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Abstract. Reinforcement Learning (RL) has been mainly interested in
computing an optimal policy for an agent acting in a stationary environ-
ment. However, in many real world decision problems the assumption on
the stationarity does not hold. One can view a non-stationary environ-
ment as a set of contexts (also called modes or modules) where a con-
text corresponds to a possible stationary dynamics of the environment.
Even most approaches assume that the number of modes is known, a RL
method - Reinforcement Learning with Context Detection (RLCD)- has
been recently proposed to learn an a pirori unknown set of contexts and
detect context changes. In this paper, we propose a new approach by
adapting the tools developed in statistics and more precisely in sequen-
tial analysis for detecting an environmental change. Our approach is thus
more theoretically founded and necessitates less parameters than RLCD.
We also show that our parameters are easier to interpret and therefore
easier to tune. Finally, we show experimentally that our approach out-
performs the current methods on several application problems.

1 Introduction

Reinforcement learning (RL) [15] is a powerful framework for sequential decision-
making. It can be seen as an extension of the Markov Decision Process (MDP)
model [13] when the environment (i.e., transitions and rewards) is not known.
The aim in RL is for an agent to learn an optimal policy (e.g., how to act in
order to maximize the expected discounted sum of rewards) while interacting
with the unknown environment.

In RL, the environment is generally assumed to be stationary (e.g., transitions
and rewards do not evolve with time). Without this assumption, the standard
RL algorithms may not perform very well. However, one may argue that in
practice, the encountered problems are often characterized by non-stationary
environments.

As non-stationary environments come in many flavors, tackling the general
case is very difficult, if not impossible. In this paper, we restrict ourselves to
the situation where the environment changes rarely and somewhat abruptly.
The slow rate of change allows learning and the abrupt change allows easier
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detection. A typical example of such non-stationary problem is that of control
of traffic lights. Depending on the time of the day, the traffic follows different
“patterns” (e.g., rush hours v.s. non-rush hours).

In the literature, such kind of non-stationary environments has already been
actively investigated [4, 6, 14] in the RL setting. Depending on authors and do-
mains, the pattern followed by the environment, which constitutes a tempo-
rary stationary environment, is called mode, context, module or model. [4] pro-
posed Hidden-Mode MDPs (HM-MDPs) as an extension of MDPs where the
non-stationarity is modeled as a hidden Markov chain, assumed to be known.
[5] learns the HM-MDP in a RL setting using the Baum-Welch algorithm. The
drawback of this approach is that it assumes the number of modes is known. [6]
applies ideas from adaptive control [11] to RL, which consists in learning multi-
ple models, computing a “responsibility signal” to evaluate the goodness of each
models and averaging the models using this signal. Here, again, the number of
models is a priori fixed. More recently, [14] also proposed to learn several models
in RL where an error score is computed for all models in order to select the best
current model as the one minimizing this error score. Interestingly, their work
allows tackling the case where the number of models is not a priori known. When
all learned models has a poor error score, a new model is learned. However, their
approach requires multiple parameters to be tuned, depending on the problem
at hand. This may be a difficult task as they are not always easy to interpret and
their interplay can be subtle and difficult to predict. Besides, their error score
seems to be ad-hoc and not very theoretically founded.

In this paper, we propose a new approach for solving this sequential decision-
making problem under non-stationary environments. Our main idea is to adapt
the tools developped in statistics and more precisely in sequential analysis [7]
for detecting an environmental change [1]. This research domain started with
the seminal work of [16] that has been actively developed [10] ever since. One of
the main problems studied in sequential analysis is that of change point detec-
tion, which consists in detecting a change in the statistical property of a random
variable that is repeatedly observed. This research has many applications (seis-
mic detection, industrial quality control, signal segmentation. . . ). Although the
works of [14] and [6] could somehow be reinterpreted in the sequential analysis
framework, to the best of our knowledge, our paper presents the first work that
explicitly exploits those statistical tools. In doing so, our approach is more the-
oretically founded and necessitates less parameters than that of [14]. We argue
that those parameters are easier to interpret and therefore easier to set a priori
for solving new problems. We show experimentally that our approach outper-
forms the current methods.

2 Background

2.1 MDP and RL

A Markov Decision Process (MDP) is a common model to represent sequential
decision-making problems. It is characterized by a tuple 〈S,A, T,R〉 with S the
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set of states, A the set of actions, T the transition function S × A → Pr(S)
and R the reward function S ×A→ R. Solving a problem modeled by an MDP
consists in finding a policy π that is a mapping of A over S.

When all the components of the MDP are known, one can use algorithms
such as value iteration [2] or policy iteration [9]. However, when T and/or R
are unknown, reinforcement learning (RL) methods can be used. Indeed, the
optimal policy is learned using reward feedbacks from the environment. The
policy learned by RL is guaranteed to converge towards an optimal policy if the
environment is stationary and the number of experiences is infinite. In practice,
the policy learned is ε-optimal if the number of experiences is high enough.

The problems we try to solve in this paper are non-stationary. Therefore, we
cannot directly use either MDP model or RL methods. However, as we restrict
ourselves to the situation where the environment changes rarely, we can make the
hypothesis that the environment is stationary during a timeframe and changes
at the end of the current timeframe.

2.2 HM-MDP

Recent works propose to formalize non-stationary environments as a set of con-
texts (also called modes or modules) where a context corresponds to a possible
stationary dynamics of the environments [4, 6, 14]. Hidden-Mode Markov Deci-
sion Processes have been proposed by Choi et al. [4] to formalize this idea.

An HM-MDP is characterized by a pair 〈M, C〉 where M is a set of modes
{m1, . . . ,mn} with n the number of possible modes and C : M ×M → [0, 1] is
a transition function over modes. For all i ∈ {1, . . . , n}, mi = 〈S,A, Ti, Ri〉 is
an MDP. Note that S and A are shared by all mi’s and that an HM-MDP with
n = 1 is a standard MDP. In HM-MDPs, the only observable information is the
current state s ∈ S, the current mode m ∈M is not observable.

Recently this model has also been described in the context of MOMDPs [12,
3].

Choi et al. proposed a variant of the Baum-Welch algorithm to learn an
HM-MDP. However, one major limitation of this approach is that the number
of contexts (or modes) is assumed to be known in advance. Da Silva et al. [14]
have thus proposed a reinforcement learning method for context detection to
incrementally build possible models. Their approach allows for an automatic
definition and detection of models. da Silva et al. define quality signals for each
partial model. When the quality of the current model becomes worse than the
quality of another model (already defined), the system detects a context change
and switches to the other partial model. If the quality of all the models becomes
too poor, a new model is built. However, this approach requires several param-
eters to be tuned for each decision-problem. These parameters are not easy to
interpreted and their interactions are difficult to predict thus leading to an even
more difficult tuning.
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3 Detecting an Environmental Change

Let M0 = (S,A, T0, R0) and M1 = (S,A, T1, R1) be two modes or MDPs that are
both assumed to be known. We assume the environment is currently represented
by M0 and at some unknown time step, the environment changes from mode
M0 to mode M1. The problem we want to tackle here is that of detecting as
soon as possible this environmental change. To that aim, a natural idea is to use
statistical hypothesis tests for such detections, i.e., given an observed history,
a null hypothesis “the current mode is M0” is tested against an alternative
hypothesis “the current mode is M1”. When performing such tests, one wants
to minimize the probabilities of two contradictory errors:

– type I error: reject the null hypothesis when it is true,
– type II error: accept the null hypothesis when it is false.

In the online setting, sequential statistical tests are preferred: they perform
repeated tests as observations becomes available and permit detections with
smaller size samples in expectation [16] compared to standard statistical tests.
Viewing detections as statistical tests highlights the contradiction between fast
detection (type I error) and false detection (type II error).

A simple approach to implement those sequential statistical tests for change
point detection is to recourse to cumulative sums (CUSUM) [1]. We present the
CUSUM approach adapted for our purposes below.

3.1 Detecting a Change in Transition Distributions

In our setting, CUSUM can be specified as follows for detecting a change in
the transition distributions. Let (s0, a1, s1, a2, s2, . . . , st−1, at, st, . . .) denote the
observed history and define ST

0 = 0. At each time step t ≥ 1, compute:

ST
t = max(0, ST

t−1 + ln(
T1(st, at, st+1)

T0(st, at, st+1)
)) (1)

and compare ST
t to a threshold cT > 0. If ST

t ≥ cT , then a change in the
transition function is detected. The intuitive idea of CUSUM is quite simple: If
M1 is more likely than M0 to have generated the recent history, then decide that
the environment has changed.

3.2 Detecting a Change in Reward Distributions

As in the general case, the observed rewards are stochastic, we assume that R0

andR1 are functions from S×A to probability distributions over numerical values
(actual obtained rewards). We denote Ri(s, a, r) the probability of obtaining
numerical reward r when choosing action a in state s in mode Mi. Moreover,
to simplify the presentation, we assume that the possible numerical rewards are
finite and known. This is generally not a very restrictive assumption as we are
considering finite-state MDPs.
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To detect a change in the reward function, the same procedure as for the tran-
sitions can then be applied. Let (r1, r2, . . . , rt, . . .) be the sequence of obtained
rewards and SR

0 = 0. At each time step t ≥ 1, compute:

SR
t = max(0, SR

t−1 + ln(
R1(st, at, rt)

R0(st, at, rt)
)) (2)

If SR
t is greater than a threshold cR, then a change of the reward function is

detected.

3.3 Joint Detection

The two previous sums can be combined by computing at each time step t ≥ 1:

St = max(0, St−1 + ln(
T1(st, at, st+1)R1(st, at, rt)

T0(st, at, st+1)R0(st, at, rt)
)) (3)

with S0 = 0. Sum St is to be compared with a threshold c to detect a change of
mode.

Computing ST
t and SR

t separately can be advantageous in some situations
as this makes it possible to detect a change in the transition function or in the
reward function alone. Indeed, in some domains, the non-stationarity is only
limited to one of the functions and/or they can evolve in a non synchronous
manner. The advantage of using STR

t is that it may allow a faster detection of
the environmental change because of the combined effects of the simultaneous
change of the transition function and the reward function. For ease of exposition,
we will focus in the remainder of the paper on the joint detection of changes in
the reward and transition functions.

3.4 Detecting Changes with Multiples Models

In the case where there are many possible models M0,M1, . . . ,Mk (with k ≥ 2),
all assumed to be known, the previous procedures can be adapted as follows. We
assume that M0 is the current model and when a change occurs at an unknown
time step, the new model can be any of Mi with 1 ≥ i ≥ k. Now, we need to
compute k scores at each time step t ≥ 1:

Si,t = max(0, Si,t−1 + ln(
Ti(st, at, st+1)Ri(st, at, rt)

T0(st, at, st+1)R0(st, at, rt)
)) (4)

with Si,0 = 0 and i = 1, . . . , k. Then an environmental change is detected if
maxi=1,...,k Si,t ≥ c and the current environment Mj is chosen to be Sj,t =
maxi=1,...,k Si,t.
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3.5 Detecting Changes in practice

In practice, in the RL setting, the number of models and their specifications
are generally unknown. In that case, we simply use in the CUSUM procedure
the empirical estimates learned from the observed history in place of the un-
known models M0,M1, . . . ,Mk. We always add among the estimated models,
a “uniform” model where all transition and reward probabilities are uniform.
This “uniform” model allows new models to be learned. The exact method is
explained in details in Section 4.

Concerning the choice of the threshold c in the CUSUM procedure, one pos-
sibility is to use the heuristic proposed by [16] (although in a different simpler
setting):

c = ln
1− β
α

(5)

where β is the probability of a type II error and α is that of a type I error.
Although this choice of the threshold value may not be optimal, this heuristics
allows for some interpretation of the parameter. Besides, in our experiments,
this choice seems to be reasonable and leads to good performance.

4 RL with Context Detection

Da Silva et al. developed the Reinforcement Learning with Context Detection
algorithm (RLCD) to simultaneously learn and act in a non-stationnary envi-
ronment. At each time step, a quality measure of each already learned model is
calculated, depending on the last seen transition and reward. The model max-
imizing the measure is chosen as the next current model and is updated. How-
ever, if the maximum quality is below a given threshold, a new model is added to
the list of known models, uniformly initialized and selected as the next current
model. With this method, RLCD is able to tackle problems without the prior
knowledge of the number of models to learn. Unfortunately, RLCD requires a
set of parameters to be tuned accordingly to the problem. Moreover, this quality
mesure seems to be ad-hoc and also depend on a hand-tuned threshold.

We propose an adaptation of RLCD, replacing the quality measure by the
approach previously presented. Algorithm 1 presents our adaptation of RLCD
using the detection on the transitions distributions. The solving part (given by
πmcur

(s)) and the learning part are exactly the same as in the original RLCD
algorithm.

In this version of RLCD, we calculate Sm for each model and detect a change
if this value is above c. Moreover, a new model is created if the model maximizing
the value is the uniform model.

This detection method is not only more theoretically founded, but is also
more efficient.
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Algorithm 1 RLCD with Sequential Change-Point Detection

mcur ← newmodel()
M ← mcur
s← s0, any starting state
loop

Let a be the action indicated by πmcur (s)
Observe next state s′ and reward r
for all m ∈M \mcur do

Sm ← max(0, Sm + ln Tm(s,a,s′)
Tmcur(s,a,s′)

)

end for
mmax ← arg maxm Sm

if Smmax > c then
Suniform ← max(0, Suniform + ln 1/|S|

Tmcur (s,a,s′) )

if Suniform > c and Suniform > Smmax then
mcur ← newmodel()
M ← mcur

else
mcur ← mmax

end if
end if
Update mcur with original RLCD equations

end loop

5 Experimental Results

5.1 Ball Catching

The first problem is taken from [14]. In this environment, a cat has to catch a
ball moving on a toroidal grid. The direction towards which the ball moves is
given by the context of the environment. This problem has 15 × 15 states (the
size of the grid), 5 actions (4 possible direction for the cat with a no move choice)
and 4 contexts (one for each possible direction for the ball). The reward is set to
-1 for each move and 10 when the cat catches the ball. We compare our method
to the classic RLCD algorithm, using the same algorithm (Prioritized-Sweeping)
to calculate the optimal policy for the currently learned policy. In that way, the
differences in the results can only be explained by the efficiency of the context
switching detection. As we said, the original RLCD algorithm needs some extra
parameters to be set. We used those involving the best results we could find,
which were equals to those given in [14]. Figure 1 shows the results obtained
using the following protocol:

– a step is the minimum between the number of movements the cat needs to
catch the ball and 100

– an episode is 100 steps
– we choose a starting context and run 5 episodes in this context and calculate

the mean step for each episode
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Fig. 1. Results for the ballcatching problem

– we switch the context for the next one and start 5 more episodes

The purpose of this protocol is to study the behaviour of the algorithms with
switching to either a learned and an unknown context. Figure 1 shows that for
each episode where the context is already known (the 4 last of each 5 episodes),
RLCD and our adaptation perform equally. The difference is on the episodes
where the context has been switched (the first of each 5 episodes). It takes less
movements in mean to catch the ball, meaning the switching has been detected
earlier.

5.2 Traffic

This problem is composed by 9 independent traffic lights (nodes) controlling the
passage of cars one a 3 × 3 grid. The nodes on the edges of the grid are linked
to 6 sources (3 at the north and 3 at the east) and 6 sinks (3 at the south and
3 at the west). Cars enter the grid by the sources and go in a straight line to
the corresponding sink. Each traffic light can select a plan amongst 3, defining
the amount of time it lets pass the cars at the north and the east: the first
signal plan gives equal green times for both vertical and horizontal directions,
the second signal plan gives priority to the vertical direction and the third signal
plan gives priority to the horizontal direction. The environment can be in 3
different contexts conditioning the rate of arrival of the cars at each sources
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(north or east): low insertion rates from north and east, high insertion rate from
north sources and average insertion rate from east, high insertion rates from
east sources and average insertion rate from north. The context defined by high
insertion rates from both north and east sources is not considered since even an
optimal policy does not prevent from saturating the network.
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Fig. 2. Result for the traffic problem

Figure 2 presents the results for the traffic problem. It shows the number
of stopped cars in the grid, depending on the iteration. The environment starts
with a low rate of insertion and changes to the next context every 200 iterations.
We can see that our method performs better than the original RLCD, especially
when the environment is running an unknown model (e.g., iteration 400). This
means that our adaptation is able to detect the change, create a new model and
thus adapt the policy earlier, involving better results.

6 Conclusion

In this paper we presented a preliminary work using sequential change-point de-
tection to detect context switching and learn the underlying model. We adapted
the RLCD algorithm which is able to learn a model without knowing a priori
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the number of contexts. We showed that this adaptation is able to enhance the
detection ability of the original RLCD, thus involving better results.

We will extend this method in a future work in order to learn the transitions
between the contexts in a stochastic setting. We will then be able to learn HM-
MDPs without fixing the number of modes and thus bypass a requirement of
the Baum-Welch adaptation proposed by Choi et al.

An other interesting application of this work is learning HS3MDPs, an ex-
tension of the HM-MDP where the transitions between the modes are semi-
markovian [8]. It will requires to not only learn the transitions between the
contexts but also the time the environment stays in each context.

References

1. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Appli-
cation. Prentice-Hall (1993)

2. Bellman, R.: Dynamic programming. Princeton university press, Princeton (1957)
3. Chadès, I., Carwardine, J., Martin, T.G., Nicol, S., Sabbadin, R., Buffet, O., et al.:

MOMDPs: A solution for modelling adaptive management problems. In: AAAI
(2012)

4. Choi, S.P.M., Yeung, D.Y., Zhang, N.L.: Hidden-mode markov decision processes
for nonstationary sequential decision making. In: Sequence Learning - Paradigms,
Algorithms, and Applications. Springer-Verlag (2001)

5. Choi, S., Yeung, D.Y., Zhang, N.: An environment model for nonstationary rein-
forcement learning. In: Advances in Neural Information Processing Systems. pp.
994–1000 (2000)

6. Doya, K., Samejima, K., ichi Katagiri, K., Kawato, M.: Multiple model-based re-
inforcement learning. Neural computation 14, 1347–1369 (2002)

7. Ghosh, B., Sen, P.: Handbook of Sequential Analysis. CRC Press (1991)
8. Hadoux, E., Beynier, A., Weng, P.: Solving hidden-semi-markov-mode markov de-

cision problems. In: 8th Int. Conf. on Scalable Uncertainty Management (SUM)
(2014)

9. Howard, R.: Dynamic Programming and Markov Processes. The M.I.T. Press
(1960)

10. Lai, T.L.: Sequential analysis: Some classical problems and new challenges. Statis-
tica Sinica 11, 303–408 (2001)

11. Narendra, K., Balakrishnan, J., Ciliz, M.: Adaptation and learning using multiple
models, switching, and tuning. Control Systems, IEEE 15(3), 37–51 (1995)

12. Ong, S.C., Png, S.W., Hsu, D., Lee, W.S.: Planning under uncertainty for robotic
tasks with mixed observability. The International Journal of Robotics Research
29(8), 1053–1068 (2010)

13. Puterman, M.: Markov decision processes: discrete stochastic dynamic program-
ming. Wiley (1994)

14. da Silva, B.C., Basso, D.W., Bazzan, A.L., Engel, P.M.: Dealing with non-
stationary environments using context detection. In: Proceedings of the 23rd In-
ternational Conference on Machine Learning (2006)

15. Sutton, R., Barto, A.: Reinforcement learning: An introduction. MIT Press (1998)
16. Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical

Statistics 16(2), 117–186 (1945)


