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Abstract

Most of the current top-performing planners are sequential planners that only handle total-order

plans. Although this is a computationally efficient approach, the management of total-order

plans restrict the choices of reasoning and thus the generation of flexible plans. In this paper

we present FLAP2, a forward-chaining planner that follows the principles of the classical POCL

(Partial-Order Causal-Link Planning) paradigm. Working with partial-order plans allows FLAP2

to easily manage the parallelism of the plans, which brings several advantages: more flexible

executions, shorter plan durations (makespan) and an easy adaptation to support new features

like temporal or multi-agent planning. However, one of the limitations of POCL planners is that

they require far more computational effort to deal with the interactions that arise among actions.

FLAP2 minimizes this overhead by applying several techniques that improve its performance: the

combination of different state-based heuristics and the use of parallel processes to diversify the

search in different directions when a plateau is found. To evaluate the performance of FLAP2,

we have made a comparison with four state-of-the-art planners: SGPlan, YAHSP2, TFD and

OPTIC. Experimental results show that FLAP2 presents a very acceptable trade-off between

time and quality and a high coverage on the current planning benchmarks.

1 Introduction

Until the late 1990s, Partial-Order Planning (POP) was the most popular approach to AI

planning. In this approach, based on the least-commitment philosophy, decisions about action

orderings and parameter bindings are postponed until a decision must be taken. This is an

attractive idea as avoiding premature commitments requires less backtracking during the search

process. Nevertheless, the most recent total-order forward-chaining planners, such as LAMA

(Richter and Westphal (2010)), Fast Downward Stone Soup-1 (Helmert et al. (2011)) or SGPlan

(Chen et al. (2006)), have demonstrated to be more efficient than partial-order planners, mainly

due to:

• Search states can be generated much faster as there is no need to check threats (conflicts)

among actions.

• They can generate complete state information and take advantage of powerful state-based

heuristics or domain-specific control.

However, the general move towards state space search ignores some important benefits of

partial-order planning:

• A partial-order plan offers more flexibility in execution.

• The search can be easily guided to improve the action parallelism in the plan.

• It is a very suitable approach in multi-agent planning systems, either with loosely (Kvarn-

ström (2011)) or tightly coupled (Torreño et al. (2012)) agents.
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• It can easily be adapted to deal with temporal planning (Benton et al. (2012)).

These desirable properties have led many current researchers to adopt POP techniques and to

dedicate their efforts to improve the performance of this planning approach.

In this paper we present FLAP2, a partial-order forward-chaining planner that follows the

design principles of POP, except for the delayed parameter binding, thus keeping the benefits of

this successful approach. In spite of the inevitable increase of the search cost, we will show that

FLAP2 improves the performance of existing partial-order planners and that it is competitive

against some total-order planners. Particularly, FLAP2 returns solutions that represent a good

trade-off between time and quality and it also offers a high coverage on the current planning

benchmarks.

In the remainder of the paper we present the related work, some background and the planning

approach of FLAP2. Finally, we present an empirical evaluation of the performance of FLAP2

and we conclude with some final remarks.

2 Related work

Looking at the winners of the last International Planning Competitions (IPC’20111 and

IPC’20082), we can observe that the majority of planners participated in the sequential tracks.

Fast Downward Stone Soup-1 Helmert et al. (2011), Selective Max (Domshlak et al. (2010)) and

Merge and Shrink (Helmert et al. (2013)) are optimal sequential planners built upon the classical

Fast Downward planning system (Helmert (2006)) based on heuristic search. LAMA (Richter and

Westphal (2010)), FF(hs
a) (Keyder and Geffner (2008)) and C3 (Lipovetzky and Geffner (2009))

are also forward state-space search planners that use powerful heuristics and compute (often

suboptimal) solution plans very rapidly.

Planners that generate partial-order plans are basically found in temporal planning like

SGPlan (Chen et al. (2006)), Temporal Fast Downward (Eyerich et al. (2009)), DAEY AHSP

(Khouadjia et al. (2013)), YAHSP2 (Vidal (2011)) and POPF2 (Coles et al. (2010)). Temporal

planning requires the ability of dealing with action parallelism due to the existence of temporally

overlapping durative actions. With the exception of POPF2, all of these planners are built upon

the parading of sequential planning. SGPlan, for example, uses Metric-FF (Hoffmann (2002)) as a

search engine, while DAEY AHSP and YAHSP2 are developed on top of the YAHSP planner (Vidal

(2003)). These three planners need an additional module to parallelize the obtained sequential

plans and to enforce the temporal constraints of the problem. This separation between action

selection and scheduling is doomed to fail in temporally expressive domains and suffer from severe

drawbacks in temporally simple problems, as choosing the wrong actions might render the final

solutions to be purely sequential and therefore of very low quality.

The approach taken by Temporal Fast Downward (TFD) is to perform forward search in the

space of time-stamped states, where at each search state either a new action can be started or

time can be advanced to the end point of an already running action, thereby combining action

selection and scheduling (Eyerich (2012)). This approach is usually very good in terms of quality

but their coverage on current benchmarks is typically relatively low.

From the aforementioned planners, POPF2 is the only one that follows a partial-order planning

approach. It is a forward planner that works with time, numbers and continuous effects. POPF2

records state information at each step of the plan (frontier state), like the negative interactions

among the variable assignments, and updates the state accordingly. The frontier state is used to

determine the set of applicable actions at each step of the plan. The late-commitment approach of

POPF2 is based on delaying commitment to ordering decisions on the frontier state, thus ignoring

other alternative choices that would come earlier, i.e. before the frontier state. Completeness,

however, is ensured as search performs backtracking to find an alternative plan when necessary.

1http://www.plg.inf.uc3m.es/ipc2011-deterministic
2http://ipc.informatik.uni-freiburg.de/
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OPTIC (Benton et al. (2012)) is the latest version of POPF2 and also handles soft constraints

and preferences. The key of its good performance is the fast generation of the successor states

during the search and the use of effective domain-independent heuristics. OPTIC yields high

quality plans, although, computationally speaking, it is not that efficient as most of the sequential

planners.

In this paper we present FLAP2, a partial-order forward-chaining planner that follows the

design principles of POP. This approach is similar to the one of OPTIC, but introduces two

important differences:

• OPTIC adds additional temporal constraints over the action to ensure that preconditions of

the new actions are met in the frontier state. The approach of FLAP2 is more flexible as

it does not commit to an action ordering if this is not required, just like traditional POCL

planners do.

• FLAP2 can add new actions at any point in the current plan. OPTIC only adds actions after

the frontier state, so that the new actions do not threaten the preconditions of earlier actions.

These two differences lead to a more flexible partial-order planner, although this improvement

entails a higher computational effort to deal with the interactions among actions. However,

FLAP2 outperforms OPTIC in many domains because it uses more sophisticated search methods

and more powerful heuristics. Moreover, delaying commitment on the orderings of the actions

allows FLAP2 to reach a solution from a higher number of search nodes, which also improves the

search performance.

3 Background

For the purposes of this paper, we restrict ourselves to propositional planning tasks. A planning

task is a tuple T = 〈O, V, A, I, G〉. O is a finite set of objects that model the elements of the

planning domain over which the planning actions are applied. V is a finite set of state variables

that model the states of the world. A state variable v ∈ V is mapped to a finite domain of mutually

exclusive values Dv. A value of a state variable in Dv corresponds to an object of the planning

domain, that is, ∀v ∈ V, Dv ⊆O. When a value is assigned to a state variable, the pair 〈variable,

value〉 acts as a ground atom in propositional planning. A is the set of deterministic actions. I is

the set of initial values assigned to the state variables and represents the initial state of the task.

G is the set of goals of the task, i.e., the values the state variables are expected to take in the

final state.

Definition 1 (Fluent) A ground atom or fluent is a tuple of the form 〈v, d〉 where v ∈ V and

d ∈Dv, which indicates that variable v takes the value d.

Definition 2 (Action) An action a ∈A is a tuple 〈PRE(a), EFF (a)〉 where PRE(a) =

{p1, . . . , pn} is a set of fluents that represents the preconditions of a and EFF (a) = {e1, . . . , em}
is a set of fluents that represents the consequences of executing a.

We define a partial-order plan for a planning task T = 〈O, V , A, I, G〉 as follows:

Definition 3 (Partial-order plan) A partial-order plan is a tuple Π = 〈∆, OR, CL〉. ∆⊆A is

the set of actions in Π. OR is a set of ordering constraints (≺) on ∆. CL is a set of causal links

over ∆. A causal link is of the form ai
〈v,d〉−−−→ aj, meaning that precondition 〈v, d〉 of aj ∈∆ is

supported by an effect of ai ∈∆.

This definition of a partial-order plan represents the mapping of a plan into a directed acyclic

graph, where ∆ represents the nodes of the graph (actions) and OR and CL are the sets of

directed edges that describe the precedences and causal links among these actions, respectively.

The introduction of new actions in a partial plan may trigger the appearance of flaws. There

are two types of flaws in a partial plan: preconditions that are not yet solved (or supported)
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through a causal link and threats. A threat over a causal link ai
〈v,d〉−−−→ aj is caused by an action

ak that is not ordered w.r.t. ai or aj and modifies the value of v, i.e. 〈v, d′〉 ∈ EFF (ak) ∧ d′ 6= d,

making the causal link unsafe. Threats are addressed by introducing either an ordering constraint

ak ≺ ai, which is called demotion because the causal link is posted after the threatening action, or

an ordering aj ≺ ak, which is called promotion as the causal link is placed before the threatening

action.

We define a flaw-free plan as a threat-free partial plan in which the preconditions of all the

actions are supported through causal links. Given a flaw-free partial-order plan Π, we compute

the frontier state, SΠ, resulting from the execution of Π in the initial state I. More formally:

Definition 4 (Frontier state) The frontier state SΠ of a flaw-free partial-order plan Π =

〈∆, OR, CL〉 is the set of fluents 〈v, d〉 achieved in Π by an action a ∈∆/〈v, d〉 ∈ EFF (a), such

that any action a′ ∈∆ that modifies the value of v (〈v, d′〉 ∈ EFF (a′)/d 6= d′) is not reachable

from a by following the orderings and causal links in Π.

The basic POP algorithm starts by building an initial minimal plan containing two fictitious

actions: the initial action ainit, with no preconditions and EFF (ainit) = I, and the goal action

agoal, with no effects and PRE(agoal) =G. The algorithm works by following the next three steps

until a solution is found: 1) select the next subgoal to achieve, 2) choose an action to support

the selected subgoal and 3) solve the threats that arise as a consequence of the variables value

modification.

In the following section we describe the planning algorithm of FLAP2 as well as the necessary

modifications to adapt a POP algorithm to support a forward search. In our effort to maintain

all the benefits of this approach, we tried to keep the changes as minimal as possible.

4 Planning algorithm

FLAP2 is a modified version of FLAP planner (Sapena et al. (2013)). In the following subsections

we briefly describe the planning approach of FLAP and the changes made in FLAP2 to improve

its performance, respectively.

4.1 FLAP’s working scheme

FLAP implements an A∗ search, as the standard textbook algorithm in (Russell and Norvig

(2009)), guided by an evaluation function. A search node is a partial-order plan and the starting

node is the initial initial plan Π0 = 〈{ainit}, ∅, ∅〉. Although Π0 does not contain the fictitious

goal action agoal, this action is available to be added to the plan as the rest of actions in A, i.e.

agoal ∈A. In fact, a solution plan is found when agoal is inserted in the plan.

FLAP follows two steps at each iteration of the search process until a solution plan is found:

a) it selects the best node, Πi, from the set of open nodes according to the evaluation function,

and b) all possible successors of Πi are generated, evaluated and added to the list of open nodes.

FLAP considers that Πj is a successor of a plan Πi if the following conditions are met:

• Πj adds a new action aj to Πi, i.e., ∆j = ∆i ∪ {aj}
• All preconditions of aj are supported with actions in Πi by inserting the corresponding causal

links: ∃ai
p−→ aj ∈ CLj , ai ∈∆i, ∀p ∈ PRE(aj).

• All threats in Πj are solved through promotion or demotion by adding new ordering

constraints; the result is that Πj is a flaw-free plan.

The forward-search approach of FLAP allows to use state-based heuristics, which are much

more informed than classical POP-based heuristics. In order to evaluate a partial-order plan Π,

FLAP computes the frontier state SΠ. It uses three different heuristics:
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• hDTG. A Domain Transition Graph (DTG) of a state variable is a representation of the ways

in which the variable can change its value (Helmert (2004)). Each transition is labeled with

the necessary conditions for this to happen, i.e. the common preconditions to all the actions

that induce the transition. These graphs are used to estimate the cost of the value transition

required to support an action precondition, and the Dijkstra algorithm is applied to calculate

the length of the shortest path in the DTG that causes the transition. The hDTG heuristic

returns the minimum number of actions in a relaxed plan, where delete effects are ignored,

that achieves the problem goals from SΠ. Actions in the relaxed plans are selected according

to the sum of the estimated cost of their preconditions.

• hFF . FLAP also makes use of the traditional FF heuristic function hFF (Hoffman and Nebel

(2001)), which builds a relaxed plan by ignoring the delete effects of the actions and returns

its number of actions. The actions of this plan are selected according to their levels in the

relaxed planning graph.

• hLAND DTG and hLAND FF . Landmarks are fluents that must be achieved in every solution

plan (Hoffmann et al. (2004); Sebastia et al. (2006)). FLAP computes a landmark graph and

uses this information to calculate heuristic estimates: since all landmarks must be achieved

in order to reach a goal, the goal distance can be estimated through the set of landmarks

that still need to be achieved from the state being evaluated onwards. Once we have the

set of non-supported landmarks, the heuristic value is the result of estimating the cost of

reaching these landmarks with either hDTG or hFF . This way, FLAP has two versions of the

landmarks heuristic, called hLAND DTG and hLAND FF , respectively.

For evaluating a plan Π = 〈∆, OR, CL〉, FLAP defines two different evaluation functions:

• fFF (Π) = w1 ∗ g(Π) + w2 ∗ hLAND FF (Π) + w3 ∗ hFF (SΠ)

• fDTG(Π) = w1 ∗ g(Π) + w2 ∗ hLAND DTG(Π) + w3 ∗ hDTG(SΠ)

g(Π) measures the cost of Π in number of actions, i.e. g(Π) = |∆|. The weights in the

two functions are set to w1 = 1, w2 = 4 and w3 = 2. FLAP uses both evaluation functions to

simultaneously explore different parts of the search space, thus defining two main search processes.

Additionally, a new A∗ search is started in parallel when one of the two main search processes

is stuck in a plateau, i.e. the evaluation function does not improve after several iterations. The

goal of this new search is not to escape from the plateau, but to find a solution plan starting

from the frontier state of the best node found so far, as this node is more likely to be closer to

a solution than the initial state. The parallel search is cancelled if the main search manages to

leave the plateau.

FLAP planner is sound and complete since all possible successors are considered at each

point and, when agoal is added to the plan, the support of all problem goals as well as the plan

consistency is guaranteed.

4.2 Performance improvements in FLAP2

In order to improve the performance of FLAP we performed an analysis of the search process,

specifically of the behaviour of the heuristics in domains with different characteristics. This

analysis is shown in the following subsection. Finally, in a second subsection, we describe the

modifications introduced in FLAP2 according to the conclusions of the analysis.

4.2.1 Analysis of heuristics and the plateau escaping method.
Regarding hDTG, we found that this heuristic is more informative than hFF in planning domains

where the state variables have rather large domains, containing multiple different values, and the

DTGs of these variables are sparse graphs.

In Figure 1 we can observe an example of the DTGs of two variables: (empty t1 ) and (at d1 ).

There are only two values, true and false, in the domain of (empty t1 ), meaning that the cabin
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Figure 1 DTGs of variables (empty t1 ), the state of the cabin of truck t1, and (at d1 ), the location of
driver d1, in a DriverLog problem example.

of the truck t1 can be empty or not. On the contrary, the position of driver d1 can take several

different values: location 1 (l1 ), cities 1, 2 and 3 (c1, c2 and c3 ) and truck 1 (t1 ). The values of

hDTG obtained from the DTG of variable (empty t1 ) are not very accurate because there is only

one transition that makes the variable change from true to false, and this transition is derived by

many different actions, particularly all actions in which d1 boards t1 at any possible city. Hence,

selecting the action to be included in the relaxed plan to support this transition is not an easy

task and a wrong decision would worsen the quality of the heuristic.

On the contrary, the DTG of variable (at d1 ) is more informative. For example, the path to

change its value from l1 to c1 contains three transitions: l1→ c2→ t1→ c1 or l1→ c3→ t1→ c1,

depending on the position of the truck. Moreover, each transition in the path is produced by a

single action and thus the correct action is always selected by hDTG when computing the relaxed

graph. Our conclusion is that hDTG performs slightly better than hFF in transportation-like

domains, such as DriverLog or ZenoTravel, where the DTGs of several variables are rather large

sparse graphs. For the rest of domains, hFF clearly outperforms hDTG.

hDTG also presents some limitations in non-reversible domains, where the effects of some

actions cannot be undone. The search space of these domains may contain dead-ends, i.e., nodes

with frontier states from which the problem goals are unreachable. hFF is able to detect many of

these dead-ends as it builds a relaxed planning graph at each node of the search tree: if any of the

problem goals is not reachable in the relaxed graph, the node is a dead-end. On the contrary, hDTG

only detects a dead-end state if no transition path can be found in the DTGs that transforms the

value of a variable into its final value. Then, hDTG does not take into account the interactions

between variables to detect dead-ends. This limitation can be alleviated by computing mutex

fluents in a preprocessing stage, i.e. fluents that cannot be true in a state at the same time.

Improvements in the hDTG heuristic is an issue we want to address in future works.

On the other hand, the landmark-based heuristic, hLAND, is very informative in domains which

contain a large number of atomic landmarks. An atomic landmark, which is a single fluent that

every solution plan must achieve at some point, is usually much more accurate than a disjunctive

landmark since a disjunctive landmarks is less restrictive. In FLAP, hLAND (both hLAND FF and

hLAND DTG), is always used in combination with hFF or hDTG. However, we observed that, when

the number of atomic landmarks is similar or greater than the number of disjunctive landmarks,

hLAND is informative enough to be used as a stand-alone heuristic.

These three heuristics (hDTG, hFF and hLAND) assess the quality of a plan by estimating the

number of actions required to reach the problem goals. However, this does not seem to be the

most appropriate approach for a planner that works with concurrent actions. When dealing with

partial-order plans, optimizing the plan duration (makespan) is always preferable if we aim to

improve the plan parallelism. Even so, as we will see in the Experimental Results section, the

quality of the plans generated by FLAP2 w.r.t. the makespan is quite good because it exploits
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Figure 2 Parallel A∗ search processes for plateau escaping.

the advantages of working directly with concurrent actions. However, adapting the heuristics to

evaluate the plans according to their makespan could significantly improve the quality of the

solutions, a research line we intend to explore in the future.

Finally, we analyzed the plateau escaping mechanism of FLAP. The parallel search process

started when one of the main search processes gets stuck in a plateau is not enough to solve some

difficult problems as this new search may also get stuck in another plateau.

4.2.2 Modifications in the search process of FLAP.
Taking all the above considerations into account, we designed FLAP2 as follows. First of all,

we check if sufficient information can be extracted from the landmarks graph. We define λ=

|disjunctive landmarks|/|atomic landmaks|, i.e. the ratio between the number of disjunctive

landmarks and the number of atomic landmarks; when no atomic landmarks are found, λ=∞.

We consider that there is enough information when λ≤ 1.2.

When hLAND is not informative enough, λ > 1.2, FLAP2 starts a single main A∗ search with

the fFF evaluation function with w1 = 1, w2 = 4 and w3 = 2. The weight for hLAND FF , w2, is

higher to make up for the poor heuristic values returned by hLAND. Unlike FLAP, in FLAP2

we do not start a second main search with hDTG because, as we said in the previous section,

hDTG is only worth using in transportation-like domains and thereby a general use of hDTG does

not compensate for the overhead in computation time and memory consumption. Consequently,

hDTG is only used in FLAP2 when search needs to be diversified due to the existence of a plateau.

The search process of FLAP2 uses a variable, Πbest, that stores the node with the best heuristic

value found so far. Initially Πbest is set to the initial plan, i.e. Πbest = Π0. When a search node with

a better heuristic value than the one of Πbest is found, Πbest is updated to this node. We consider

that the search is stuck in a plateau when Πbest has not been updated in several iterations. In this

case, two new search processes are started from the frontier state of Πbest to increase the chances

of escaping from the plateau. The first one uses fFF and the second one the fDTG evaluation

function, both with the same weight values than the ones used for the main search. By using two

new searches with different heuristic functions, we allow to diversify the search directions and

find a plateau exit more effectively.

A child search works equally as the main search. In fact, when a child search finds a plateau, it

also starts two new search processes. This behaviour can be observed in Figure 2. When a search

manages to escape from a plateau, i.e. when a node with a heuristic value better than the value

of Πbest is found, then its two child processes are terminated.

In the case that hLAND is informative enough, λ≤ 1.2, FLAP2 starts a search process with fFF

and a second main A∗ search with the following evaluation function: fLAND FF (Π) = w1 ∗ g(Π)

+ w2 ∗ hLAND FF (Π), with w1 = 1 and w2 = 1. In this case, hLAND FF is used as a stand-alone
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heuristic function. When a plateau is found, two child searches are started in the same way as

for the case of λ > 1.2, but now we use fFF with w1 = 1, w2 = 1 and w3 = 1, and fLAND DTG(Π)

= w1 ∗ g(Π) + w2 ∗ hLAND DTG(Π) with w1 = 1 and w2 = 1. This configuration has been fixed

as the result of an extensive experimental analysis and it offers a good trade-off between search

time and plan quality in most of the problems.

The mechanism of parallel searches implemented in FLAP2 yields very good results but

it can lead to an exponential growth in the number of simultaneous processes. However, this

problem does not usually occur in practice since the number of simultaneous search processes

that exceeded the number of processing cores (8 in our test computer) only occurred in a few

problems. Specifically, we tested FLAP2 in 244 problems from 10 different domains and only 7

of them required more than 8 search processes at the same time. And yet, this did not prevent

FLAP2 from finding a solution plan for these problems.

5 Experimental results

In order to evaluate the performance of FLAP2, we selected four current top-performing planners

that return parallel plans: SGPlan, YAHSP2, OPTIC and TFD. All of them are temporal planners

as only this type of planners are currently able to synthesize plans with concurrent actions. Due

to the different characteristics of these planners, we have divided this section in two subsections:

• Comparison of FLAP2 with SGPlan and YAHSP2, two sequential planners that apply a

scheduler to parallelize the plans at a later stage. This approach is extremely fast but finds

more difficulties in producing plans of good quality regarding the makespan.

• Comparison of FLAP2 with OPTIC and TFD, two planners that merge the action selection

and the scheduling process. Working with partial-order planners allows to compute more

flexible plans, with a better makespan, but slows down the search process.

In both cases, we selected six temporal domains from the International Planning Competitions

(IPC), setting the duration of all actions to 1 as FLAP2 is still unable to work with durative

actions. We observed that the behaviour of these planners varies greatly depending on the level

of interaction between the problem goals. For this reason we selected three domains with strong

dependencies between the goals, BlocksWorld, Depots and DriverLog, and three domains with

rather independent goals, Satellite, Rovers and ZenoTravel.

Testing was performed on a 2.3 GHz i7 computer with 12 GB of memory running Ubuntu

64-bits. We only consider the first plan returned by the planners as most of them do not continue

searching for better plans. Each experiment was limited to 30 minutes of wall-clock time.

5.1 FLAP2 vs. SGPlan and YAHSP2

Table 1 shows the number of solved problems and the average time employed by these planners

to find the first solution. Average times are calculated considering only those problems that were

solved by the three planners.

As it can be observed, FLAP2 solves more problems and shows a more stable behaviour. Both,

SGPlan and YAHSP2 present some difficulties in domains with strong interactions between the

FLAP2 SGPlan YAHSP2
Domain Prob Solved Average time Solved Average time Solved Average time

BlocksWorld 34 34 0.40 22 5.80 34 57.78
Depots 20 20 1.99 19 0.15 16 121.24
DriverLog 20 20 3.38 17 1.02 20 0.11
Satellite 20 20 4.19 20 0.07 20 0.05
Rovers 20 20 4.21 20 0.04 20 0.04
ZenoTravel 20 20 6.91 20 0.23 20 0.16

Total 134 134 3.52 118 1.22 130 29.90

Table 1 Number of problems solved and average time (in seconds) of FLAP2, SGPlan and YAHSP2.
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Figure 3 Makespan of the plans of SGPlan and YAHSP2, normalized by the makespan of the plans of
FLAP2.

goals (BlocksWorld, Depots and DriverLog), but they are significantly faster in the other three

domains. The landmarks heuristic and the plateau escaping mechanism of FLAP2 are very helpful

to deal with strong dependencies among the goals. FLAP2 also easily solves the problems from

the Rovers, Satellite and ZenoTravel domains, but the overhead to cope with threats among

actions together with a higher branching factor prevents FLAP2 from being as faster as SGPlan

or YASHP2 in these domains.

Regarding the plan quality, Figure 3 shows the makespan of the plans computed by the three

planners. The results are normalized by the makespan of the plans obtained by FLAP2 for a

better viewing. This way, a value of 2 indicates a plan with a makespan twice as much as the

makespan of FLAP2, and a value of 0.5 a plan two times shorter.

In general, FLAP2 generates plans with better quality than SGPlan and YAHSP2. SGPlan

produces slightly worse plans, 1.36 times longer in the six domains. The plan quality of YAHSP2

is much worse as the generated plans are 2.4 times longer than FLAP2 on average.
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FLAP2 OPTIC TFD
Domain Prob Solved Average makespan Solved Average makespan Solved Average makespan

BlocksWorld 34 34 10.92 24 15.88 34 7.25
Depots 20 20 11.93 11 14.86 10 9.10
DriverLog 20 20 14.47 15 12.93 16 13.40
Satellite 20 20 17.00 16 11.50 20 14.25
Rovers 20 20 12.65 20 13.35 17 14.29
ZenoTravel 20 20 8.56 16 8.31 20 8.31

Total 134 134 12.59 102 12.81 117 11.10

Table 2 Number of problems solved and average makespan of FLAP2, OPTIC and TFD.

5.2 FLAP2 vs. OPTIC and TFD

Table 2 shows the number of solved problems and the average makespan of FLAP2, OPTIC and

TFD. As it can be observed, FLAP2 also solves more problems than OPTIC and TFD. The

average makespan is computed taking into account only those problems that were solved by the

three planners. Regarding the makespan, FLAP2 is in a intermediate position between TFD, that

produces plans of very good quality, and OPTIC.

In Figure 4 we show the computation time of FLAP2, OPTIC and TFD to find the first solution

plan. For the average times shown in these figures, we considered only the problems that the three

planners have managed to solve. FLAP2 is much faster than OPTIC in the BlocksWorld, Depots,

Satellite and ZenoTravel domains. On the contrary, OPTIC is slightly faster than FLAP2 in the

Rovers domain. On average, OPTIC is 113.94 times slower than FLAP2 in all the six domains.

TFD is also slower than FLAP2, especially in the Depots and DriverLog domains. On average,

TFD is 45.3 times slower than FLAP2 in all the six domains.

In summary, we can conclude that FLAP2 is very competitive in comparison with these four

top-performing planners. It solves more problems than SGPlan, YAHSP2, OPTIC and TFD in

the tested domains. FLAP2 also produces plans of better quality than the sequential planners

SGPlan and YAHSP2, and is far more faster than OPTIC and TFD, planners that, like FLAP2,

handle partial-order plans.

6 Conclusions

The flexibility of the Partial-Order Planning (POP) paradigm allows for the generation of high-

quality parallel plans. However, current sequential planners outperform partial-order planners

because they require less computational effort as they not need to cope with interactions among

actions and can use very effective state-based heuristics.

In this paper we present FLAP2, an improved version a FLAP. FLAP is a forward partial-

order planner that combines three different heuristics to guide the search and implements a novel

plateau-escaping method that diversifies the search in different directions. FLAP2 changes the

way the heuristics are combined and applies a recursive method to deal with plateaus, thus

significantly improving the planning performance.

We compared FLAP2 with SGPlan, YAHSP2, OPTIC and Temporal Fast Downward (TFD),

four top-performing planners that can generate plans with concurrent actions. Like FLAP2,

OPTIC and TFD handle partial-order plans, combining the action selection and the scheduling

processes. On the contrary, SGPlan and YAHSP2 are total-order planners that parallelize the

computed plans at a later stage.

FLAP2 is the only one that was able to solve all the problems in the selected benchmark set.

Regarding the makespan (plan duration), partial-order planners generate plans of much better

quality than the total-order planners. Particularly, FLAP2 has shown to obtain plans of very good

quality, only surpassed by TFD, which is able to produce plans with a slightly better makespan.

As for the planning time, FLAP2 has shown to be competitive with the sequential planners,

SGPlan and YAHSP2, especially in domains with strong interactions between the problem goals,

and far more faster than the other partial-order planners, OPTIC and TFD.
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Figure 4 Planning time (in seconds) of FLAP2, OPTIC and TFD.

As a future extension, we intend to investigate the adaptation of the heuristic functions of

FLAP2 to optimise the makespan and to mitigate the problem of hDTG with dead-end states

in non-reversible domains. Then, we want to exploit the good performance of FLAP2 and its

flexibility as a partial-order planner to develop a new version for dealing with temporal planning

problems.
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