore, (a <> a’) € ¢ only if the control of s;, P, is a synchronized parallelism,
or if a (Synchronized Parallelism 3) is applied in @;. Then, let us consider the case
where 2 is the application of rule (Synchronized Parallelism 3). This proof is also

valid to the case where (Synchronized Parallelism 3) is applied in ©;. We have the
following rewriting step:

Left Right

e € X
(P11 (amy img,r) P2, G, m, (S7 : (SP3, rules), So), - C) © ©
X

=5 (P',G",m,(S",5), A1 U A,
¢ U{s1 ¢ s | 51 € A1 Asy € As})

(G1,n}) = InitBranch(G,ni,m,a) A
Left = (P1,G’,ny, (S, (SP3,rules) : So), -, ¢)

= (P1,GY,n{, (5", 55), A1,¢") A
(G4, n5) = InitBranch(GY,n2,m,a) A
Right = (P2, G'2, 71'27 (s”, 56)7 . C/)

=5 (P2,G",nY,(S8",80), A2, ¢") A

34

Om(UnLoop(PL' || (o nff nyf 0) P27))
Lany ng,
o if {s1¢3s2 | s1 € A1 Asa € Az} C ("

Pl (a,n/l,,n’z’,.)P2/ otherwise
X

Because (Prefixing) is the only rule that performs an a event without further con-
ditions, we know that P1 must be a prefixing operator or a parallelism containing
a prefixing operator whose prefix is a, i.e., we know that the rule applied in Left
is fired with an event a; and we know that all the rules of the semantics except
(Prefixing) need to fire another rule with an event a as a condition. Therefore,
at the top of the condition rules, there must be a (Prefixing). The same happens
with P2. Hence, two prefixing rules (one for P1 and one for P2) have been fired
as a condition of this rule.

In addition, the new set ¢ contains the synchronization set {s1 ¢» so | $1 €

Ay A sy € Ay} where Ay and Ay are the sets of references to the events that
must synchronize in Left and Right, respectively.

Hence, we have to prove that all and only the events (a) that must syn-
chronize in Left are in A;. We prove this by showing that all references to the
synchronized events are propagated down by all rules from the (Prefixing) in the
top to the (Synchronized Parallelism 3). And the proof is analogous for Right.

The only applicable rules in

(P1,GY,nfy, (S : (SP3, rules), So), -, ()
= (P1,GY,nY,(8",84), A1, ¢)

are:

— (Prefixing) In this case, the prefix a is added to A;.

— (Synchronized Parallelism 1, 2 and 5) In these cases, the set A is propagated
down.

— (Synchronized Parallelism 3) In this case, the sets A; and Ay are joined and
propagated down.

Therefore, all the synchronized events are in the set A; and the claim follows.

Lemma 5. Let S be a CSP specification and G = (N, E., E}, Es) the CSCFG
produced by Algorithm 1 for S. Then, (n1 ~ ng) € E; iff l(n1) and l(n3) are
process calls that refer to the same process M € N and na € Con(ny).

Proof. First, all edges in E; are introduced in a derivation D of the instrumented

. ©] O, . . .
semantics. Let D = sg ~5 ... ~5 8,41 a derivation that introduced (n; ~ ns)

into Ej. Then, this arc is necessarily introduced in a rewriting step where rule
(Process Call) was applied, because this is the only rule that adds arcs to Ej.
In rule (Process Call), arcs are added by means of function LoopCheck. An arc
is added to Ej if and only if Iny € Path(0,n1) A n2|i>M € E., where n;
is the reference of the current node added to IN. Therefore, because function
LoopCheck adds the arc ny ~ ng, then I(ny) = I(ny) = M. Hence, we need to
prove that ny € Con(ny).

35

First, by Lemma 3, if the control can pass (transitively) from ng to ni, then
we have in G a path of control edges ny —* ny. We can show that this path is
loop-free by contradiction. Let us consider that the path is not loop-free. Then,
ny —* ng —* ny with l(n3) = M and ny # ng. The derivation D must be of the
form:

O O; O, .
D:sovg...siwsi_‘_l...wsn+1,0<2§n

where the rewriting step s; o4 Si+1 introduced ng in G. Clearly, ng is neces-
sarily introduced in G by rule (Process Call) which is the only rule that adds a
process call to the graph. Moreover, by the definition of LoopCheck and because

Iny . ngﬁM € G AN ng € Path(0,n3), we know that the control of s;1 is
On, (rhs(N)). But this is a contradiction with the fact that ng —* ny because
no rule of the semantics adds a control-flow edge of the form ng —. In particular,
once the control of s;11 is labeled with ©,,,, only the rule (Synchronized Parallelism
4) can remove the label of the control. This is done with function LoopControl
in the third case of the definition. But in this case, the parallelism is marked as
P{§)||((a7po7q’7po)Q/ where pe is the label of the previous process call to M. Hence,

Py = ng; and thus, the next control edges added to G start from no, and not
from ngs.

Theorem 1 (Correctness) Let S be a CSP specification and G the graph
produced for § by Algorithm 1. Then, G is the CSCFG associated to S.

Proof. In order to prove that G is a CSCFG, we need to prove that it satisfies
the properties of Definition 5. Let us consider a CSCFG G = (N, E., E}, E).

Firstly, by Lemma 3, and because control-flow is a transitive relation, we
know that for each rewriting step in a derivation of S the control can pass from
MAIN to the positions added to N. Hence, ¥V n € N. I(n) € Pos(S) and I(n) is
executable in §. In addition, we have that:

— by Lemma 3, for each two nodes n,n’ € N, (n+— n') € E, iff the control can
pass from n to n’.

— by Lemma 5, (ny ~» ng2) € Ej iff [(ny) and I(ng) are (possibly different)
process calls that refer to the same process M € A and ny € Con(ny);

— by Lemma 4, there exists a synchronization edge (a ¢> a’) in G for each
synchronization in a derivation D of & where a and o’ are the nodes of the
synchronized events. And, by Lemma 1 we know that all possible derivations
of § are explored by Algorithm 1.

Moreover, we know that the only nodes in N are the nodes induced by F.
because all the nodes added to G are added by connecting the new node to the
last added node (i.e., if the current reference is m and the new fresh reference is
n, then the new node is always added as G[n"sa]). Hence, all nodes are related
by control edges and thus the claim holds.

36

Theorem 2 (Termination) Let S be a CSP specification. Then, the execution
of Algorithm 1 with S terminates.

Proof. In order to prove that the algorithm terminates we have to show that the
stack never grows infinitely. For this purpose, we have to prove that all executions
of the semantics terminate. This is sufficient because function UpdStack, which
is the only one that also manipulates the stack, always either reduces its size
or leaves it unchanged. So, as the stack is always increased by rule (Synchronized
Parallelism 5) or by rule (Choice), we have to show that there is not any derivation
which fires these rules infinitely. We use a function over sets of rewriting steps
which is defined as follows:

Rl =U{{s 2 s}ul6]| s 2 ¢ € R}

Given a set R of rewriting steps, it returns R and all the rewriting steps included
in the subderivations of R.

In the following, we will consider derivations where the state is simplified and
only the control is taken into account. In order to prove that there does not exist
any infinite derivation, we consider the main derivation D of the semantics where
the initial control is MAIN. If Vs; 24 $;11 € D where As & ¢ e [{s: 2 Sit1}]
such that s = N and s’ =0 (rhs(N)), then we know that the derivation D is
finite because no infinite unfolding is possible (we know that no process is called
twice) and the specification is finite. Hence, as the application of the rules of the
semantics always reduces the size of the process in the control, it will eventually
terminate with L.

The other case happens when the same process appears twice in a derivation.
We can assume that, after a number of rewriting steps, we find the first occur-
rence of a rewriting step s; 2 si+1 € D where 3s Qe [{s: % si+1}] such that
s =N and s’ =0 (rhs(N)). When this happens, we know that N has been al-
ready unfolded in a previous rewriting step, and function LoopCheck introduces

the loop s’ through the rule (Process Call) which corresponds to s 2.

We have two possibilities: the first one happens when s’ = s;; which means
that this is the last rewriting step of derivation D since there does not exist
any rule for O (). In the other case, when s’ # s;,1, we have that rewriting

step s; % si+1 corresponds to the application of rule (Synchronized Parallelism 1),
(Synchronized Parallelism 2) or (Synchronized Parallelism 5), since no other rule can
fire the rule (Process Call) into the associated ©;. Note that rule (Synchronized
Parallelism 3) can not be applied here because event 7 can not fire this rule. This
means that s; is a parallelism which has nested parallelisms in its branches and

some of these branches has the process call N. Then we know that 3 (s|| P) 4
X

(s"|| P) € [{si % s;+1}] where @' = {s 2 s'}3. Now, process P could be of one
X
of these kinds:

3 Of course, s could be on the right branch of the parallelism, but we only consider
this case since the other one is analogous.

37

— L: In this case, there is a rewriting step s; A sj+1 € D with 7 > ¢ such
that (s"|| L) Lo ("I L) € [{s; % s;41}] by application of rule (Synchronized
Parallelis)r; 4). Then,)gf sj+1 =0 (s']|L) then the computation terminates.
Else, 5541 is a parallelism and it ter)I;inates by induction.

— O (Q'): In this case, there is a rewriting step s; X sj+1 € D with j > 4
such that (s'|| © (Q")) Lo (s"1Q") € [{s; = sj+1}] by application of rule
(Synchronized)Igarallelism 4). Therf if sj41 =0 (s'|| Q") then the computation
terminates. Else, s;4; is a parallelism and it terfninates by induction.

— STOP: Then, there is some rewriting step s; % sj41 € D with j > i such
that (3’)||<STOP) e (s’)H(J_) € [{s; = Sj+1}], and it terminates by case L.

— a — Q: Then, there are two possibilities. If a ¢ X then there is some rewrit-

8' 1"
ing step s; ~% sj11 € D with j > 4 such that (s'||(a — Q)) A (s'|Q) €
X b

(._).
[{sj ~* sj4+1}], then it terminates by induction. Else, when a € X, there

(a—Q) %

@.
is a rewriting step s; ~ s;41 € D with j > 4 such that (s'||
X
@.
(rhs(N)|la — Q) € [{s; ~* s;j+1}], where parallelism’s 7" is equal to the
X
label of the loop. Then, we have again two options. The first one is that
some synchronization is drawn before to have N again in the left branch
of the parallelism. Then, we have a rewriting step sg 2 Sk+1 € D with
k > j such that (s"||la — Q) % (" Q) € [{sk 2% Sk+1}], and 1 is put
X X
to e if the synchronization is not included in ¢ yet. This case terminates,
by induction hypothesis. Otherwise, if the synchronization was in (, then

" 9
(s"la = Q) %0 ("1 Q) € [{sk ~> sk4+1}] by rule (Synchronized Parallelism
X X
3). If sp1 =0 (s"”||Q), the derivation has terminated, else termination is
X
proved by induction. The second case is when none synchronization is drawn
o . e
before to have N again into the left branch. In this case, we have that s; ~5

set1 € D with k > j such that (s'[|a — Q) O (]| L) € [{sr =5 spa1)]
X b'e
by rule (Synchronized Parallelism 4). If s;11 =O (s']|L), the derivation has
X

terminated, else, termination is proved by induction.

— (1 O Q3: In this case, one of the branches is selected, and independently of

which one is followed, the computation terminates by induction. Then, there

(.-). 1"
is some rewriting step s; ~* sj11 € D with j > i such that (s’ || (Q1 O Q2)) A
b

(' Q1) € [{s; % sy} or (5'[[(@1 0 Q2) % (5 @) € [{s; % 5541},
X X X

38

— @1 || Q2: Using the induction hypothesis, a parallelism always terminates,
Y

so we have to consider that in this case Q will be rewritten either to L or to

O (@1 || Q)
Y

6 Conclusions

This work introduces an algorithm to build the CSCFG associated to a CSP
specification. The algorithm uses an instrumentation of the standard CSP’s op-
erational semantics to explore all possible computations of a specification. The
semantics is deterministic because the rule applied in every step is predetermined
by the initial configuration. Therefore, the algorithm can execute the semantics
several times to iteratively explore all computations and hence, generate the
whole CSCFG. The CSCFG is generated even for non-terminating specifications
due to the use of a loop detection mechanism controlled by the semantics. This
semantics is an interesting result because it can serve as a reference mark to
prove properties such as completeness of static analyses based on the CSCFG.
The way in which the semantics has been instrumented can be used for other
similar purposes with slight modifications. For instance, the same design could
be used to generate other graph representations of a computation such as Petri
nets.

On the practical side, we have implemented a tool called SOC [7] which is
able to automatically generate the CSCFG of a CSP specification. The CSCFG
is later used for debugging and program simplification. SOC' has been inte-
grated into the most extended CSP animator and model-checker ProB [1, 5],
that shows the maturity and usefulness of this tool and of CSCFGs. The last re-
lease of SOC' implements the algorithm described in this paper. However, in the
implementation the algorithm is much more complex because it contains some
improvements that significantly speed up the CSCFG construction. The most
important improvement is to avoid repeated computations. This is done by: (i)
state memorization: once a state already explored is reached the algorithm stops
this computation and starts with another one; and (ii) skipping already per-
formed computations: computations do not start from MAIN, they start from the
next non-deterministic state in the execution (this is provided by the information
of the stack).

The implementation, source code and several examples are publicly available
at:

http://users.dsic.upv.es/ jsilva/soc/

References

1. M. Butler and M. Leuschel. Combining CSP and B for specification and property
verification. In Proc. Int’l Symp. of Formal Methods Europe (FM’05), LNCS 3582,
Springer-Verlag, pp. 221-236, Newcastle, UK, 2005.

2. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

39

3. K. M. Kavi, F. T. Sheldon, B. Shirazi, and A. R. Hurson. Reliability analysis of CSP
specifications using Petri nets and Markov processes. In Proc. 28th Annual Hawaii
Int’l Conf. System Sciences (HICSS’95), vol. 2 (Software Technology), pp. 516-524,
Maui, Hawaii, USA, 1995.

4. P. Ladkin and B. Simons. Static deadlock analysis for CSP-type communications.
Responsive Computer Systems (Chapter 5), Kluwer Academic Publishers, 1995.

5. M. Leuschel and M. Butler. ProB: an automated analysis toolset for the B method.
Journal of Software Tools for Technology Transfer, vol. 10(2), pp. 185-203, 2008.

6. M. Leuschel, M. Llorens, J. Oliver, J. Silva, and S. Tamarit. Static slicing of
CSP specifications. In Proc. 18th Int’l Symp. on Logic-Based Program Synthesis and
Transformation (LOPSTR’08), pp. 141-150, Valencia, Spain, 2008.

7. M. Leuschel, M. Llorens, J. Oliver, J. Silva, and S. Tamarit. SOC: a slicer for
CSP specifications. In Proc. 2009 ACM SIGPLAN Symp. on Partial Evaluation and
Semantics-based Program Manipulation (PEPM’09), pp. 165-168, Savannah, GA,
USA, 20009.

8. M. Leuschel, M. Llorens, J. Oliver, J. Silva, and S. Tamarit. The MEB and CEB
static analysis for CSP specifications. In Post-proc. 18th Int’l Symp. on Logic-Based
Program Synthesis and Transformation (LOPSTR’08), Revised Selected Papers,
LNCS 5438, Springer-Verlag, pp. 103-118, 2009.

9. M. Llorens, J. Oliver, J. Silva, and S. Tamarit. A Semantics to Generate the Context-
sensitive Synchronized Control-Flow Graph (extended). Technical report DSIC, Uni-
versidad Politécnica de Valencia. Accessible via http://www.dsic.upv.es/ jsilva, Va-
lencia, Spain, January 2010.

10. A. W. Roscoe, P. H. B. Gardiner, M. Goldsmith, J. R. Hulance, D. M. Jackson,
and J. B. Scattergood. Hierarchical compression for model-checking CSP or how
to check 10*° dining philosophers for deadlock. In Proc. First Int’l Workshop Tools
and Algorithms for Construction and Analysis of Systems (TACAS’95), pp. 133-152,
Aarhus, Denmark, 1995.

11. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 2005.

