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Abstract. The main factor of intelligence is defined as the ability to comprehend, for-
malising this ability with the help of new constructs based on descriptional complexity.
The result is a comprehension test, or C-test, which is exclusively defined in computational
terms. Due to its absolute and non-anthropomorphic character, it is equally applicable to
both humans and non-humans. Moreover, it correlates with classical psychometric tests,
thus establishing the first firm connection between information theoretical notions and
traditional IQ tests. The Turing Test is compared with the C-test and the combination of
the two is questioned. In consequence, the idea of using the Turing Test as a practical test
of intelligence should be surpassed, and substituted by computational and factorial tests of
different cognitive abilities, a much more useful approach for artificial intelligence progress
and for many other intriguing questions that present themselves beyond the Turing Test.
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1. Introduction

Turing realised that only machines with very special self-modifying programs
could eventually pass the test he had just devised (Turing, 1950). The abil-
ity to learn new functions for which the machine had not explicitly been
programmed has since then been recognised as a necessary condition for a
machine to be considered intelligent. Accordingly, the relationships between
Al IQ tests, inductive inference, learning, and descriptional complexity soon
began to be discovered and, in many cases, formalised.

Many early works in Al dealt with the relation between IQ tests and
AT (Simon and Kotovsky, 1963) (Evans, 1963). The association between Al
and inductive inference was taken on by Solomonoff (Solomonoff, 1957),
leading him to the independent discovery of descriptional complexity (also
known nowadays as algorithmic information or Kolmogorov complexity), and
the formalisation of inductive inference under this complexity (Solomonoff,
1964)(1978). Since intelligence tests occasionally require the extrapolation
of an effective sequence, the connection between inductive inference and
IQ tests was frequently alluded to (Gold, 1967)(Blum and Blum, 1975). In
particular, the idea of “measuring machine power-intelligence as the scope
of the class of inferable functions” is suggested for the first time (Blum
and Blum, 1975). Nonetheless, it is not until Chaitin’s challenge to “develop
formal definitions of intelligence and measures of its various components’
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2 Jose Hernandez-Orallo

(Chaitin, 1982), that the proposal of measuring intelligence by the use of
descriptional complexity is explicitly solicited.

The problem of extrapolating a sequence (i.e. sequential inductive infer-
ence) has been clarified and formalised under descriptional complexity. See
e.g. (Solomonoff, 1978), (Zvonkin and Levin, 1970), (Li and Vitanyi, 1997).
However, the evaluation of inductive abilities (a notably different problem)
has not been successfully addressed to date, at least in the way Chaitin
suggested. As expected, many of the technical tools and results that will be
used in the following are borrowed from Kolmogorov complexity, but some
new constructs will be introduced in order to make the evaluation feasible
and to make it meaningful.

The motivation for such an evaluation is a first step in the construction of
a scientific measure of intelligence, which should be compliant with the fol-
lowing assumed requirements: non-Boolean, factorial, non-anthropomorphic,
computational and meaningful. As will be discussed in later sections, despite
the philosophical and enlightening virtues of the TT, when implemented, it
has various drawbacks. First, it is difficult to gauge, it is not factorial, it is
absolutely anthropomorphic, it is informal and it does not give an objective
meaning to the word ‘intelligence’. On the contrary, 1Q tests provided by
psychometrics (Spearman, 1904)(Neisser et al., 1996)(Eysenck, 1979) are
non-Boolean and factorial. However, psychometrics has neglected (or failed)
to incorporate the last three requirements, which, in fact, are highly related.
Psychometrics, as the science of measuring human intelligence, is anthropo-
morphic by definition. The factorial approach has not provided much insight,
and no meaning can be extracted from “intelligence is what is measured by
intelligence (IQ) tests”. I realise that any definition is arbitrary, but it would
be qualitatively better if the exercises that compose the tests were related
to or derived from computational concepts.

In this paper, a test for one of the main factors of intelligence (compre-
hension ability) is introduced, according to the five prerequisites mentioned
above. I would like to point out that the test is exclusively based on concepts
which are derived from the notion of the Turing machine.

The paper is organised as follows. The next section introduces some
necessary tools which will be used in the rest of the paper. It will also
provide a description of some technical difficulties which are solved in the
subsequent sections. In particular, Section 3 formalises the initially vague
notion of comprehension in information-theoretical terms. Section 4 deals
with its measurement by solving the ‘subjectivity objection’ under the notion
of unquestionability and by ordering the difficulty of instances. This allows
for the construction of a comprehension test (C-test). Section 5 presents the
results of applying the C-test to humans and compares it with psychometrical
tests. Its applicability to Al is discussed. Section 6 studies the measurement
of other factors (knowledge applicability, contextualisation, knowledge con-
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Beyond the Turing Test 3

struction) under the same conditions that the C-test was devised with. The
TT is re-examined in section 7 and compared with the C-Test. The final
section concludes with the claim of a new science of intelligence that would
make it feasible to answer many new and fascinating questions which lie
ahead.

2. Preliminaries and Technical Problems

Let us choose any finite alphabet ¥ composed of symbols (if not specified,
¥ = {0,1}). A string or object is any element from ¥*, with - being the
composition operator, which is usually omitted. We define a sample space Ss;
consisting of all finite strings and infinite sequences over X, i.e. Sy = X*UX .
By (a,b) we denote a standard recursive bijective encoding of a and b, such
that there is a one-to-one correspondence between (a, b) and each pair (a,b).
Note that this usually takes more bits than a-b. The empty string is denoted
by €. The term [(z) denotes the length or size of x in bits and logn will
always denote the binary logarithm of n. For every string y composed of [
symbols, we denote the symbols from position n to position m by y,. m if
1 <n <m <. Otherwise it is undefined. With y_,,,, .., and yg, we denote
Y1..ms Yn.i(y)> and Y.k, respectively. If y has infinite length, y, . denotes the
infinite sequence yn, .oo. Given any string z, we denote by z_gq = x1_j(;)—q the
prefix of z with length I(z) — d, i.e. the string = without its last d elements.

The complexity of an object can be measured in many ways, one of
which is its degree of randomness, which turns out to be essentially equal to
its shortest description (Kolmogorov, 1965). Descriptional Complexity, now
commonly referred to as Kolmogorov complexity, was independently intro-
duced by Solomonoff, Kolmogorov and Chaitin to formalise this idea, and it
has been gradually recognised as a key issue in statistics, computer science,
Al epistemology and cognitive science (Li and Vitanyi, 1997)(Gammerman
and Vovk, 1999).

However, the algorithmic prefix version of descriptional complexity, usu-
ally denoted by K (z) is unsuitable for our purposes because it is not mono-
tone on prefixes, i.e. K(xy) can be less than K (z). K(x) is problematic for
prediction in the continuous case (see e.g. Vitdny and Li 1997), but, more
importantly, the use of 275(*) ag a probability prior would imply that the
probability of the sequence 0" to be followed by a 0 is greater if n = ng = 10'°
than if n = nq = 141568756142169, which is quite counterintuitive because
ng < n1. To avoid these problems, we shall work with monotone machines.

There are slightly different definitions of monotone machines (Solomonoff,
1964)(Levin, 1973)(Schnorr, 1973). We follow (Li and Vitdnyi, 1997):

Definition 1. A Monotone Machine f is a Turing machine with a one-
way read-only input tape, some work tapes, and a one-way write-only output
tape. The input tape contains a one-way infinite sequence of 0’s and 1’s and
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initially the input head scans the leftmost bit. The output tape is written one
symbol in ¥ at a time, and the output is defined as the finite binary sequence
on the output tape if the machine halts, and the possibly infinite sequence
appearing on the output tape in a never-ending process if the machine does
not halt at all. For a (possibly infinite) sequence z, we write 3(p) = = if
outputs z after reading p and no more. (Machine f either halts or computes
forever without reading additional input).

Definition 2. The Monotone Complexity of an object x given y on 3,
with 8 being a monotone machine, is defined as:

Kmg(zly) = Hgn{l(p) : B((p, ) = 2w, w € S}

The monotone complexity of an object x is denoted by Kmg(x) = Kmg(xe).

There is an additively optimal monotone machine U such that there exists
an independent constant ¢ such that for any other monotone machine 8 and
for all  Kmy(z) < Kmg(z) + c. If we select this machine U as a reference
machine, the subscript can be dropped, thus assuming only constant errors.
Kolmogorov Complexity and the monotone variant Km also constitute an
absolute and objective criterion of complexity, and they are independent (up
to a constant term) of the descriptional mechanism 3 due to the invariance
theorem. The relationship between monotone complexity and other variants
of Kolmogorov complexity is of logarithmic additive terms (see e.g. Li and
Vitényi, 1997).

Occam’s razor, which states that “given two alternative explanations,
choose the simplest one”, was formalised under descriptional complexity
by (Solomonoff, 1964), approximated by Rissanen in 1978 under the name
“Minimum Description Length” principle (MDL), finally re-formulated in its
current one part code (Rissanen, 1996)(Barron et al., 1998).

In (Vitdnyi and Li, 1997) it is shown that under some reasonable assump-
tions on the u — probability of correctly extrapolating a sequence, a fized-
length y extrapolation from x maximises p(y|x) iff it minimizes Km(zy) —
Km(z). In other words, this difference, which is always positive since K'm
is monotone, states that the shorter that the description of zy wrt. x is (i.e.,
the less novel y is), the better the prediction is.

From here, a compression/prediction test based on Chaitin’s proposal
(Chaitin, 1982) seems to be easily applicable. However, there are many
technical reasons that explain why such an intriguing proposal has not yet
been implemented:

1. K(z) and Km(z) are not computable. If a compression test is con-
structed, how do we know whether the subject’s answer is a hit?

2. There can be different alternative plausible descriptions. In other words,
there may exist a 3’ such that Km(zy') = Km(xy) 4+ ¢ with ¢ being a
very small constant.
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3. Despite the invariance theorem, the constant involved is relevant, and
there is no reason to prefer one descriptional system over another.

4. The test would finally measure the ability of compression, but, as will
be argued in the following section, this differs slightly with the ability of
comprehension, the main factor of intelligence that is to be measured.

The first problem can be solved by incorporating time into the definition
of K'm. The most appropriate way to weight the space and time execution
of a program, the formula LTg(p,) = l(py) + log7s(ps), where 7 is the
number of steps the machine has taken until = is printed, was introduced by
Levin in the seventies! (see e.g. Levin, 1973). The corresponding complexity,
denoted by Kt (see e.g. Li and Vitdnyi, 1997) is a very practical alternative
to K, because as well as avoiding intractable descriptions, it is computable.
Moreover, it better accounts for the idea of simplicity, and Occam’s razor
should be better formalised under this variant.

Let us parametrise the definition of 7 in the following way: 75(p)[..n] is
defined as the time or machine steps such that the first n symbols of the
definite output are placed at the beginning of the output tape. Consider also
73(p)[n..m] = 73(p)[..m] — 73(p)[..n — 1]. In the same way, LTg(p)[n..m| =

l(p) + log T3(p)[n..m] and LTs(p)[..n] = I(p) + log 75(p)[..n]:
Then, the next variant comes directly and is a parametrisation of Kt:

Definition 3. The k-Projectable Length-Time Complexity of an ob-
ject x given y on a monotone machine g is defined as:
Kt (aly) =
min{LTs({p, y)) 1)) — 1(y) : 3 € S5 1) =k st. B({p,y)) = 7))}

Since LTp((p,y)) takes the length of y into consideration, this must be
corrected by the term —I(y). It is trivial to see that Ktm" is the corre-
sponding monotone notion to Kt. Definition 3 will serve as a starting point
for facing the other three unsolved problems (2,3,4). In fact, we first require
distinguishing what comprehending is (problem 4), which is addressed in
the following section, and in Section 4 we shall address how to measure the
comprehension ability (problems 2 and 3).

3. Formalising Comprehension

To comprehend is to understand the inner mechanism of a given evidence by
constructing a plausible model of it. In some way, comprehension is stricter
than inductive learning in terms of justification, because comprehension usu-
ally requires that the subject be able to explain the concept to others. In
the case of infinite concepts, this explanation is only possible if the subject

! Intuitively, every algorithm must invest some effort either in time or demand-
ing/essaying new information, in a relation which approximates the function LT.
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has a finite description of the concept. Consequently, comprehension could
be understood in terms of identification. However, if a concept is finite, like
most everyday concepts, both notions diverge significantly. A short finite
concept can be easily identified by its extensional description, which has
no insight and which has surely not identified any mechanism or pattern
from it, if the evidence ever had one. This is an age-old question in logic,
where comprehension means the connotation of a term, opposed to its de-
notation or extension. Hence, an extensional description (by enumeration)
has no connotation and consequently requires no comprehension at all. On
the contrary, an intensional description (by comprehension) may have not
discovered the right meaning or real mechanism of the evidence, but at least
it has a chance of having discovered the right one.

There is a fundamental feature that determines this difference, known as
the comprehension requirement, namely that the thing being defined cannot
appear in the definition, which is also one of the four laws of definition,
according to methodology (Bochenski, 1965). Ancient and modern teachers
have used it whenever they ask their pupils whether they have comprehended
a concept. This is one of the oldest evaluation criteria ever used and a premise
with which the pioneer of the psychometric approach, Binet, designed his
first tests to avoid “rote learning”.

At first sight, Kolmogorov complexity seems sufficient to distinguish ex-
tensional descriptions from intensional ones. However, the ideal MDL prin-
ciple, which chooses the shortest description for a given concept x, does not
ensure that the description is intensional. In the vast majority of cases, the
data is not compressible, and the MDL principle gives the void hypothesis
plus the data itself as a set of exceptions. This most extensional description
gives no hint about the comprehension of that data. Even in the rare cases
where the data is compressible, a short description does not ensure that
all the data is described intensionally; there could be a part that is highly
compressed while another part is quoted as an exception.

FEzample 1. Given the sequence 1™, where up to m bits have been set to 0 by
using pattern p. The MDL principle will give a sequence of 1™ plus the exceptions as
the most plausible hypothesis, and will predict 1, because it minimizes Km(xzy) —
Km(z). The zeros will be considered as noise (not explained) until the cost of
quoting the exceptions exceeds the cost of p. In fact, it is easy to see that this
problem only happens for relatively short sequences, because, if there is a pattern,
there is always a value of n from which the use the pattern begins to be simpler than
to quote the exceptions. One may argue, that for short sequences, exceptions would
simply be allowed or not, depending on the purpose of the inductive technique:
prediction or explanation, respectively. However, we will see that this is not easy.

The MDL principle avoids this problem by finding a compromise between
the length of the hypothesis plus the length of exceptions, since “it is dif-
ficult to find a valid mathematical way to force a semsible division of the
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information at hand in a meaningful part and a meaningless part” (Vitanyi
and Li, 1997). Koppel introduced the notion of sophistication with the goal
of distinguishing the structural part of an object (Koppel, 1987) from its
data (or non-compressible part of it). However, it can ‘disguise’ a general
effective interpreter as fictitious pattern and leave a great amount of real
pattern as data. Thus, a different approach is required to distinguish whether
a description has exceptions (partially or totally extensional) or whether is
composed exclusively of pattern (it is all structure or fully intensional).

One positive result of this paper is that it is possible to distinguish pattern
from data, at least to the extent of discerning the part of a description which
is used for all the data to the limit (the structure). Let us introduce the
necessary constructs for this mathematisation:

Definition 4. A description p’ is m-equivalent in the limit to a descrip-
tion p for a monotone machine ¢ iff 3n € IN,n > 0 and dz € Z such that

¢(p,)n+z..n+z+m = ¢(P)n.ntm

Note that if I(¢(p)n..) = s < m then the subscript is not well-defined and
the descriptions are not m-equivalent (they would be s-equivalent). In what
follows, m is the ‘match’, n is the ‘shift’ and z is the ‘phase’. Informally,
two descriptions are m-equivalent in the limit if there is an ‘alignment’ point
from which their predictions match at least m symbols.

Definition 5. A description p is an m-fully Projectable Description of
x given y on a monotone machine ¢ iff =3p’ with ¢((p', v)). . # ¢((P,Y)) .o
such that (p/,y) is m-equivalent in the limit to (p,y) with shift n and phase
zand n+z <l(z) and LT((p',y))[n+ z.n+ z+m/] < LT ((p,y))[n..n+m’]

with m’ = l(x) + m.

The concept is more insightful for m = oco. In this case, we would read that
an oo-fully projectable description of x cannot have a simpler description
which is different form p and which at the same time is co-equivalent in the
limit that. Note that LT is used instead of | and only applied to the first
chunk of length m’ where p’ and p begin to be equivalent. The reason for
introducing a parameter m in both definitions is because it is impossible to
effectively know whether two sequences are equivalent up to the infinite. In
practice, the highest goal we can aim for is that m be the greatest number
possible.

Ezample 2. Given the evidence “3, 12, 21, 30, 102, 111, 120” (properly codified
into a binary sequence) we can consider several projectable descriptions. For in-
stance, D1 = “3, 12, 21, 30, 102, 111, 120 and 1 forever” is not fully projectable
because there exists a shorter description “1 forever” which is equivalent in the
limit. In the same way, Do = “Start with number 3. The following three numbers are
obtained by adding 9 to the preceding one. Continue with number 102. The following
numbers are obtained by adding 9 to the preceding one” is not fully projectable
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because there exists a shorter description “Start with number 3. The following
numbers are obtained by adding 9 to the preceding one” which is equivalent in
the limit. On the contrary, the description D3 = “numbers whose digits in decimal
representation amount to 3 ordered” is fully projectable. Similarly, the description
D, = “repeat 3, 12, 21, 30, 102, 111, 120 forever” is fully projectable (unless there
is a way to compress the rote pattern). Finally, the following description is also fully
projectable Ds = “the y values of a polynomial y = P(x)” where P is a polynomial
such that P(1) = 3, P(2) =12, ..., P(7) = 120.

Although D, and D5 may seem counterintuitive, it should be realised that a
fully projectable description simply formalises the idea of explanation (and not yet
the comprehension requirement): it describes the evidence, it accounts for all of
it (there are no exceptions because it is fully projectable) and it can be related
(explained) to others (because of the use of LT, descriptions which are extremely
time consuming are avoided). Hence, D4, whether we like it or not, is an ezplanation
for the evidence.

For the moment, we can define a new variant of descriptional complexity:

Definition 6. The m-Explanatory Complexity of an object x given y
on a monotone machine S is defined as:
Etg(zly) = min{ LT5((p, y))[-1(2)] — U(y)
such that p is an m-fully projectable description of = given y }
The string y, which we have carried along, represents the context or previous
knowledge where the explanation must be applied.

In the same way as is done with K'm and the MDL principle, we can
denote with SED(x|y) the Simplest (in LT terms) oo-Explanatory Descrip-
tion for x given y, i.e. the first simplest fully projectable description (in
lexicographic order) for x given y. Logically, [(SED(zx|y)) = Et(z|y).

However, we still have that for most strings, SED(z) will be just the
rote description “repeat = forever” which does not follow the comprehension
requirement. A first idea to avoid this phenomenon is to force the description
to be shorter than the data and to say that the data has no comprehensive
explanation if this is not the case?. However, most everyday data is not
compressible and it is still comprehended.

Another approach is the idea of reinforcement or cross-validation. For
instance, if we remove the last element of the previous series, i.e. “3, 12, 21,
30, 102, 1117, it is not very likely that D4 and Ds be produced; however Ds
can still be generated. In general,

Definition 7. Stability. A string x is s-stable on the right given y in the
descriptional system f iff Vi,1 <i < s: SEDg(xz_;ly) = SEDg(x|y).

In other words, a string x is s-stable on the right if taking s elements from the
right, it still has the same best explanation. These s elements, if given a pos-
teriori, are considered reinforcement or confirmation, and, if given a priori,

2 A different approach is the notion of exception, studied and formalised in (Hernandez-
Orallo and Minaya-Collado, 1998) and (Herndndez-Orallo and Garcia-Varea, 1998).
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are considered redundancy or hints to help to find the explanation. Conse-
quently, although rote learning can be trickily used to make an extensional
description fully projectable, stability (like reinforcement or cross-validation)
is a methodological criterion which can be used to avoid this phenomenon.
Both conditions (fully-projectableness and stability) are necessary.

Example 3. Consider the sequence z = 1'017 with ¢ and j being random and
independent. Imagine that the description p = “print 1 forever except from position
1417 is selected as the shortest description for z and stability is defined in terms of
MDL instead of SED. Under these conditions p would be j-stable. On the contrary,
this does not happen with SED because p cannot be fully projectable, since there
exists a different description p’ = “print 1 forever” which is simpler and equivalent
to p from position 7 + 1.

There is still another reason to support the previous notion of compre-
hension as an ontological principle. Why must we avoid rote learning? Why
must we anticipate? Why do children innately find more complex patterns
than the minimal description? (Marcus et al., 1999) This search for more
informative and explanatory hypotheses instead of the shortest ones may
lead to fantasy, but this is not dangerous provided that the system can
interact with the world in order to refute some of these hypotheses (Harman,
1965). This informativeness or investment in the hypotheses was advocated
by Popper for the scientific method (Popper, 1962), and as we have seen, it is
equally applicable for cognition. Even if we make the very strong assumption
of Occam’s razor, i.e., things in nature are not unnecessarily complex, the
previous rationale is justified by the fact that, just as every incompressible
string has compressible substrings, most compressible strings have incom-
pressible substrings, because there comes a point where the string is so short
that it is not worth compressing. If the evidence is presented incrementally,
it is better to invest in more informative or general hypotheses instead of
finding the optimal one for each chunk, which in the end will not turn out to
be part of the whole description of the whole evidence. This rationale leads
to the next theorem:

Theorem 1. For every monotone machine (3, there exists a constant ¢ which
depends exclusively on (§ such that for every string x of length n with
SED(x) = s and [(s) = m such that m < n, and for every partition z = yz
such that [(y) < m — ¢, then SED(y) is not equivalent in the limit with s.

Proof. Consider any string z and SED(z) = s with {(s) = m such that m < n.
Take any prefix y such that I(y) < m — c. Consider the description p, = “print
y for ever” with l(py) = l(y) + ¢ < m — ¢+ ¢, this constant ¢ being the space
which is required for coding “print .. for ever”. Since the computational cost of
py is linear, say &' - I(x), it is sufficient to choose ¢ > ¢’ + log k' to ensure that
the description p,, is shorter than s. Jointly, LTz(p,)[..l(z)] = I(p(y)) + log(k’ -
l(z)) <m—c+d +logk’ +logl(z) < m—c —loghk' + ¢ + logk’ + logl(x) =
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m + logl(x) < LTp(s)[..l(z)] since I(s) = m and x cannot be printed in less than
I(z) steps. Obviously, LTg(SED(y))[..l(x)] < LTs(py)[..l(x)] because SED is the
simplest explanation in LT terms. From here, we finally have that SED(y) is simpler
(in LT terms) than s. Consequently, s and SED(y) cannot be equivalent in the limit
because s = SED(x) is fully projectable and, by definition, there cannot exist a
description with less LT equivalent in the limit. O

Although the result is still worse for the MDL principle, as shown in Example
1, the theorem seems to also discredit SED. However, if we demand stability
this does not happen, because p, would not be stable. The idea of stability
or cross-validation is then supported by the previous theorem. In fact, it
is an innate aesthetic preference in the explanations that human beings
generate. Why does answer 23 seem better to the series “3,7,11,15,19, ...”
than answer 37 Why is 23 the ‘correct’ solution in IQ tests? In Hofstadter’s
words, “it would be nice if we could define intelligence in some other way
than “that which gets the same meaning out of a sequence of symbols as we
do™ (Hofstadter, 1979).

Despite the fact that hardly any definition can completely grasp the in-
tuitive notion that generates it, the arguments provided in this section allow
us to state that SED descriptions which are stable formalise the notion that
comprehension has taken place. The following section is devoted to ensuring
that the descriptions get the same meaning from a sequence. It also discusses
how to measure the difficulty of an instance.

4. Testing Comprehension Ability

Theoretically, there are two ways to know whether a system’s operation is
compliant with certain requirements: by inspecting its code (or program)
or by testing its behaviour. In general, for complex systems, as has been
finally recognised in software engineering, verification must be experimental
in practice, by means of sets of tests. However, it is an open and difficult
problem to devise a complete specification of intelligence, mainly because it
depends on a consensus on the abilities that an intelligent system should
have. Nonetheless, it is currently possible to distinguish certain abilities
that are fundamental for intelligence. A verification of intelligence behaviour
should begin with these fundamental traits and gradually add more diverse
(factorial) exercises in order to make the test set more robust. Traditionally,
comprehending is recognised as the most important trait of intelligence, and
we have formalised it in a computational framework. This allows for the
construction of exercises for a test which are selected theoretically rather
than experimentally. This does not mean that they are necessarily more
representative, but at least we know exactly what is measured, quite unlike
psychometrics.
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However, if we intend to measure comprehensibility there are still two
questions to solve. First, we must design unquestionable exercises, in order
to avoid the ‘subjectivity objection’ of 1Q tests. Secondly, we require an
absolute referent of comprehension difficulty in order to give a non-Boolean
score which is independent to the mean ability of the subjects or society who
have taken the test before.

With respect to the notion of unquestionability, psychometrics has striven
to show that it is not absurd to talk about the ‘correct’ solution, at least if by
‘correct” we mean the prediction of the simplest comprehensive answer. Its
rationale is that if the great majority matches some solution it is because there
are not alternative explanations of similar complexity, and, consequently,
it is the most plausible one. However, this assertion is made from a very
subjective and informal point of view.

At first glance, it seems that given some data x of length n, we can still
modify any explanation p with the addendum “Execute p but print a ‘1’
every m symbols that are printed beginning from n + 1”. This alternative
explanation would be comprehensive for the data but would differ from p
in the limit. It would only be a little longer and this would depend on the
descriptional machine used.? To avoid these problems in an implementation
of a test, the following constructions are sufficient:

Definition 8. Plausibility. A fully projectable description p for a string
x given y is (¢, d)-plausible on the right in a monotone machine £ iff Vi, 0 <
i <d: LTg(SEDg(x—i|y))[..l(x—)] + ¢ > LTz(ply)[..l(x—s)].

Intuitively, a description is (c,d)-plausible if it is at most ¢ bits longer (in
LT terms) than the best explanation for z, and this holds even if we remove
up to d elements from the right of x.

Definition 9. Unquestionability. A fully projectable description p for x
is (¢, d)-unquestionable in a monotone machine 3 iff it is (¢, d)-plausible and
there does not exist another (¢, d)-plausible description p’ for x.

This is a more restrictive condition as ¢ and d are greater. In order to still
obtain some unquestionable descriptions we must make the strings larger.
However, as we shall see below, if ¢ and d are tuned conveniently for a
concrete descriptional mechanism, the tests can still be composed of short
strings « such that their SEDg(z) is (¢, d)-unquestionable.

The second question was to ascertain the difficulty of each problem, in
order to be able to give a test set of exercises of different comprehensibility.
The idea is to relate this difficulty to the complezity of the simplest (in

3 This is a very difficult problem which can be addressed by recognising the addendum
as a non-reinforced part (an exception). This has been done in (Herndndez-Orallo, 2000)
for universal (constructive) representations, but it is not easy to extend the framework to
any universal representations (Herndndez-Orallo and Minaya-Collado, 1998).

TT-JHdz2.tex; 21/10/2012; 13:06; p.11



12 Jose Hernandez-Orallo

LT terms) explanation (i.e. Ft) and the ezplicitness of the description wrt.
the data. To do this, we adapt the definition of potential (Li and Vitanyi,
1997) and the notion of k-compressibility to the corresponding notion of
comprehensibility:

Definition 10. A string x is k-incomprehensible given y, denoted by
incomp(zxly), in a descriptional system [ iff k is the least positive integer
number such that: Ktmg(SEDg(x|y)|(z,y)) < k - logl(x).

The use of the factor log [(z) is to compensate the fact that £ must be printed
and, therefore, for all x we have Ft(z) > log l(z). E.g., consider a string =
of length 256 and y = ¢, with Et(z) = 50; its comprehensibility is k= 7.

Definition 10 measures the difficulty of finding SED(z|y) from z and
1y, because descriptions of the form “repeat x forever” for z™ have a high
absolute Ft value (to quote x) but low relative complexity (w.r.t. (z,y)).

Now a generic test of the ability of comprehension can be constructed by
generating a series of strings of gradual comprehensibility. Unquestionability
is achieved by providing ‘redundant’ information up to a limit, because,
otherwise, the problems would be much too long. However, there must be
sufficient support to not distort its difficulty. In other words, when the
subject finds the solution, it should be sure that he/she/it has found it.
For instance, given the series “a, c, c, a, ¢, ¢, ¢, a, ¢, C, C, C, &, ...” it seems
logical to expect that the series would follow “c, ¢, ¢, ¢, ¢, a, ¢, ...”, so it is
redundant to present more than the necessary symbols, but less would make
the answer questionable.

We can finally obtain the degree of intelligence (comprehensibility factor)
of a given system as the value which results from applying the following test:

Definition 11. C-Test. Let us select a descriptional system?  which is
sufficiently expressive and impartial, and which is composed of an alphabet
of symbols 23 and a set of operations ©3. These operations manipulate
these symbols, and they have a corresponding cost (or length). We provide
(or programme) the alphabet, operations and cost to S. Depending on the
expected intelligence of a system we select a sufficiently wide range 1..K of
difficulty. For each k = 1..K, we randomly choose p sequences z*? which are
k-incomprehensible, (c,d)-plausible, (c,d)-unquestionable and s-stable with

s > r, r being the number of redundant symbols (or hints) of each exercise.
k,p

—(s-l—r))'

We give them to S and we ask for the following element according to the

best explanation that is able to construct with Qg and ©5. We leave S a

The questions are the K -p sequences without their s —r elements (z

4 From now, we shall deal with any type of descriptional system since any machine
can be ‘wrapped’ into a monotone machine or, alternatively, monotone complexity can be
computed on non-monotone machines by providing the length of the input string in an
additional input tape.
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Beyond the Turing Test 13

fixed time ¢ and we record its answers: guess(S, " . ;). The result of this
test of comprehensibility (or C-test) is measured as:
oy k.
I(S) = . 21:[( ke 21: hit[x™], 1, guess(S,z00 1))
=1.. i=1..p
the function hit is usually measured as hit[a,b] = 1 if a = b and 0 otherwise
(negative values could be used to penalise errors). The value e is simply for
weighting the difficult questions (e = 0 means that all have the same weight).

In an informal way, the test measures the ability of finding the best ex-
planation for sequences of increasing comprehensibility in a fixed time.®> The
relevance of the time given and the weighting e of the difficult exercises is still
an open question. I would be in favor of either including (logarithmically) the
time in the resulting value I(S) or fixing a high time and penalising wrong
results with a negative value of hit[a,b] (blank answers with a zero value).
However, this would create problems if you would ever want to measure two
different things: the intelligence of a subject and the speed of the subject.

5. Measurement of Pretended Intelligent Systems

The preceding test is applicable to any system whose degree of intelligence is
questioned. The test can be used for humans, animals, computers, extrater-
restrial beings and any combination of these by appropriately selecting the
descriptional system and the rest of parameters of the test.

Although Definition 11 evaluates a single ability, there are still many
ways to devise a specific test. An implementation of the test is described in
(Hernandez-Orallo and Minaya-Collado, 1998). The abstract state machine
which was used is not monotone, but this difference is not relevant due to the
stability condition. A variety of strings of different comprehensibility in that
machine were generated. Although the set of k-potent numbers of length at
most n can be computed in polynomial time in n (see a proof in Li and
Vitanyi, 1997), the cost of O(n*) forces the use of heuristics. In the same
way, m fully-projectable descriptions were checked up to a given length limit
m. Finally, a sieve was applied in order to obtain only (c¢,d)-plausible, (c,d)-
unquestionable and s-stable sequences. The creation of the test took several
days in all.

The same work presents the results® of applying the test to 65 subjects
from the species Homo Sapiens Sapiens aged between 14 and 32 years (jointly

5 One relevant feature of the test is that, although the subject is supposed to have a
particular universal descriptional system ¢s with a particular background knowledge (life
experience) Bs, it is given a descriptional system (3 over it, which highly minimises the
influence of the difference between the computations performed by ¢s and other subject
¢+, i.e. the difference between Ets(x|(Bs, 8)) and Eti(x|(Bz, 8)). This makes it possible for
the notions of plausibility and unquestionability to be similar for both subjects.

6 For more information about the experimental setup, methodology, questionnaire, sub-
jects, times, etc. consult (Herndndez-Orallo and Minaya-Collado, 1998). The web page
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14 Jose Hernandez-Orallo

with a classic test of intelligence, the Furopean IQ Test). The correlation be-
tween both tests was 0.77. This value does justify a further more exhaustive
study on larger groups and several variations derived from Definition 11.
Another remarkable experimental result shown in Fig. 1 is that the relation
between the hit ratio (the percentage of subjects that gave the right answer)
and k-incomprehensibility is direct, which suggests that comprehensibility
really estimates the difficulty of each string.

1.0

0.8

i O

Ratio 0.4

0.2

0.0 t t t t t t {
k7 k8 k9 k10 k11 k12 k13 k14

Figure 1 Difficulty (k)

Logically, the C-tests cannot be expected to substitute contrasted and widely
used 1Q tests for the moment. Nonetheless, this could be a starting point
towards a theoretical foundation of psychometrics which is free from the
Homo Sapiens as a reference.

However, it is not human intelligence but non-human intelligence which
urgently needs to be measured. A formal declaration of what is expected
from an intelligent system should allow for two important things: to derive
more intelligent systems from a more concrete specification and, secondly, to
evaluate them. Definition 11 provides a first step for both, since a detailed
scale for measuring the progress (in one intelligence factor) of generic systems
in Al can help to establish the first one. As any other field of science, a
great advance in a discipline occurs when one of its topics can be measured
in an effective and justified way. Just as aeronautics needs altimeters and
speedometers, Al requires measurements of different factors of intelligence.

Nowadays, the initial aim of making general systems is still represented by
two subfields of Al: automated reasoning and machine learning. Automated
theorem provers are able to solve complex problems from different fields of
mathematics. The great advance of automated deduction over the last two
decades can be mainly attributed to the existence of sets of problems for
comparing different systems. These sets have evolved and grown to huge
and complete libraries of theorem proving problems, such as TPTP (Suttner
and Sutcliffe, 1998). Machine learning is also taking a more experimental
character and different systems (from different paradigms) are evaluated
according to classical (toy) problems in the literature rather than exclusively

http://www.dsic.upv.es/ jorallo/itests/ includes an up-to-date summary of results
and an archive of past and on-going tests.
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Beyond the Turing Test 15

accepting the results for classes of problems which are theoretically expected
to occur. In my opinion, experimental test sets should also be automatically
generated or at least accompanied by a theoretical measurement about the
complexity of each exercise. This complexity could be obtained by adapting
the previous notions to several representational languages.

6. Factorisation

During the XXth century, psychometrics strove to differentiate between
background knowledge (either evolutionary-acquired or life-acquired) and
‘liquid intelligence’ (or individual adaptability). Accordingly, exercises from
1Q tests are strictly selected to avoid the influence of background knowl-
edge in order to be foolproof to ‘idiots savants’. Even with this restriction,
there are still many knowledge-independent abilities (or factors) to measure.
Some factors usually found in psychological tests are ‘verbal ability’, ‘visual
ability’, ‘calculation / deductive ability’, etc.

The C-test measures one factor, which could empirically be identified
with the g factor or liquid intelligence. There are more partially indepen-
dent factors which could be measured by using extensions of the framework
presented in the previous section. For instance, other inductive abilities, such
as knowledge applicability, contextualisation and knowledge construction
ability, can be measured in the following way:

— Knowledge Applicability (or ‘crystallized intelligence’): a background
knowledge B and a set of unquestionable (with or without B) sequences
x; are provided such that incomp(z;|B) = incomp(x;) — u but still
SED(z;|B) = SED(x;). The difference in performance between cases
with B and without B is recorded. This test would actually measure the
application of the background knowledge depending on two parameters:
the complexity of B and the usefulness of B, measured by u.

— Contextualisation: it is measured in a way similar to knowledge appli-
cability but different contexts By, Bs, ..., By are supplied with different
sequences x; ; such that incomp(x; | B;) = incomp(x; ) — u. This multi-
plicity of background knowledge (a new parameter T') distinguishes this
factor from the previous one.

— Knowledge Construction (or learning from precedents): a set of se-
quences x; is provided such that there exists a common knowledge or
context B (now not given) and a constant u such that for incomp(z;|B)
< incomp(x;) —u. A significant increase in performance must take place
between the first sequence and the later sequences. The parameters are
the same as the first case, the complexity of B and the constant wu.

It is obvious that these three factors should correlate with the comprehen-
sion ability. Other non-inductive factors, especially deductive abilities, are
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seemingly easier to measure because there is no problem of unquestionability.
It is expected that analogical and abductive abilities” can be shown to be
closely connected to inductive and deductive abilities both theoretically and
experimentally. Inductive abilities, especially knowledge applicability, may
also be correlated with deductive abilities (any hypothesis must be checked
deductively) and these may also correlate with the idea of congruence or
coherence, since it has been shown to be theoretically equivalent to constraint
satisfaction (Thagard, 1989).

To show experimental correlations (especially for non-human and/or non-
adult subjects), the presentation of the test must change slightly. The exer-
cises should be given one by one and, after each guess, the subject must be
given the correct answer (rewards and penalties can be used instead). This
has two advantages: there is no need for the subject to understand natural
language (or any language) in order to explain the purpose of the test to the
subject, and there is no need to tell which factor or purpose is to be measured
in each part of the test. There is also one disadvantage, deductive problems
should be posed in terms of ‘learn to solve’ or ‘learn to prove’ in a way
similar to that used by (Solomonoff, 1957) suggested with simple problems
of arithmetic. Properly, this problem is not prediction but classifying, i.e. to
know which elements could be ‘theorems’ (class true) in that model. In this
sense, it would be interesting to evaluate non-sequential induction, where an
unordered set of elements is given as evidence, in the way that Solomonoff
has recently formalised (Solomonoff, 1999). In fact, non-sequential induction
would be more related to deductive ability while sequential induction would
be more related to calculation ability.

Some other factors are more related to intentionality than intensionality
and general intelligence. These are reactivity, pro-activity and interactivity,
that could eventually be measured by modifying the C-test. This could be
done by adopting notions from Query Learning paradigms (Angluin, 1988)
or by using interactive Turing machines. However, not every factor will be
meaningful for intelligence. Factors like “playing chess well” are much too
specific to be robust to background knowledge. Other factors will result
in being highly correlated (experimentally or theoretically) to other more
distinct factors. The influence of the descriptional mechanism should also be
studied for each factor.

In the end, the matter at issue is then to refine and extend the previous
notions in order to make factorial and grounded tests of intelligence, knowing
exactly what is measured. This is an urgent and fascinating task for Al.

7 See an attempt to measure them in (Herndndez-Orallo and Minaya-Collado, 1998).
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7. The C-test and The Turing Test

The imitation game was conceived by Turing to dissipate the doubts about
possibly non-human intelligent beings. He left no place for human exclu-
sivism and transcendentalism: intelligence can be evaluated by a solely be-
havioural test. Unfortunately, instead of recognising this as his most impor-
tant contribution, the test is still considered ‘a goal’ in Al. Nonetheless, this
view has been responded to by many authors, whose criticism is that the T'T
provides little information on to what intelligence really is; it is just a test
of humanness (Fostel, 1993), that, in fact, if applied to human beings, yields
many paradoxes. The result of applying it to ourselves is a recursive trap
which is unable to answer the question of how intelligent the Homo Sapiens
is.

There have been unsuccessful attempts to correct the two main problems
of the Turing Test for measuring intelligence: its informal character and its
anthropocentrism. There is still a third problem, which is the need for several
intelligent ‘judges’ and a ‘referent’ to implement the test. The self-reference
question arises again: Who is the first intelligent being to start the game?
These and other problems are incarnated in short-time versions of the TT,
such as the Loebner Prize, which usually awards the participant who has
devised the system which is better able to cheat the judges. Furthermore,
there is no way of knowing who is cheating, the system or its designer.

However, if fairly played (and for long), the imitation game is a hard
examination for any intended intelligent system. It is extremely difficult to
behave like an average human being of this epoch (it is even difficult for some
human beings). For a non-human-contextualised being, it would be required
to comprehend the complex behaviour of human beings of these times, their
evolution-acquired traits, their language, their culture, their limitations, etc.
It is much easier then to try to cheat the judges.

On the contrary, the C-tests, as they have been presented, are necessary
(at least to obtain a minimum value of I(5)) but not sufficient (other im-
portant factors should be measured as well). It has already been suggested
that both kinds of tests (TT and factorial) could be combined in order to
give a more accurate intelligence test, because “it is this posing of puzzles
in arbitrary domains that is the hardest part of the Turing Test, and a part
that no program has yet passed’ (Shapiro, 1992). The motivation for such a
combination is quite the same reason why IQ-tests are used jointly with an
interview in post selections and for other evaluation purposes. However, the
interview just shows that the questionnaire is incomplete or that the abilities
that are measured in the interview are less related to intellect.

In my opinion, the TT should be celebrated as an extremely valuable
philosophical exercise about the behavioural character of intelligence. For
practical purposes, though, it will be necessary to implement progressively
more accurate computational tests of different cognitive abilities.
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8. Conclusions

Turing devised a way of distinguishing intelligent beings from non-intelligent
ones without solving the problem of what intelligence is. In fact, an imitation
game is the only way to make sense from such an apparent paradox. However,
in practice, this approach has numerous limitations and problems which
make it useless for application in Al. Experience has shown that it is difficult
to develop non-human intelligence without a computational formalisation of
the problem we are trying to solve.

It is high time to address the fundamental problem: what intelligence is.
This paper presents a tiny first step along this line. A formalisation of one of
the main factors of intelligence, the g factor or liquid intelligence is defined
computationally. This definition has been used to develop an intelligence
test, which is very different from the TT and which is in compliance with
classical 1Q tests. Like the latter, it distinguishes acquired knowledge from
liquid intelligence. More importantly, the C-Test, unlike the TT and IQ tests,
is not anthropomorphic. The factor is defined as the ability to find compre-
hensive explanations, and thus is meaningful. This makes it philosophically
acceptable: intelligence is what allows us to comprehend the world.

Sooner or later we need to face the fact that computers will come closer
and closer to human intelligence. Once this milestone of Al has been achieved,
it will be absolutely necessary to have an objective measure of intelligence,
in order to solve the incipient technical and ethical problems that could be
derived from that point. The paradigm presented in this paper allows for the
projection of the measurement of intelligence beyond human intelligence.

Once beyond the TT, many more interesting questions present them-
selves. How many independent computational factors does human intelli-
gence have? How intelligent is the Homo Sapiens? Which factors make a
chimpanzee significantly different from the Homo Sapiens? How intelligent
can machines be with the current computational power? Psychometrics, An-
thropology, Zoology and Al have only partially dealt with some of these ques-
tions. Only a science of intelligence which is grounded in theoretical computer
science and information theory could answer these questions thoroughly.
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