
1

FLAP: Applying Least-Commitment in
Forward-Chaining Planning

Oscar Sapena, Eva Onaindia and
Alejandro Torreño
Depto. Sistemas Informáticos y Computación
Universitat Politècnica de València, Spain
E-mail: osapena@dsic.upv.es

In this paper, we present FLAP, a partial-order planner that
accurately applies the least-commitment principle that gov-
erns traditional partial-order planning. FLAP fully exploits
the partial ordering among actions of a plan and hence it
solves more problems than other similar approaches. The
search engine of FLAP uses a combination of different state-
based heuristics and applies a parallel search technique to
diversify the search in different directions when a plateau
is found. In the experimental evaluation, we compare FLAP
with OPTIC, LPG-td and TFD, three state-of-the-art non-
linear planners. The results show that FLAP outperforms
these planners in terms of number of problems solved; in ad-
dition, the plans of FLAP represent a good trade-off between
quality and computational time.

Keywords: planning, partial-order plan, least commitment,
forward-chaining search, heuristics

Introduction

Until the late 90s, Partial-Order Planning (POP) was
the most popular approach to AI planning. POP fol-
lows the least-commitment principle by which deci-
sions about action orderings and parameter bindings
are postponed until a decision must be taken. This is
an attractive idea as avoiding premature commitments
requires less backtracking during the search. Never-
theless, the most recent state-based forward planners,
such as LAMA [28] or SGPlan [6], have shown to
be more efficient than partial-order planners, because
(1) state-based planners can benefit from the existence
of powerful heuristics and (2) generating a plan is far
more costly than generating a state due to the need of
conflict-checking mechanisms.

However, the general move towards state-based for-
ward search ignores some important benefits of partial-
order planning:

– A partial-order plan offers more flexibility in ex-
ecution.

– The search can be easily guided to reduce the plan
length; i.e., exploit the parallel execution of ac-
tions.

– It is a very suitable approach in multi-agent plan-
ning systems, either with loosely [21] or tightly
coupled [32] agents.

– It can be easily extended to deal with temporal
planning [1].

These desirable properties have led many researchers
to adopt a POP approach and have motivated the re-
vival of the investigation on partial-order planning.

The objective of this paper is to present FLAP, a
partial-order forward chaining planner that follows the
least-commitment strategy of POP except the delayed
parameter binding. Unlike other planners, FLAP fully
exploits delaying commitment to the order in which
actions are applicable, thus achieving flexibility, re-
ducing the need of backtracking and minimizing the
length of the plans by promoting the parallel execution
of actions. Although all these advantages come at an
increase of the computational cost, FLAP applies an
effective parallel search technique that allows solving
more problems than other partial-order planners and
returns plans that represent a good trade-off between
quality and time in many domains.

In the remainder of the paper we present some re-
lated work and background, the planning approach of
FLAP and a discussion on its limitations and possible
extensions. Finally, we present an empirical evaluation
of FLAP versus other partial-order planners, and we
conclude with some final remarks.

Related work

With the aim of preserving POP benefits with-
out sacrificing performance, some recent works focus
on the generation of partial-order plans in forward-
planning frameworks. The new planners that arise
within this mixed framework have relaxed (or aban-

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

2

doned) the least-commitment strategy. Particularly,
most POP planners work with fully instantiated actions
rather than delaying parameter binding. This has been
a predominant trend since the great success of Graph-
Plan [2], a graph-based planning approach which com-
putes all ground (fully instantiated) atoms and actions
in a pre-processing stage.

Practicing a least-commitment strategy also implies
recording only the essential action orderings, but this
aspect has also been relaxed to a certain extent. One
of the first works in this direction was FLECS [34].
This planner combines delayed and eager operator-
ordering commitments. It can vary its commitment
strategy across different problems and also during the
course of a single planning problem. Since sequential
execution is assumed, committing to an arbitrary to-
tal orderings is not considered harmful if it improves
planning performance.

The MAPL [4] framework for temporal multi-agent
planning subsumes a partial-order plan structure within
a forward-search algorithm. MAPL records state infor-
mation in a partial plan like the achieved state vari-
able assignments. This information is called the fron-
tier state, as it is built on the frontier of a partial-order
plan. Additionally, it keeps the achiever of each vari-
able assignment in order to check the plan validity.
MAPL only considers the actions whose preconditions
hold in the frontier state, so it can efficiently determine
the actions that can be inserted in the current plan. Each
new action is inserted after its precondition achievers
and additional constraints are added to ensure that po-
tential threats are resolved. The resulting algorithm is
sound but incomplete.

More recently, the POPF planner [7] was devel-
oped following a similar approach to MAPL. POPF
uses a partial-order plan construction within a forward-
planning framework, working with time, numbers and
continuous effects. Particularly, it inherits the forward-
chaining search from CRIKEY [8], which works sim-
ilarly to FF [17]. POPF records state information in
each step of the plan (frontier state), like the negative
interactions among the variable assignments, and up-
dates the state accordingly. Like MAPL, the frontier
state is used to determine the set of applicable actions
at each step of the plan. The late-commitment approach
of POPF is based on delaying commitment to order-
ing decisions on the frontier state, thus ignoring other
alternative choices that would come earlier, i.e. before
the frontier state. Completeness, however, is ensured
as search performs backtracking to find an alternative
plan when necessary.

OPTIC, the latest version of POPF, also handles soft
constraints and preferences [1]. OPTIC has demon-
strated to be one of the most relevant state-of-the-
art planners in many domains. The key of its good
performance is the fast generation of the succes-
sor states during the search and the use of effec-
tive domain-independent heuristics. OPTIC follows
the same partial-order forward-planning approach of
POPF. The frontier state information is used to add
temporal constraints over the action only if they are
required to ensure that preconditions are met. This
approach represents a compromise between the total-
ordering commitment of standard forward search and
the least-commitment approach in partial-order plan-
ning, since it only commits to ordering choices that en-
sure consistency of the plan.

Combining a forward-search and a partial-order
construction is a flexible approach that reports a very
good performance, as OPTIC has demonstrated. This
success is achieved by means of an eager parameter
binding and an eager commitment to some ordering de-
cisions to reduce the search overhead. Despite the suc-
cess of this mixed approach, in this paper we want to
address the following question: is it necessary to give
up the application of the least-commitment strategy
to guarantee a successful POP performance? Delay-
ing decisions about when individual actions are to be
scheduled is convenient in several contexts. The MAP-
POP [32] multi-agent planner, for example, needs the
ability to add new actions at any step of the current
plan, not just when their preconditions hold in the fron-
tier state, because this is the mechanism that agents use
to tell the others they can contribute in the construction
of the joint plan. On the other hand, delaying commit-
ment of choices on the ordering of the actions reduces
the need of backtracking.

Background

In this section, we provide some definitions of plan-
ning concepts, partial-order planning and landmarks,
which will be used throughout the manuscript.

Preliminary notions on planning

In this work, we use a state-variable representa-
tion of the planning problem instead of the traditional
propositional representation. Specifically, the planning
language used in FLAP is based on PDDL3.1 [20],
the latest version of PDDL. Unlike the previous PDDL

3

versions, which model planning tasks through predi-
cates, PDDL3.1 incorporates state variables that map
to a finite domain of objects of the planning task.

A planning task is a tuple T = 〈V,A, I,G〉. V is a fi-
nite set of state variables, each of which is associated to
a finite domain, Dv, of mutually exclusive values that
refer to the objects of the planning task. A is the set of
deterministic actions of the agent. I is the set of initial
values assigned to the state variables in V , and repre-
sents the initial state of the task T . G is the set of goals
of the task, i.e., the values that the state variables are
expected to take in the final state.

Variables in V are used to model the states of the
world (problem states). When a value is assigned to
a state variable, the pair 〈variable, value〉 acts as a
ground atom in propositional planning.

Definition 1. (Fluent) A ground atom or fluent is a
tuple of the form 〈v,d〉 where v ∈V and d ∈Dv, which
indicates that the variable v takes the value d.

A fluent relates a variable with one of the values in
its domain. For instance, let us assume that a planning
task features a truck object called t1 which can be lo-
cated at three different locations loc1,loc2 or loc3.
Then, the position of the truck t1 is a variable named
at-t1 which can take on any value from its domain
Dat-t1 = {loc1,loc2,loc3}, and 〈at-t1,loc1〉 is a
fluent denoting that truck t1 is located at the spot loc1.

A problem state S is a set of fluents. Consequently,
the initial state I and the goal state G of a planning task
T are defined through a set of fluents. The set of actions
A is also defined in terms of variables and their values.

Definition 2. (Action) An action a ∈ A is a tuple
〈PRE(a),EFF(a)〉 where PRE(a) = {p1, . . . , pn} is a
set of fluents that represents the preconditions of a and
EFF(a) is a set of variable assignments of the form
v = d that model the effects of a.

Executing an action a in a world state S leads to a
new world state S′ as a result of applying EFF(a) in S.
An effect of the form v = d′ assigns the value d′ to the
variable v; i.e., it adds the fluent 〈v,d′〉 to state S′ and
any fluent in S of the form 〈v,d〉, d 6= d′, is removed in
S′ (to eliminate any fluent that contradicts 〈v,d′〉).

Partial-Order Planning (POP)

Partial-Order Planning (POP) comes up in the early
90’s as an approach to overcome the limitations of
state-based planners, mainly the restrictive linear or-
dering of the plan actions (total-order). The basic idea

of POP is that an action ai is ordered wrt another ac-
tion a j if ai is needed to satisfy a precondition of a j,
or viceversa, or when a conflict appears between them.
In any other case, no ordering is established between
ai and a j, thus avoiding an early commitment on the
ordering of the actions [27].

POP operates on partial-order plans. The two key
POP operations are introducing an action to satisfy the
precondition of another action in the plan and solv-
ing a conflict between actions of the plan. Initially, a
POP procedure starts from a goal (fluent) g ∈ G and
finds an action a that supports or satisfies g; that is, it
finds an action a such that g ∈ EFF(a). In turn, the
fluents in PRE(a) must also be satisfied by finding an
action of the plan, or introducing a new action, which
effects support these fluents. As long as actions are in-
troduced in the plan, negative interactions may arise as
a consequence of conflicting preconditions and effects
of the actions. Supporting a precondition of an action
requires to insert a causal link, and solving a conflict
involves checking the existence of threats [14].

Definition 3. (Causal link) A causal link is a rela-
tion between two actions, ai and a j, represented by

ai
〈v,d〉−−→ a j, meaning that the precondition 〈v,d〉 of a j is

supported by an effect v = d of ai. ai is said to be the
producer action and a j the consumer action.

A causal link between ai and a j implicitly estab-
lishes an ordering between both actions as the producer
action ai must be ordered before the consumer a j.

Definition 4. (Threat) A threat represents a conflict be-
tween an action of the plan and a causal link. An ac-

tion ak causes a threat over a causal link ai
〈v,d〉−−→ a j if

v = d′ ∈ EFF(ak) and d 6= d′, and ak is unordered with
respect to ai and a j. Then, it is said that ak threatens

the causal link ai
〈v,d〉−−→ a j.

A threat can be solved by promoting or demoting
the threatening action with respect to the causal link.
Specifically, promotion implies introducing an order-
ing constraint of the form ak ≺ ai, and demotion im-
plies introducing the ordering constraint a j ≺ ak.

Definition 5. (Partial-order plan) A partial-order plan
is a tuple Π = 〈∆,OR,CL〉. ∆ ⊆ A is the set of actions
in Π. OR is a set of ordering constraints (≺) on ∆ and
CL is a set of causal links over ∆.

This definition of a partial-order plan represents the
mapping of a plan into a directed acyclic graph, where
∆ represents the nodes of the graph (actions) and OR

4

and CL are the sets of directed edges that describe the
precedences and causal links among these actions, re-
spectively.

A partial-order plan Π = 〈∆,OR,CL〉 is a solution
plan if the preconditions of all the actions in ∆ are sup-
ported, i.e., there exists a causal link for each precon-
dition, and Π does not contain any threats.

Unlike state-based planners, where the nodes in the
search tree represent problem states, the nodes of a
POP search tree are partial-order plans. The root node
of a POP tree is the minimal initial plan, which con-
tains two fictitious actions: the initial action ainit , with
no preconditions and EFF(ainit) = I, and the goal ac-
tion agoal , with no effects and PRE(agoal) = G. In the
initial plan of the root node there is only one ordering
relation, ainit ≺ agoal . The POP search algorithm works
by following these four steps: 1) select a node Π of the
tree; 2) select one precondition of an action in Π that is
not supported yet (subgoal); 3) choose an action to sup-
port the selected subgoal and introduce the correspond-
ing causal link (the selected action can be one that al-
ready exists in Π or a newly inserted action in Π); and
4) solve the threats that arise in Π as a consequence of
the new data. These four operations are repeated until
a solution plan (a node of the tree) is found.

POP performs a plan-based, backward search pro-
cess, refining partial plans through the addition of ac-
tions, causal links and ordering constraints. POP is
based on the least commitment strategy [35], which de-
fers planning decisions during the search process and
introduces partial-order relations among actions rather
than enforcing a concrete order among them.

Forward-chaining in POP

Forward-chaining in POP is aimed at preserving
the benefits of partial-order plan construction within
the forward-search framework. Like traditional partial-
order planners, each node in the search tree represents
a partial-order plan. Forward-chaining POP is moti-
vated by the observation that the forward search ap-
proach can be seen as committing to a sequence of
choices of actions, but not necessarily to the order of
their application. By reducing the ordering constraints
that are imposed during the construction of the se-
quence of action choices we retain elements of the
least-commitment approach and are able to produce
partially-ordered plans with the robustness and flexi-
bility that they can offer.

MAPL [4] and POPF [7] are the first planners that
follow this approach. They select a node of the search

tree, which is a partial-order plan, and generate a suc-
cessor node for each new action that can be inserted
in the selected plan. When an action is inserted in the
plan, these planners only seek to introduce the order-
ing constraints needed to resolve threats, rather than
enforcing an ordering between the new action and all
the actions that are already in the plan. The mechanism
that MAPL and POPF use to find the actions that can
be inserted in a plan Π is as follows: they infer a state
from the plan Π and check the actions whose precon-
ditions hold in such a state. This state is called frontier
state.

Definition 6. (Frontier state) The frontier state SΠ of
a partial-order plan Π = 〈∆,OR,CL〉 is the set of flu-
ents 〈v,d〉 achieved in Π by an action a ∈ ∆/(v = d) ∈
EFF(a), such that any action a′ ∈ ∆ that modifies the
value of v ((v= d′)∈EFF(a′),d 6= d′) is not reachable
from a by following the orderings and causal links in
Π.

Landmarks

A landmark is defined as a fluent that must be true at
some point during the execution of any solution plan
[18]. A landmark denotes an indispensable informa-
tion that needs to be achieved in every solution plan,
like the initial and goal fluents, which are trivial land-
marks. From this point on, more indispensable infor-
mation can be deduced through a process aimed at dis-
covering new more landmarks and landmark ordering
constraints. For the purpose of this work, we will use
the extraction method as explained in [18] based on the
relaxation of a planning task [3].

Planning tasks usually have inherent constraints
concerning the best order in which to achieve the
goals. The extraction and analysis of landmarks has
proved to be very helpful to discover such constraints
and use them for guiding search. For this reason,
many planning systems, which follow different plan-
ning paradigms, use landmark-based heuristics [28].

Planning algorithm of FLAP

FLAP follows a forward-chaining POP approach
but, unlike MAPL and POPF, FLAP does not require
to compute the frontier state of a plan to determine the
actions that can be inserted in a plan (generation of
the successor nodes). In FLAP, frontier states are only
used for evaluation purposes and not for determining
the expansion of a node in the POP tree.

5

The search in FLAP starts with an initial plan Π0 =
〈{ainit}, /0, /0〉. Although Π0 does not contain the fic-
titious goal action agoal , this action is available to
be added to the plan as the rest of actions in A, i.e.
agoal ∈ A. In fact, a solution plan is found when agoal
is inserted in the plan.

A node of the POP tree represents a partial-order
plan; the root node is the plan Π0. Given a node Πi,
FLAP expands a node Πi by adding all possible actions
that can be supported with the actions of Πi and solv-
ing the corresponding threats. This way, we consider
that Π j is a successor of Πi if the following conditions
are met:

– Π j adds a new action a j to Π j, i.e., ∆ j = ∆i∪{a j}
– All preconditions of a j are supported with actions

of Πi by inserting the corresponding causal links:
∃ai

p−→ a j ∈CL j,ai ∈ ∆i,∀p ∈ PRE(a j).
– All threats in Π j are solved through promotion or

demotion by adding new ordering constraints; the
result is that Π j is a conflict-free plan, that is, a
plan with no threats.

FLAP works similarly to a classical POP algorithm:
it supports the preconditions of the new action a j
through causal links and solves the threats originated
by a j through ordering constraints. FLAP works dif-
ferently to a classical partial-order planner since it per-
forms forward-chaining search instead of backward
reasoning. Particularly, when expanding a node Πi,
FLAP generates a successor node Π j for each possible
combination of supporting the preconditions of a j with
the actions in Πi. Note that FLAP only creates Π j if all
preconditions of a j are solved with the actions in Πi
and the added causal links do not provoke a threat in
Π j. Hence, a node in FLAP always represents a threat-
free partial-order plan.

FLAP applies an A∗ search by using the standard
function f (n) = g(n)+h(n) [30]. From the set of open
nodes, which initially only contains the plan Π0, we
select the best node according to the evaluation of f (n),
where g is the cost to reach the node n measured as
the number of actions of the plan in n, and h is the
heuristic estimate to reach the goal from n. Once a node
Π is selected for expansion, all possible successors of
Π are generated, evaluated and added to the list of open
nodes.

The planning algorithm of FLAP is sound and com-
plete since it generates all the successors of every ex-
panded node. This way, when agoal is added to the plan,
all the goals of the planning task are supported and the
plan consistency is guaranteed. Unlike classical POP

algorithms, the search process in FLAP may gener-
ate many repeated plans. This is a common problem
that appears in most forward-search planners and that
FLAP avoids by applying a memoization technique.

Heuristic evaluation

One of the strengths of a forward state-space search
over a regressive plan-space search is that state-based
heuristics are more informed than classical POP-based
heuristics. Given a partial-order plan Π, FLAP applies
a combination of state-based heuristics in the frontier
state SΠ.

The heuristic evaluation in FLAP is carried out by
using two different heuristic functions that also incor-
porate information obtained from a landmarks extrac-
tion of the planning task [18]. The following subsec-
tions provide a thorough explanation on the heuristic
evaluation.

hDT G: a DTG-based heuristic function
A Domain Transition Graph (DTG) of a state vari-

able is a representation of the ways in which the vari-
able can change its value [15]. The transitions of the
graph are labelled with the conditions that are neces-
sary for a variable change its value. These conditions
are the common preconditions to all the actions that in-
duce the transition. DTGs are independent of the fron-
tier state of the plan, which avoids the need of calculat-
ing a DTG in each node of the search tree. This implies
that a heuristic based on the information of the DTGs,
hDT G, is less costly to compute than the traditional FF
heuristic (hFF) [17], which requires the construction of
a relaxed planning graph to evaluate each search node.

Algorithm 1 details the procedure for computing the
hDT G value of a given frontier state S. hDT G(SΠ) is an
estimate of the number of actions of a relaxed plan to
reach the goals G of the planning task from the frontier
state SΠ.

hDT G performs a backward search from G consecu-
tively introducing actions in the relaxed plan until the
preconditions of all actions are supported. The proce-
dure for building the relaxed plan handles a list of flu-
ents, openGoals, initially set to G. The process itera-
tively extracts a fluent from openGoals and supports it
through the insertion of an action in the relaxed plan.
The preconditions of such action are then included in
the openGoals list, and so on.

For each variable v ∈ V , we use a list of values,
Valuesv, which is initialized to the value of v in the
frontier state S. For each action inserted in the relaxed

6

Algorithm 1 hDT G heuristic calculation of a frontier
state S

hDT G← 0
openGoals← G
for all 〈v,d〉 ∈ G do

Valuesv←{d′/〈v,d′〉 ∈ S}
end for
while openGoals 6= /0 do
〈v,dend〉 ← argmax

〈v′ ,d′ 〉∈openGoals
distMin(v′,Valuesv′ ,d

′)

openGoals← openGoals\{〈v,dend〉}
dini← argmin

d∈Valuesv
|Di jkstra(v,d,dend)|

minPath← Di jkstra(v,dini,dend)
for i← 0 to |minPath|−1 do

amin← getMinCostAction(v,di,di+1)/(di,di+1) ∈ minPath
openGoals← openGoals∪{〈v′,d′〉 ∈ PRE(amin)/d′ 6∈Valuesv′}
for all (v′,d′) ∈ EFF(amin) do

Valuesv′ ←Valuesv′ ∪{d′}
end for
hDT G← hDT G +1

end for
end while
return hDT G

plan that has an effect 〈v,d′〉, d′ is stored in Valuesv,
meaning that variable v achieves the value d′ in the re-
laxed plan. Hence, the values in Valuesv can be used
to support the preconditions of the actions that will be
inserted in the relaxed plan in the next iterations. Given
a frontier state S, hDT G is computed in two stages:

– Open goal selection: At this stage, we select a
fluent 〈v,dend〉 from openGoals. Similarly to hFF ,
which selects a subgoal in the last fact layer of
the relaxed planning graph, hDT G also selects the
most costly fluent in first place. hDT G evaluates
the cost of a fluent through the length of the short-
est path, minPath, of a variable value modification
in its DTG, using the classical Dijkstra algorithm
(see Algorithm 2).

– Relaxed plan construction: minPath is the num-
ber of value transitions for v to change its value
from dini to dend , that is, minPath = 〈(dini,di),
(di,di+1), . . ., (di+n,dend)〉. For each value tran-
sition (di,di+1) ∈minPath, the minimum-cost ac-
tion amin that generates the value transition is
introduced in the relaxed plan; that is, 〈v,di〉 ∈
PRE(amin) and 〈v,di+1〉 ∈ EFF(amin). The cost
of an action is estimated as the sum of the cost of
achieving all its preconditions, as shown in Algo-
rithm 3.
The unsupported preconditions of every amin in-
serted in the relaxed plan are stored in openGoals,
so they will be supported in forthcoming itera-
tions. For each effect 〈v′,d′〉 ∈ EFF(amin), the
value d′ is stored in Valuesv′ , and thus d′ can be
used in the following iterations to support the sub-
sequent fluents of openGoals.

Algorithm 2 distMin(v,Valuesv,d) function
dini← argmin

d′∈Valuesv

|Di jkstra(v,d′,d)|

return |Di jkstra(v,dini,d)|

Algorithm 3 getMinCostAction(v,di,d j) function
Ai j ← a ∈ A/〈v,di〉 ∈ PRE(a)∧〈v,d j〉 ∈ EFF(a)
amin← argmin

a∈Ai j
∑

∀〈v′ ,d′ 〉∈PRE(a)
distMin(v′,Valuesv′ ,d

′)

return amin

The iterative evaluation procedure goes on un-
til all the open goals have been supported, that is,
openGoals = /0. When this occurs, hDT G returns the
number of actions in the relaxed plan.

hFF : FF heuristic function
FLAP also makes use of the traditional FF heuris-

tic function hFF [17], which builds a relaxed plan by
ignoring the delete effects of the actions. hFF(SΠ) re-
turns, as well as hDT G(SΠ), an estimate of the number
of actions necessary to reach the goal state G from SΠ.

The calculation of hFF is most costly than hDT G be-
cause hFF needs to build a relaxed planning graph in
each node Π of the search tree. There is no an efficient
way to compute this graph in an incremental way be-
cause it would require to propagate the changes in the
frontier state SΠ across the graph. However, building a
new relaxed planning graph at each node provides an
updated heuristic information and, therefore, hFF often
offers more accurate evaluations than hDT G.

hLAND: Landmarks heuristic
Landmarks are fluents that must be achieved in ev-

ery solution plan [18,31]. Like the LAMA planner
[28], FLAP computes a landmark graph (considering
only necessary and reasonable orderings) and uses this
information to calculate heuristic estimates. Since all
landmarks must be achieved in order to solve the plan-
ning task, the value of hLAND(Π) can be estimated
through the set of landmarks that still need to be
achieved to reach the goal state G from the frontier
state SΠ.

A plan Π can be seen as a sequence of states that
are traversed to reach the frontier state SΠ from the ini-
tial state I. Then, we consider that a landmark l is ac-
cepted in Π if it holds in one of these states and all
landmarks ordered before l have been already accepted
in that state. Once a landmark is accepted, it remains
accepted in all successor states. When the set of non-
accepted landmarks is calculated, hLAND(Π) is the re-
sult of estimating the cost of reaching these landmarks
with either hDT G or hFF . Hence, we have two versions

7

of the landmarks heuristic, which we call hLAND DT G
and hLAND FF , respectively.

Combination of heuristic functions
For evaluating a plan Π = 〈∆,OR,CL〉, FLAP de-

fines two different evaluation functions:

– fFF (Π) = w1 ∗g(Π) + w2 ∗hLAND FF (Π) + w3 ∗hFF (SΠ)

– fDT G(Π) = w1 ∗g(Π) + w2 ∗hLAND DT G(Π) + w3 ∗hDT G(SΠ)

g(Π) measures the cost of Π as the number of ac-
tions in Π; i.e., g(Π) = |∆|. We learned the values
w1 = 1, w2 = 4 and w3 = 2 by a trial-and-error empir-
ical evaluation over the planning benchmark problems
(see the section Experimental results). Heuristics func-
tions are given more weight than the cost function to
obtain a greedy-like search. Additionally, the weight of
the landmarks heuristic is twice as much as the weight
of hFF or hDT G because the values of hLAND are typi-
cally lower than the estimates of hFF or hDT G, particu-
larly in problems where the number of extracted land-
marks is rather small.

FLAP uses both evaluation functions, fFF and fDT G,
to simultaneously explore different parts of the search
space and hence have more chances to escape from
plateaus, as it is described in the following subsection.

Parallel searches for plateau escaping

In heuristic planning, search nodes are often inac-
curately evaluated and the search may be misled into
large local minima/plateaus, thus resulting in a per-
formance degradation. The problem of escaping from
plateaus has been addressed in different ways:

– Several approaches use greedy best-first search to
avoid plateaus. They tackle this issue by adding
a diversity to search [19,22], which is an ability
in simultaneously exploring different parts of the
search space to bypass large errors in heuristic
functions.

– A different strategy lies in combining/alternating
different heuristics (or search parameters) to di-
versify the search directions [29,33].

– Other approaches adding a diversity with an ap-
plication to planning include a restarting proce-
dure combined with local search [9] and random
walk [25].

In FLAP, we apply a new strategy for plateau es-
caping based on the ideas proposed in the aforemen-
tioned works. The main A∗ search starts from the ini-
tial empty plan, Π0, by using the fFF evaluation func-
tion. Although fDT G is actually faster to compute than

Fig. 1. Parallel A∗ child search started when the main search gets
stuck in a plateau.

fFF , our current implementation of hDT G is not as ro-
bust as hFF (see section Limitations and extensions of
FLAP).

For any A∗ search in FLAP, the plan with the best
heuristic value reached so far, Πbest , is stored. For the
main A∗ search, Πbest is initially set to the initial empty
plan, Π0, but, when another plan is found with a strictly
better heuristic value, Πbest is set to that plan. We con-
sider the main A∗ search is stuck in a plateau when
Πbest is not updated in several iterations. In this case,
two new A∗ child searches are started in parallel from
Πbest , as it can be observed in Figure 1. One process
uses fDT G whilst the other one uses fFF , in order to
diversify the search in two different directions.

The goal of a child search is not to escape from the
plateau, but to find a solution plan from the frontier
state of Πbest , which is likely to be closer to the goal.

If a child search is successful in finding an exit to
the plateau of its parent search, it will continue search-
ing for a solution plan. If this child search is stuck in
a plateau again, it repeats the same diversification pro-
cess and starts its own two parallel searches to speedup
the progress towards a solution.

Since any search can potentially start two new child
processes, it is necessary to control the possible expo-
nential growth in the number of parallel search pro-
cesses. Then, a search process is terminated when one
of the following circumstances occur:

– A solution plan is found. The current version of
FLAP stops when a solution is found instead of
finding more solutions.

– If a search manages to exit from a plateau, i.e.
its Πbest is updated, then all its descendant search
processes are cancelled. The only exception to
this rule applies to the child search which has the
best global heuristic value.

8

In practice, the number of simultaneous search pro-
cesses does not usually exceed the number of process-
ing cores (8 in our test computer) in the tested prob-
lems.

Comparison between FLAP and OPTIC

OPTIC, the most recent version of POPF, is a
forward-chaining POP that also handles temporal plan-
ning problems, soft constraints and preferences [1]. In
this section we compare the planning algorithms of
OPTIC and FLAP and we show the characteristics that
make FLAP be more flexible than OPTIC.

There are three main differences between FLAP
and OPTIC. In the first place, unlike our parallel A*-
search algorithm, OPTIC uses the same enforced hill-
climbing (EHC) algorithm as FF [17]. EHC finds a first
plan very quickly but it may often yield low-quality so-
lutions. When the EHC search fails, OPTIC switches
to a best-first search to ensure completeness.

In the second place, regarding the heuristic evalu-
ation, OPTIC uses an extended version of hFF while
FLAP uses the combination of heuristics explained in
the previous section.

The third difference between the two planners re-
lies on the generation of the successor nodes. This is
the key feature that allows FLAP to fully exploit the
least-commitment principle of POP. Given a partial-
order plan Π, OPTIC only considers the actions whose
preconditions hold in the frontier state SΠ whereas
FLAP considers the actions whose preconditions are
supported with the actions in Π. The approach of OP-
TIC is a simple and straightforward process for the fol-
lowing reasons:

– Checking whether the preconditions of an action
hold in a state is processed very quickly.

– No threats arise when the new action is added to
Π because this action is inserted after all the ac-
tions of Π which the new action may have con-
flicts with.

– The number of actions that can be supported in
SΠ is usually smaller than the number of actions
that can be added throughout Π, thus leading to a
smaller branching factor during the search.

Obviously, expanding a node in FLAP is a more
costly operation since any action in Π is a potential
support for the preconditions of the new action and,
additionally, it is necessary to fix the threats caused by
new action. However, the approach of FLAP has two

Fig. 2. Scenario example of the DriverLog domain.

advantages; it reduces the need of backtracking, and it
improves the plan parallelism.

In order to illustrate the advantages of FLAP, we
use a particular example of the DriverLog domain
represented in Figure 2. In this domain, presented
in the 2002 International Planning Competition (IPC)
[11,24], a collection of trucks is used to deliver some
packages to their destination cities, and trucks require
a driver to move.

The goal of this problem is to have package pkg1
at city c2, i.e. G = {〈at-pkg1, c2〉}. Let us suppose
that both planners, OPTIC and FLAP, reach a search
node that contains the plan shown in Figure 3. This
plan consists of three sequential actions: 1) the driver
d1 walks from the village vill1 to city c1, 2) d1 gets
on truck t1 and 3) d1 moves t1 to c2. As it can be
observed, these three actions are necessary to solve the
problem.

In order to reach the goal, it is necessary to insert
the action load pkg1 t1 c1, which we will call anew,
to load pkg1 on t1 in city c1. The frontier state of the
plan in Figure 3 does not support the preconditions of
anew because the truck is no longer in c1. This way,
OPTIC needs to take the truck back to c1, reaching a
repeated frontier state which is pruned by the memo-
ization mechanism. Then, OPTIC’s solution is to back-
track to a node of the search tree in which anew is ap-
plicable.

FLAP, however, seeks producer actions in the plan
that support the preconditions of anew, and it finds one
way of doing this as shown in Figure 4. Specifically:

– The preconditions of anew are supported by the
existing actions in the plan. In this case, its two
preconditions 〈at-pkg1,c1〉 and 〈at-t1,c1〉 are
produced by the initial fictitious action, ainit .

– A conflict appears with the action drive t1 c1
c2 d1 of the plan, since this action threatens

the causal link ainit
〈at−t1,c1〉−−−−−−→ anew This threat is

solved by demotion through the insertion of the
ordering constraint anew ≺ drive t1 c1 c2 d1.

9

Fig. 3. Partial plan computed for the DriverLog problem example. For each action, its preconditions are shown at the top of its box and its effects
at the bottom. The frontier state of the plan is displayed on the right.

Fig. 4. Partial plan computed for the DriverLog problem example. Solid lines represent causal links and dashed lines represent orderings.

– The resulting successor plan, shown in Figure 4,
is not a repeated node because the frontier state of
this plan contains the new fluent 〈at-pkg1,t1〉.

Finding actions that support the preconditions of a
new action all along the plan requires an extra compu-
tational cost but, on the other hand, it avoids backtrack-
ing since the new generated plan (Figure 4) can be eas-
ily extended to reach a solution plan. In simple prob-
lems, where no backtracking is often required, FLAP
is usually slower due to the additional calculations but,
in hard problems, this approach allows FLAP to signif-
icantly outperform OPTIC.

The second advantage of the approach followed by
FLAP is that it can generate plans with a smaller
makespan (plan duration) than OPTIC. To illustrate
this, we show in Figure 5 the solution plans provided
by OPTIC and FLAP for the second problem of the
Rovers domain used in the IPC 2006. In this domain, a
collection of rovers with different equipment navigate
a planet surface to collect and analyse samples of soil
and rock, take pictures of diverse objectives and com-
municate the results to a lander.

As it can be observed, both plans have the same
eight actions. However, the plan produced by OPTIC
has a makespan of 5 time steps, one more than the
plan of FLAP. This is because, in OPTIC, the order
in which the actions are inserted in the plan is de-
terminant: action communicate rock data is inserted
when action communicate image data was already in
the plan, hence ordering the first one after the second

one (communications cannot be done in parallel). In
contrast, the insertion order is not important in FLAP
as it does not prevent it to get the best-quality solutions.

In summary, we can conclude that the forward-
chaining POP approach of FLAP is more flexible than
the one used in OPTIC since FLAP does not restrict it-
self to only inserting actions in the frontier state. More
specifically, the late-commitment approach of OPTIC
is based on delaying commitment to ordering decisions
on the frontier state, which makes it lose flexibility as
it ignores the possibility of exploiting white knights [5]
or considering the demotion strategy for an action that
interferes with a fluent in the frontier state.

Limitations and extensions of FLAP

FLAP was designed as a general and flexible plan-
ner, which can easily been extended to handle prob-
lems with complex features. Our next step is to im-
plement a new version of FLAP to deal with temporal
planning problems. In these type of problems, actions
may have different durations, their preconditions may
be required to hold during the whole action duration,
and their effects can also occur at the beginning of the
action.

One of the limitations of the current version of
FLAP is that the goal distance is estimated as the num-
ber of actions required to reach the goals: both hFF
and hDT G return the number of actions in the computed

10

Fig. 5. Solution plan computed by a) OPTIC and b) FLAP for the second problem file of the Rovers domain.

relaxed plans. This is a valid approach to guide the
search towards a solution but makes it more difficult to
find good-quality plans regarding the plan duration or
makespan, which is the main metric used in temporal
planning. Then, a first modification to handle tempo-
ral problems is to adjust the heuristic functions to es-
timate the makespan, returning the duration of the ob-
tained relaxed plans instead of the number of actions.
This change does not imply a significant increase in
the computational cost of these heuristics, as it only re-
quires to record the time points in which the effects are
achieved.

Another limitation is that hDT G does not identify
dead-end states properly, returning values different
from ∞ in these cases. The reason is that hDT G is only
able to detect a dead-end state if the DTG of a vari-
able does not contain a transition path from the current
value of the variable to its goal value. Then, hDT G does
not consider the interactions between different vari-
ables to detect dead-ends. This problem can be miti-
gated by computing mutex fluents in a preprocessing
stage since they can be used to detect conflictive inter-
actions among fluents.

Finally, an additional extension of FLAP is to con-
sider the use of a portfolio approach [26]. This ap-
proach is based on the following idea: several plan-
ning algorithms are executed in sequence with shorter
timeouts, expecting that at least one of them will find
a solution in its allotted time. FLAP combines several
techniques and heuristic functions, and none of them
clearly dominates the other ones, so a portfolio ap-
proach could be easily implemented to check if it re-
ports a significative improvement in the planning per-
formance.

Experimental results

In this section, we address two issues. On the one
hand, we look into the reasons that led us to use fFF

as the evaluation function for the main search in FLAP.
For this purpose, we compared the performance of fFF
and fDT G to show the advantages and drawbacks of
both functions. This comparison is presented in the fol-
lowing subsection.

On the other hand, we also present some experimen-
tal results to show the performance of FLAP in terms of
plan quality and computational time. For this purpose,
we compared FLAP with three well-known planners
that return plans with parallel actions: OPTIC, LPG-td
and Temporal Fast Downward (TFD). A brief descrip-
tion of these planners and the results of this compari-
son are discussed in the second subsection.

We selected ten propositional domains from the In-
ternational Planning Competitions (IPC) [24,11]. The
IPCs provide a wide set of benchmarking problems to
assess the performance of the planners [23]. The tested
domains are described below:

– Blocksworld: this domain, from the 2000 IPC,
consists of a set of blocks that must be arranged
to form one or more towers. We have used a vari-
ation of this domain where several robot arms are
used to handle the blocks, thus allowing parallel
actions in the plans.

– Depots: this domain, introduced in the 2002 IPC,
combines a transportation-style problem with the
Blocksworld domain.

– Driverlog: this domain, used in the 2002 IPC, in-
volves transportation, but vehicles need a driver
before they can move.

– Elevators: in this domain, used in the 2011 IPC,
several elevators of different types must transport
several passengers to their floors.

– Logistics: in this domain, introduced in the IPC
2000, several airplanes and trucks cooperate to
deliver some packages to their destinations.

– Openstacks: in this domain, from the 2011 IPC, a
manufacturer has a number of orders to produce,
each one consisting of a combination of products.

11

– Satellite: this domain, used in the 2004 IPC, in-
volves satellites collecting and storing data using
different instruments to observe a set of targets.

– Rovers: used in the 2006 IPC, the objective is to
use a collection of mobile rovers to traverse be-
tween waypoints on the planet, carrying out a va-
riety of data-collection missions and transmitting
data back to a lander.

– Woodworking: used in the 2011 IPC, the goal is to
manufacture some wood pieces by using a set of
different machines in a production chain.

– Zenotravel: in this domain, presented in the 2002
IPC, people must embark onto planes, fly between
locations and then debark, with planes consuming
fuel at different rates according to their speed of
travel.

Testing was performed on a 2.3 GHz i7 computer
with 16 GB of memory running Ubuntu 64-bits.

Comparison of the evaluation functions

As we have described before, FLAP uses two evalu-
ation functions, fFF and fDT G, to guide the search pro-
cesses. fFF uses the classical heuristic of the FF plan-
ner, while fDT G uses a new heuristic based on the com-
putation of shortest paths in the DTGs of the variables.
To compare the performance of both functions, we de-
veloped a simple version of FLAP that only uses a sin-
gle A∗ search (no parallel search). First, we used fFF
to guide the search and, then, we used fDT G to check
the differences.

Regarding the time performance, measured in ex-
panded nodes per second, the search is always faster
with fDT G. One of the advantages of hDT G is that it
can be computed several times faster than hFF , as hDT G
does not require to build a new graph in each search
node. We observed that, for example, hFF takes 0.85
ms. in average to evaluate a plan in a problem with
about 5000 ground actions, while hDT G takes only 0.12
ms. However, the speed up of fDT G is more notice-
able in problems where the size of the relaxed plan-
ning graphs of hFF is rather large. For this reason, we
only compared the search performance in the largest
problems (the last 7 problems of each domain). The re-
sults are depicted in Table 1. The domains in which the
speed up of fDT G is less significant are Blocksworld,
Satellite and Logistics. On the contrary, the domains in
which the performance increase is more noticeable are
Woodworking, Openstacks and Zenotravel.

We thus confirmed that the use of fDT G instead of
fFF speeds up the search to a greater or lesser extent.

fDT G fFF

Domain nodes/sec. exp.nodes nodes/sec. exp.nodes

Blocksworld 58.86 241,00 58.35 31,43
Depots 118.89 245,14 101.64 33,14
Driverlog 517.26 97,00 431.84 160,29
Elevators 367.96 32,14 234 30,43
Logistics 72.45 110,86 69.08 115,86
Openstacks 45.11 117,86 21.88 117,71
Rovers 141.4 2576,86 111.82 239,29
Satellite 4.8 144,86 4.2 50,14
Woodworking 158.27 − 52.89 −
Zenotravel 3.9 67,43 2.1 83,86

Table 1
Search speed (in nodes per second) and average number of expanded
nodes, using the fDT G or the fFF evaluation function.

Therefore, the decision of using fFF instead of fDT G
in the main search of FLAP is only motivated because
hFF is a better informed heuristic than hDT G. As it can
be observed in Table 1, fDT G only guides the search
better, i.e. needs to expand fewer nodes to find a so-
lution, in three out of the ten domains: Driverlog, Lo-
gistics and Zenotravel. In these domains, the DTGs of
some variables are quite large and sparse (for example,
DTGs of the position of the trucks and the drivers in the
Driverlog domain), which allows us to obtain longer
and more informative paths of value transitions.

However, fFF is more accurate in the evaluations
of the remaining seven domains. In particular, it sig-
nificantly outperforms fDT G in the Woodworking do-
main, for which fDT G was not able to obtain any solu-
tion. This is a non-reversible domain, which causes that
many of the frontier states reached during the search
are dead-ends, and hDT G is not able to identify dead-
ends properly. The better behaviour of fFF in most of
the domains led us to use this evaluation function for
the main search of FLAP. Nevertheless, the alternation
of both evaluation functions, fFF and fDT G, as a mech-
anism to rapidly escape from the plateaus is one of the
keys of the good performance of FLAP.

Comparison between parallel planners

The goal of this comparison is to demonstrate that
FLAP, a planner compliant with the least-commitment
principle, can be competitive with other state-of-the-art
planners capable of generating parallel plans. For this
purpose, we have selected two partial-order planners,
LPG-td [13] and Temporal Fast Downward (TFD)
[10], aside from OPTIC.

12

LPG-td is an extended version of the LPG planner
[12]. The basic search scheme of LPG was inspired by
Walksat, an efficient procedure to solve SAT-problems.
The search space of LPG consists of action graphs,
particular subgraphs of the planning graph represent-
ing partial plans. The search steps are certain graph
modifications transforming an action graph into an-
other one. We have selected LPG-td for the compari-
son since action graphs are an alternative way for rep-
resenting partial-order plans, thus allowing to gener-
ate plans with parallel actions. LPG-td is sub-optimal
and incomplete, due to its stochastic local-search ap-
proach, but it can find a first solution very quickly. We
have used LPG-td with a fixed seed of 0 for the ran-
dom number generator in order to obtain reproducible
results.

Temporal Fast Downward (TFD) is a variant of the
propositional Fast Downward planning system [16].
TFD uses a greedy best-first search approach enhanced
with deferred heuristic evaluation. Besides the values
of the state variables, the time-stamped states in the
search space contain a real-valued time stamp as well
as information about scheduled effects and conditions
of currently executed actions. This integrated process
of action selection and time scheduling yields very
good results in terms of plan quality according to the
makespan.

We have run all the benchmark problems from the
ten selected domains with these planners. Each experi-
ment was limited to 30 minutes of wall-clock time and
to the 16Gb of available memory. For this comparison,
we have only considered the first plan returned by the
planners.

As it can be observed in Table 2, FLAP is able to
solve all tested problems. The problem in which FLAP
took longer to find a solution was the last one of the
Zenotravel domain, and it was solved in 65.82 seconds.
LPG-td only fails one problem, concretely the prob-
lem 16 of the DriverLog domain. On the contrary, OP-
TIC fails to solve many of the Depots and Blocksworld
problems. In these problems, with a large number of
interactions between the goals, the use of landmarks
would have helped OPTIC be more effective. It has
also difficulties to deal with the latest problems of
Driverlog, Satellite and Zenotravel, due to the size of
these problems and the complexity of the plateaus that
appear (above all in the Driverlog domain). TFD also
has difficulties with the Depots domain and with the
latest problems of DriverLog and Rovers.

As for the plan quality, Table 3 shows the average
makespan of the solution plans obtained by these five

Domain (#problems) FLAP OPTIC LPG-td TFD

BlocksWorld (34) 34 24 34 34
Depots (20) 20 11 20 10
DriverLog (20) 20 15 19 16
Elevators (30) 30 30 30 30
Logistics (20) 20 20 20 20
OpenStacks (30) 30 30 30 30
Rovers (20) 20 20 20 17
Satellite (20) 20 16 20 20
WoodWorking (30) 30 28 30 30
ZenoTravel (20) 20 16 20 20

Total (244) 244 210 243 227

Coverage 100% 86,07% 99,59% 93,03%
Table 2

Number of problems solved in the tested domains.

planners. For computing these values we have only
taken into account the problems that the planners were
able to solve.

TFD is the planner that yield better shorter plans in
most of the tested domains. It only produces slightly
worse solutions than FLAP in the Logistics, Rovers and
ZenoTravel domains. As it can be observed, the quality
of FLAP is very similar to the one of OPTIC. These are
very promising results as we have to take into account
that FLAP is currently designed to optimize the num-
ber of actions in the plans. We expect to get a signifi-
cant improvement in the durations of the plans through
the introduction of some modifications in the heuristic
functions to optimize the makespan in a future version
of FLAP. LPG-td is the planner that performs worse in
this regards since it generates a 164% longer plans than
TFD and a 152% than FLAP on average.

Domain FLAP OPTIC LPG-td TFD

BlocksWorld 15,21 20,85 43,01 9,59
Depots 26,80 30,01 29,63 22,41
DriverLog 29,35 28,16 47,25 28,66
Elevators 12,90 14,37 35,54 12,50
Logistics 16,50 18,03 36,39 16,86
OpenStacks 53,87 49,14 55,68 48,72
Rovers 14,05 16,26 23,82 17,06
Satellite 18,50 13,29 16,99 16,31
WoodWorking 6,33 4,12 6,18 5,75
ZenoTravel 11,00 10,69 15,49 11,70

Average 20,45 20,49 31,00 18,96
Table 3

Average makespan of the solution plans for the tested domains.

Regarding the running time, Figure 6 show the used
time by these planners to find a first solution in all the

13

Fig. 6. Search time in second used by FLAP, OPTIC, LPG-td and TFD in the tested domains.

14

tested problems. As it can be observed, LPG-td is the
faster planner. FLAP only obtains a better average time
than LPG-td in the Elevators domain: 0,1 vs. 0,16 sec-
onds per plan. In the BlocksWorld domain the average
time is also similar: 0,64 and 0,5 seconds by FLAP
and LPG-td, respectively. The local-search approach of
LPG-td allows it to find a first solution plan very fast in
most of cases, but the quality of these solutions is not
very good as Table 3 has shown.

FLAP is faster than OPTIC except on the Open-
Stacks and Rovers domains. In these domains the num-
ber of explored nodes is smaller in FLAP, so the addi-
tional temporal cost is due to the overhead in the com-
putation of the successors of a node: a higher number
of actions can be added to the current plan and, more-
over, one same action can be inserted in different po-
sitions in the plan, so the number of successors of a
plan is usually higher in FLAP. Nevertheless, the run-
ning times in these domains are quite small and do not
prevent FLAP from being about 19 times faster than
OPTIC in the tested problems on average.

FLAP is also about 12 times faster than TFD on av-
erage. FLAP is able to find solutions in all the tested
domains in less time than TFD. On the contrary, the
solutions found by TFD are usually shorter, as we have
mentioned above.

Aside from the use of a powerful combination of
heuristics, one of the key of the performance of FLAP
is the mechanism of parallel searches to escape from
plateaus. As each search process can launch another
two child searches when gets stuck in a plateau, there
exists a potential possibility of an exponential growth
in the number of parallel processes. However, an as
it can be observed in Table 4, the maximum num-
ber of simultaneous searches remains at very accept-
able levels in all the domains. Woodworking is the do-
main that needs a higher number of parallel searches,
mainly due to the lack of accuracy of the hDT G heuris-
tic in these problems. Even so, eight-core processors
are very common at present and they can manage five
parallel search processes seamlessly.

Finally, we show in Table 4 the memory usage statis-
tics of FLAP for the tested domains. FLAP uses several
A∗ search processes and one of the main drawback of
this type of algorithms is the high memory consump-
tion. As it can be observed, the memory consumption
is quite restrained since it does not require more than
2GB. in any of the tested problems. This is mainly due
to the good heuristic guidance, which helps FLAP find
a solution without exploring a large number of nodes.

Memory usage
Domain Threads Min. Max. Average

BlocksWorld 2,18 13 94 22,94
Depots 4,15 14 297 65,10
DriverLog 2,95 12 980 147,40
Elevators 1,13 13 28 14,77
Logistics 2,00 18 104 47,15
OpenStacks 2,07 17 69 35,03
Rovers 3,55 16 566 101,60
Satellite 1,05 13 65 29,10
WoodWorking 5,27 18 1774 128,00
ZenoTravel 1,05 12 118 27,95

Table 4
Average number of maximum parallel search processes (threads) and
memory consumption in MB. by FLAP for each domain.

Conclusions

This paper presents FLAP, a hybrid planner that
combines partial-order plans with forward search and
uses state-based heuristics. FLAP is fully compli-
ant with the least-commitment strategy, avoiding an
early commitment to the ordering of the actions. This
achieves flexibility, reduces the need of backtracking
and produces shorter plans at the expense of a more
costly search process. In order to alleviate the search
burden, FLAP implements a parallel search technique
that diversifies the search when a plateau is found.
We also presented an exhaustive analysis to show the
differences between the late-commitment approach of
OPTIC and the least-commitment approach of FLAP.

We compared FLAP with three modern planners,
OPTIC, LPG-td and TFD. Experimental results show
that FLAP is able to solve more problems than the
other three planners in the tested domains. FLAP also
offers a very good trade-off between the quality of
the solutions regarding the makespan and the running
time. TFD returns the best solutions wrt makespan and
FLAP outperforms both OPTIC and LPG-td in this re-
spect. This is a promising result as the current version
of FLAP is not focused on optimizing the makespan.
With regard to the running time, only LPG-td is faster
than FLAP from the tested planners. We can conclude
then that FLAP is very competitive when compared
with some of the top-performing planners.

As a future extension, we will investigate on the
adaptation of FLAP heuristics to optimise the makespan
and to mitigate the problem of hDT G with dead-end
states in non-reversible domains. We are also working
on a temporal version of FLAP, extending the repre-
sentation to durative actions and adapting the planning
algorithm of FLAP to reasoning about time.

15

Acknowledgements

This work has been partly supported by the Span-
ish MICINN under projects Consolider Ingenio 2010
CSD2007-00022 and TIN2011-27652-C03-01, the Va-
lencian Prometeo project II/2013/019.

References

[1] J. Benton, A. Coles, and A. Coles. Temporal planning with
preferences and time-dependent continuous costs. Interna-
tional Conference on Automated Planning and Scheduling,
pages 2–10, 2012.

[2] A. Blum and M. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90:281–300, 1997.

[3] B. Bonet and H. Geffner. Planning as heuristic search. Artificial
Intelligence, 129(1-2):5–33, 2001.

[4] M. Brenner. Multiagent planning with partially ordered tempo-
ral plans. Technical Report. Institut für Informatik, Universität
Freiburg, 2003.

[5] D. Chapman. Planning for conjunctive goals. Artificial Intelli-
gence, 32:333–377, 1987.

[6] Y. Chen, B. Wah, and C. Hsu. Temporal planning using sub-
goal partitioning and resolution in SGPlan. Journal of Artificial
Intelligence Research, 26:323–369, 2006.

[7] A. Coles, A. Coles, M. Fox, and D. Long. Forward-chaining
partial-order planning. International Conference on Automated
Planning and Scheduling, pages 42–49, 2010.

[8] A. Coles, M. Fox, K. Halsey, D. Long, and A. Smith. Manag-
ing concurrency in temporal planning using planner-scheduler
interaction. Artificial Intelligence, 173(1):1–44, 2009.

[9] A. Coles, M. Fox, and A. Smith. A new local-search algorithm
for forward-chaining planning. International Conference on
Automated Planning and Scheduling, pages 89–96, 2007.

[10] P. Eyerich, R. Mattmüller, and G. Röger. Using the context-
enhanced additive heuristic for temporal and numeric planning.
International Conference on Automated Planning and Schedul-
ing, 2009.

[11] A. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos.
Deterministic planning in the fifth International Planning Com-
petition: PDDL3 and experimental evaluation of the planners.
Artificial Intelligence, 173(5-6):619–668, 2009.

[12] A. Gerevini, A. Saetti, and I. Serina. Planning through stochas-
tic local search and temporal action graphs in LPG. Journal of
Artificial Intelligence Research, 20:239–290, 2003.

[13] A. Gerevini, A. Saetti, and I. Serina. Temporal planning with
problems requiring concurrency through action graphs and lo-
cal search. International Conference on Automated Planning
and Scheduling, pages 226–229, 2010.

[14] M. Ghallab, D. Nau, and P. Traverso. Automated Planning.
Theory and Practice. Morgan Kaufmann, 2004.

[15] M. Helmert. A planning heuristic based on causal graph anal-
ysis. International Conference on Automated Planning and
Scheduling, pages 161–170, 2004.

[16] M. Helmert. The Fast Downward planning system. Journal of
Articial Intelligence Research, 26:191–246, 2006.

[17] J. Hoffman and B. Nebel. The FF planning system: Fast plan-
ning generation through heuristic search. Journal of Artificial
Intelligence Research, 14:253–302, 2001.

[18] J. Hoffmann, J. Porteous, and L. Sebastia. Ordered land-
marks in planning. Journal of Artificial Intelligence Research,
22:215–278, 2004.

[19] T. Imai and A. Kishimoto. A novel technique for avoid-
ing plateaus of greedy best-first search in satisficing planning.
AAAI Conference on Artificial Intelligence, pages 985–991,
2011.

[20] D. Kovacs. Complete BNF description of PDDL3.1. Technical
report, 2011.

[21] J. Kvarnström. Planning for loosely coupled agents using par-
tial order forward-chaining. International Conference on Auto-
mated Planning and Scheduling, pages 138–145, 2011.

[22] C. Linares and D. Borrajo. Adding diversity to classical
heuristic planning. Third Annual Symposium on Combinatorial
Search (SoCS-10), pages 73–80, 2010.

[23] C. Linares, S. Jiménez, and M. Helmert. Automating the eval-
uation of planning systems. AI Communications, 26(4):331–
354, 2013.

[24] D. Long and M. Fox. The 3rd International Planning Compe-
tition: results and analysis. Journal of Artificial Intelligence
Research, 20:1–59, 2003.

[25] H. Nakhost and M. Müller. Monte-carlo exploration for deter-
ministic planning. International Joint Conferences on Artificial
Intelligence (IJCAI), pages 1766–1771, 2009.

[26] S. Núñez, D. Borrajo, and C. Linares. Performance analysis of
planning portfolios. Fifth Annual Symposium on Combinato-
rial Search (SOCS), pages 65–71, 2012.

[27] J. Penberthy and D. Weld. UCPOP: A sound, complete, partial
order planner for ADL. International Conference on Principles
of Knowledge Representation and Reasoning, pages 103–114,
1992.

[28] S. Richter and M. Westphal. The LAMA planner: Guiding cost-
based anytime planning with landmarks. Journal of Artificial
Intelligence Research, 29(1):127–177, 2010.

[29] G. Röger and M. Helmert. The more, the merrier: Combining
heuristic estimators for satisficing planning. International Con-
ference on Automated Planning and Scheduling, pages 246–
249, 2010.

[30] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 3rd edition, 2009.

[31] L. Sebastia, E. Onaindı́a, and E. Marzal. Decomposition of
planning problems. AI Communications, 19(1):49–81, 2006.

[32] A. Torreño, E. Onaindı́a, and O. Sapena. An approach to multi-
agent planning with incomplete information. European Con-
ference on Artificial Intelligence (ECAI), 242:762–767, 2012.

[33] R. Valenzano, N. Sturtevant, J. Schaeffer, K. Buro, and
A. Kishimoto. Simultaneously searching with multiple set-
tings: An alternative to parameter tuning for suboptimal single-
agent search algorithms. International Conference on Auto-
mated Planning and Scheduling, pages 177–184, 2010.

[34] M. Veloso and P. Stone. FLECS: Planning with a flexible com-
mitment strategy. Journal of Artificial Intelligence Research,
3:25–52, 1995.

[35] D. Weld. An introduction to least commitment planning. AI
magazine, 15(4):27, 1994.

