
Reframing of Classification and Regression Tasks
for Predicting the Effects of Compiler Settings

on Multiple Embedded Systems

Craig Blackmore1, Oliver Ray1, Meelis Kull1, Md. Geaur Rahman2, Peter
Flach1, and Nicolas Lachiche2

1 Department of Computer Science, University of Bristol, United Kingdom
{craig.blackmore, oliver.ray, meelis.kull, peter.flach}@bristol.ac.uk

2 ICube Laboratory, University of Strasbourg, France
{grahman, nicolas.lachiche}@unistra.fr

Abstract. Compiler settings can have a significant impact on the per-
formance of software but the task of finding effective configurations is
time-consuming due to the large number of optimizations available and
complex interactions between them. Furthermore, effective configura-
tions are dependent on the target program and architecture. Previous
work used prior knowledge about the performance of similar training
programs in order to predict good configurations but these methods re-
quired retraining for each new architecture. In this paper we identify
interesting classification and regression tasks for evaluating the perfor-
mance of compiler configurations on two embedded system architectures.
We show how a model learned for one architecture is not directly applica-
ble to the other architecture and we discuss potential ideas for modeling
the shift between architectures which in future could allow for the reuse
of a single model on many platforms rather than retraining for each new
system.

Keywords: compiler optimization, reframing, machine learning

1 Introduction

Compiler optimizations can have a significant impact on the performance of soft-
ware, however, finding effective compiler configurations (sets of optimizations)
is a challenging task due to the large number of optimizations available and
complex interactions between them [21].

In earlier work, the state-of-the-art Milepost study [7] searched for perfor-
mance enhancing configurations using a method called iterative compilation,
which tests a target program with several configurations and evaluates the per-
formance of each. Since this is a time-consuming task that potentially needs
to be repeated for each target program and architecture, Milepost investigated
1NN and decision tree based approaches which sought to predict effective con-
figurations for a target program given a feature vector describing its structure.



Such approaches required a new predictive model to be learned for each target
platform.

Given the cost of training a new model for each platform, it would be highly
valuable to be able to learn a model for one platform and reuse it on several
other platforms. This process of adapting a model trained in one context in
order to target another context is known as reframing [3]. Reframing differs
from transfer learning [22] in its emphasis on learning versatile models which
can be easily adapted to different contexts, and applying shifts to the inputs
and outputs of those models to better adapt them to a new context.

In this paper we study the effects of compiler optimizations on two em-
bedded systems platforms (namely, the 32-bit ARM Cortex-M3 and 8-bit AVR
ATmega328P, which we will refer to as P1 and P2 respectively). We produced
datasets which can be used to test approaches designed to reuse the results of
learning in one context to another context, such as transfer learning [22], context
adaptation [8], and reframing [3]. We analyse the task primarily from a reframing
point of view by considering possible input and output shifts.

We identify several shifts in context between the two platforms with regard
to their hardware specifications, the methodology for producing their datasets
and the models learned in each context. We show how both Support Vector
Machine (SVM) and Inductive Logic Programming (ILP) approaches gave accu-
racies higher than simply predicting the majority class for P1, but no classifier
performed well on P2.

Given that we can learn a model for P1 but not P2, we argue that a successful
reframing approach would not only allow the reuse of the P1 model on P2, but
also the creation of a classifier that can predict for P2 even though it was not
possible to learn such a classifier directly from the P2 data.

2 Background

This section gives a brief introduction to the task of reframing (Sec. 2.1), an
overview of state-of-the-art machine learning efforts to predict effective compiler
optimizations (Sec. 2.2) and a description of the target platforms and bench-
marks used in our experiments (Sec. 2.3).

2.1 Reframing

Traditional data mining and machine learning algorithms make use of previously
collected training data to build models and then make predictions on future data
using the models [6,15]. Most of the traditional algorithms assume that the train-
ing and test data are drawn from the same distributions and the same domain
space. However, it is natural that the distributions of the training and test data
may change if the data are collected from different locations. When the distribu-
tions of the training and test data change, the algorithms may not perform well
or may produce misleading information. In such situations, reframing between
the domains of interest can be useful.



Reframing is an approach which deals with context changes between training
and deployment environments [1, 3, 16]. The common context changes include
dataset shift, task change and representation change [2,14,16,25]. Let, M be the
model built from the training data, θ be the context such as dataset shift, X be
the deployment data and Da be the additional data (labelled or unlabelled) that
may be available during deployment. If Y be the expected output then reframing
can be defined as a function R(.) as follows [12]:

Y ← R(X,M, θ,Da)

2.2 Compiler Optimizations

The GCC compiler toolchain [9] provides standard optimization levels (O1, O2,
O3) which apply an increasing set of optimizations in an attempt to improve
execution time at the expense of compile time and/or code size. In practice, these
standard levels are often far from optimal, as demonstrated by the Milepost
[7] project which used a method called iterative compilation to evaluate the
performance of 1000 random configurations of compiler flags on 22 programs.

Since iterative compilation is a time-consuming process, Milepost [7] also ex-
plored 1NN and decision tree based methods for predicting rather than searching
for effective configurations. The classifiers were trained using a feature vector
which contains a set of 55 attributes that describe various aspects of the code
such as number of basic blocks3 and number of conditional branches. In 1NN, the
closest training program (based on feature vectors) is used to predict a configu-
ration for the target program. In the decision tree approach, the feature vector
is used to estimate the probability that a configuration will perform within 95%
of the maximal speed-up for the target program.

The Milepost features were selected by empirical experiments [19], however,
it is not known whether they are the best features for the task. An alternative
approach proposed by [23] does not rely on features that describe program struc-
ture but instead uses the execution times of training programs as attributes. We
test a related approach in our regression task in Sec. 6.

2.3 Target Platforms and Benchmarks

There are several differences between the two platforms that we targeted in
this study. Platform 1 (P1) is the ARM Cortex-M3 32-bit microprocessor [4]
and Platform 2 (P2) is the AVR ATmega328P 8-bit microprocessor [5] (which
belongs to a family of chips used on Arduino development boards). The Cortex-
M3 is more complex than the ATmega328P and features a longer pipeline, larger
flash and RAM and branch speculation (Table 1). In addition, some GCC flags

3 A basic block is a sequence of instructions for which there is a single entry point (at
the start) and a single exit point (at the end). When a basic block is entered, all of
its instructions are guaranteed to be executed.



Table 1. Overview of hardware specifications for Platform 1 and 2

Floating
Clock Pipeline Branch Point

Platform Processor Speed Flash RAM Stages Speculation Unit

P1 Cortex-M3 32-bit 24Mhz 128KB 8KB 3 Yes No
P2 ATmega328P 8-bit 20Mhz 32KB 2KB 2 No No

are only supported on P1 and not P2 (e.g. scheduling and section anchor opti-
mizations). Neither platform has a floating point unit, so instead the compiler
generates code which emulates floating point functionality using the hardware’s
integer unit.

In order to profile the effects of different compiler optimizations on the two
platforms we used the Bristol/Embecosm Embedded Benchmark Suite (BEEBS4)
[20] which was created by the MAchine Guided Energy Efficient Compilation
(MAGEEC5) project conducted by the University of Bristol in partnership with
industry compiler experts Embecosm6. The BEEBS programs were produced in
response to the lack of freely available open source benchmarks compatible with
embedded platforms, which often have tight resource limits.

3 Experiment 1: Standard Optimization Levels

In Experiment 1 we sought to evaluate the effects of the GCC standard opti-
mization levels (O1, O2, O3) and determine whether O3 really does give the
best execution time out of the three. We recorded the execution time for each
O1, O2 and O3 when applied to 60 programs on P1 and 61 on P2. There were
48 programs common to the two platforms.

Figure 1 confirms that O3 is indeed generally the best of the three opti-
mization levels. Therefore, we will use O3 as the baseline for comparing the
performance of configurations tested in Experiment 2 (Sec 4).

4 Experiment 2: Iterative Compilation

In Experiment 2 we used iterative compilation to search for configurations that
performed better than O3. We generated the dataset for P1, whereas the data for
P2 were obtained from an independent experiment run externally by Embecosm.
As a result, there are several differences between the two datasets which could
impact on the ability to learn a model for one platform and apply it to the other.
The differences are summarized in Table 2 and discussed in this section.

4 The latest version of BEEBS is available at http://beebs.eu
5 http://mageec.org
6 http://www.embecosm.com



Fig. 1. Experiment 1: execution time of O1, O2 and O3 on Platform 1 and 2

Fig. 2. Experiment 2: execution time for Platform 1 (1000 random configurations of
133 flags) and platform 2 (1024 configurations of 25 passes (generated using Fractional
Factorial Design))



Table 2. Differences between P1 and P2 datasets in Experiment 2

Platform Programs Configs Config Type Config Generation Unit

P1 60 1000 Flags Random Seconds
P2 54 1024 Passes FFD Cycles

The experiments for P1 used random iterative compilation to explore the
effects of 133 compiler flags on the execution time of 60 programs from BEEBS.
A set of 1000 random configurations was generated by selecting O3 and then
enabling or disabling each of the 133 flags with 50% probability. The raw data
consists of the execution time (in seconds) for each program when compiled with
each of the 1000 random compiler configurations

In contrast, the P2 experiments explored the effects of 25 compiler passes on
54 programs. A compiler flag may enable or disable many compiler passes, and
the mapping between flags and passes is highly complex. There were a total of
156 passes to choose from, however, preliminary experiments were used to select
a subset of the 25 most influential passes on which to focus. Finally, a set of
1024 configurations of the 25 compiler passes were generated using Fractional
Factorial Design (FFD) [10] (rather than random generation as in P1), which
produced a balanced set of configurations in which each pair of passes appears
together the same number of times.

In addition, the datasets for P1 and P2 contain 60 and 54 programs respec-
tively, of which 41 are common to both platforms. The fact that P1 was measured
in seconds and P2 was measured in CPU cycles has little impact since all of the
machine learning tasks in this paper are based on execution time relative to O3
rather than using absolute values.

The results for Experiment 2 (Fig. 2) show that it is possible to outperform
O3 in approximately half of the programs for P1. On P2, there were fewer pro-
grams for which O3 could be improved upon. In Sec. 5, we further analyze the
results to describe an interesting classification task and suggest how it may lead
to a suitable reframing problem.

5 Classification

After analyzing the data from Experiment 2 (Sec. 4) we identified a classification
task which seeks to determine whether O3 is at least 10% slower than the best
known configuration (O3 slow). This is an interesting task since it is valuable
to know whether to simply use O3 for given program or whether it is worth
investing extra time in order to find a more optimal configuration.

A visual inspection of the raw data (Fig. 2) for the two platforms strongly
suggests that when O3 is slow on P2, then it is also slow on P1. Therefore a
potentially very useful task might be to first learn a classifier to predict for which
benchmarks it is possible to perform much better than O3 on P1 and then, on
top of this, learn a way of predicting for which of those benchmarks it is also



possible to perform much better than O3 on P2. We view this as a reframing
problem in which the model for P1 could be used to find the subset that applies
to P2. This approach is potentially highly suited to our data since the classes
are very well-balanced for P1 (Table 3).

Table 3. Class distribution (%)

Platform O3 fast O3 slow

P1 47 53
P2 78 22

Having identified the interesting task of predicting whether it is possible to
perform significantly better than O3 on a given program, we tested four ma-
chine learning algorithms to establish whether it was possible to learn a suitable
model. We tested J48 Decision Tree, 1-Nearest-Neighbor (1NN), Support Vector
Machine (SVM) numerical methods as well as an Inductive Logic Programming
(ILP) approach (described in Sec. 5.1) which sought to find logical rules that
specify the types of programs for which O3 is slow. The former three algorithms
were tested in Weka [11] and the latter was implemented in the CProgol4.4 [17]
ILP system.

The Milepost [7] feature vector was used to provide attributes for each clas-
sifier. The feature vector consists of 55 attributes which describe various charac-
teristics of a program such as number of basic blocks and number of conditional
branches. A full list of the 55 features is given in [7]. In this study we used the
feature vector for the most time-consuming function of each program, which we
identified by profiling with the gprof tool on an x86 processor. This allowed us
to focus on the function which has the biggest impact on execution time and
filter out functions which may have little effect on performance. We also nor-
malized the feature vector relative to the number of instructions (feature 24) to
help compare between programs of varying sizes.

This section continues with a description of our ILP approach (Sec. 5.1) and
the results for each algorithm when trained on each platform using the whole
training set and leave-one-out cross validation (Sec. 5.2). This is followed by an
analysis of the shift between the two datasets by training a model for P1 and
applying it to P2 and vice versa (Sec. 5.3). Finally, we demonstrate the intuitive
rules which our ILP based approach is able to produce (Sec. 5.4).

5.1 Inductive Logic Programming Approach

The aim of ILP [17] is to find a set of hypotheses H that generalize relationships
between background knowledge B about a problem and positive and negative
examples E+ and E− of when a relation does or does not hold. In the case
of this study, B consists of knowledge about program structure, E+ consists



of examples of programs for which O3 is slow and E− contains examples of
programs for which O3 is fast.

In more detail, the background knowledge consisted of predicates of the fol-
lowing form:

ft(Ft, P, Val).

large_ft(P, Ft).

small_ft(P, Ft).

qt(P, Ft, Quartile).

non_zero(P, Ft).

These predicates can be described as follows: ft/3 gives the normalized value
for feature Ft of the most-time consuming function in program P , large ft/2

and small ft/2 determine whether the feature Ft for program P is above or
below the average for that feature, qt/3 gives the quartile that feature Ft falls
within for program P and non zero specifies whether feature Ft is non zero for
program P .

Examples were encoded using the predicate o3slow/1. For example, if O3
were slow for program X but fast for program Y , this would be encoded as:

o3slow(X).

:- o3slow(Y).

Using B and E in the format described above, Progol is able to learn hypothe-
ses such as o3slow(A) :- ft(ft4,A,0). Given that Feature 4 is the number of
basic blocks with more than two successors, such a hypothesis could easily be
translated into English as follows: program A is slow if its most time-consuming
function contains no basic blocks with more than two successors.

We prevented the learning of rules that contained individual feature values
given by ft/3 such as ft(ft1, program1, 0.75) in order to discourage over-
fitting. This was implemented using mode body declarations [18], which are a
feature of the Progol system. We did, however, allow literals of the form ft(Ft,

P, 0) because it is potentially very useful to know that a certain feature is
absent from a program. We did not restrict the appearance of any of the other
predicates in B.

5.2 Finding a Suitable Algorithm

For P1, only SVM and ILP gave an accuracy better than simply predicting
the majority class (Table 4). Both gave an accuracy of 68% which is relatively
low. Note that J48 and 1NN performed very well on the whole training set but
poorly in cross-validation, therefore we conclude that they both over-fit the data.
In fact, 1NN achieves 100% accuracy on the whole training set because it simply
memorizes the correct class for each program.

For P2, none of the algorithms were able to outperform the majority class
(Table 5). We attribute the difficulty in learning the model to a lack of good
features to describe the programs. Indeed, it is not known whether the Milepost



Table 4. Platform 1 - accuracy (%) of model trained using the feature vector (relative
to number of instructions) for the most consuming function

Algorithm Whole training set Leave-one-out

Majority class 53 53
J48 98 48
1NN 100 45
SVM 73 68
ILP 85 68

Table 5. Platform 2 - accuracy (%) of model trained using the feature vector (relative
to number of instructions) for the most consuming function

Algorithm Whole training set Leave-one-out

Majority class 78 78
J48 93 69
1NN 100 65
SVM 81 76
ILP 78 78

features are the best for the task at hand. These findings inspired us to adapt
a related method called data transposition [23] which does not rely on program
features to make predictions (Sec. 6).

Low accuracy aside, we would favor the ILP approach for P1 as it gives
human-understandable rules which provide insight into the learned model (Sec.
5.4). On the other hand, it is very difficult to establish the reasoning behind a
model learned by a SVM.

5.3 Checking for a Shift

Even though a suitable model was not learned for P2 in Sec. 5.2, the reframing
approach suggested in Sec. 5 was still worth pursuing. We tested whether any
of the learned models from one platform was directly applicable to the other
platform (Table 6). None of the P1 models gave an accuracy better than the
majority class when applied to P2. In contrast, each P2 model achieved an
accuracy greater than or equal to the majority class when applied to P1. There
may be element of luck here however, since the classes for P1 were well-balanced
and a random classifier that predicts each class with a 50% probability would
also get close to the majority class. In conclusion, the model for one platform
was not directly applicable to the other, therefore there appears to be a shift. In
Sec. 7 we discuss possible ways in which to reframe the P1 model which will be
pursued in future work.



Table 6. Accuracy of model trained on one platform and tested on the other

Accuracy (%)

Algorithm P1 model tested on P2 P2 model tested on P1

Majority class 78 53
SVM 65 57
ILP 70 53

5.4 Rules learned by ILP

This section demonstrates the intuitive rules which ILP can produce. The fol-
lowing Prolog rules were learned in order to predict whether O3 is slow for given
program A based on its features:

o3slow(A) :- ft(ft4,A,0), ft(ft7,A,0), ft(ft15,A,0), ft(ft19,

A,0), qt(A,ft46,4).

o3slow(A) :- ft(ft4,A,0), ft(ft7,A,0), ft(ft15,A,0), qt(A,ft46,

1), qt(A,ft54,1).

o3slow(A) :- ft(ft4,A,0), ft(ft15,A,0), ft(ft19,A,0), qt(A,ft34,

4).

These can be translated into English as follows:

rule 1: no basic blocks with more than 2 successors and

no basic blocks with more than 2 predecessors and

no basic blocks with more than 500 instructions and

no direct calls and

a large number of occurrences of integer constant zero

rule 2: no basic blocks with more than 2 successors and

no basic blocks with more than 2 predecessors and

no basic blocks with more than 500 instructions and

a small number of occurrences of integer constant zero and

a small number of local variables that are pointers

rule 3: no basic blocks with more than 2 successors and

no basic blocks with more than 500 instructions and

no direct calls and

a large number of unary operations

A clear pattern emerged from these rules in that it appears to be possible to
significantly outperform O3 on programs whose most time consuming function
is fairly simple (i.e. the function does not contain complex control flow between
basic blocks and does not have very large basic blocks). Two out of the three
rules also require that the program has no direct function calls. Future work will
investigate whether there is some bottleneck in the more complex programs that
stops them from performing much better than O3.



6 Regression

In Section 5 we found that there is a dataset shift between P1 and P2 when a
classification model is built on P1 and tested on P2. In this section, we further
explore the existence of a dataset shift between P1 and P2 through applying
a regression algorithm on the datasets that contain execution times of a set
programs. We use the Java implementation of the regression model called M5P
model tree [24] which is publicly available in Weka data mining software repos-
itory [11].

The dataset that contains execution times in P1 has 60 programs, whereas
the dataset that contains execution times in P2 has 54 programs, as discussed
in Section 4. Note that there are some uncommon programs, in P1 and P2, that
are excluded in experimentation since our objective is to test the dataset shift
by building a regression model on P1 and evaluating it on P2, and vice-versa.
Therefore, in the experimentation we use the 41 programs that are common
in P1 and P2. Each dataset contains 1000 records, where a record represents
a configuration. However, we remove some records having missing values and
thereby create datasets having 993 records for P1 and 996 records for P2 without
any missing values.

For the regression task we first prepare datasets by following the process of
data transposition [23]. The programs are considered as the target column one
by one for prediction. That is, if a program is considered as the dependent vari-
able then the running times of the remaining 40 programs using the respective
configurations are the independent variables. Therefore, for each platform we
create 41 datasets from a single dataset as shown in Fig 3.

Prog_2 Prog_3 Prog_41 Prog_1 Prog_1 Prog_3 Prog_41 Prog_2 Prog_1 Prog_2 Prog_40 Prog_41

Config_1 Config_1 Config_1

Config_2 Config_2 Config_2

Config_n Config_n Config_n

(a) Dataset 1 (b) Dataset 2 (c) Dataset 41

Dependent variable Independent variables Independent variables Independent variables Dependent variable Dependent variable 

Execution 
time 

Execution 
time 

Execution 
time 

Fig. 3. Dataset preparation

Now we build regression models using the M5P model tree on each dataset
and evaluate the models based on the following regression tasks.

1. For each platform, a regression model is built and evaluated on the same
dataset (Full-training).

2. For each platform, a regression model is built and evaluated on the same
dataset but based on 10 fold cross validation (10-Fold CV).

3. A regression model is built on a platform and evaluated on another platform,
where P1 on P2 means the model is built on P1 and evaluated on P2, and
similarly P2 on P1 means the model is built on P2 and evaluated on P1.
Note that the same program is considered as the target in both platforms.



We evaluate the prediction accuracy of M5P based on the Mean Absolute
Error (MAE) [13,26] where a lower MAE value indicates a better result. Figure 4
presents a comparison of the prediction accuracy of M5P in terms of MAE
between full-training approach (black circles) and 10-Fold CV approach (red
squares). For platform P1 (see Fig. 4(a)), we can see that the MAE values of the
full training and 10-Fold CV approaches are closer for all cases. So M5P is able
to generate good predictions. We also see a similar indication for P2 as shown
in Fig. 4(b).

chk p1_final

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
A

E

Program as Target

Platform 1 (P1) Full Training 10-Fold CV

Page 2

(a) P1

chk p2_final

0.00

0.02

0.04

0.06

0.08

0.10

M
A

E

Program as Target

Platform 2 (P2) Full Training 10-Fold CV

Page 2

(b) P2

Fig. 4. M5P regression accuracy in terms of MAE using full-training approach and 10
fold cross-validation approach. (a) P1 and (b) P2.

The experimental results on the full-training approach and the 10-Fold CV
approach for a platform motivate us to further explore to see that whether there
exists a dataset shift between P1 and P2 or not. We carry out experimentation
in which we build a model on one platform and then evaluate model on another
platform (i.e. regression Task 3).

We observe that the MAE of a model learned on one platform and evaluated
on the other platform is always worse than the MAE of 10-Fold CV approach
of the latter platform. For better understanding, we calculate the magnitudes of



the differences of the accuracies as shown in Fig. 5, where the magnitude of P1
on P2 and the magnitude of P2 on P1 are calculated as follows.

Magnitude of P1 on P2 = Log10((MAE of P1 on P2)/(MAE of 10 −
Fold CV on P2))

Magnitude of P2 on P1 = Log10((MAE of P2 on P1)/(MAE of 10 −
Fold CV on P1))

In Fig. 5 we can see that the magnitude is up to the order of 4. The results
indicate the existence of a dataset shift between P1 and P2. In this situation, a
reframing approach between P1 and P2 can be useful to improve the prediction
accuracy. In Section 7, we discuss a few possible approaches to reframe the P1
model. However, they need to be carefully analyzed and evaluated in order to
find the suitable one and we plan to carry out the analysis and evaluation in our
future study.

Magnitude of Shift

0

1

2

3

4

2d
fir

a
ha

-c
om

pr
e

ss
a

ha
-m

on
t6

4
bu

bb
le

so
rt

cn
t

co
ve

r
cr

c3
2

ct
l-s

ta
ck

di
jk

st
ra

du
ff

e
dn

e
xp

in
t

fa
c

fa
st

a
fd

ct
in

se
rt

so
rt

ja
nn

e
_c

om
pl

e
x

jfd
ct

in
t

le
ve

ns
ht

e
in

lu
dc

m
p

m
in

ve
r

nb
od

y
nd

e
s

ne
ttl

e-
a

rc
fo

ur
ne

ttl
e-

m
d5

ne
w

lib
-s

qr
t

pr
im

e
qu

rt
re

cu
rs

io
n

se
le

ct
sg

lib
-…

sg
lib

-…
sg

lib
-…

sg
lib

-q
ue

ue
sl

re
sq

rt
st

a
te

m
a

te
st

rs
tr

ta
ra

i
ud

w
he

ts
to

ne

M
ag

ni
tu

de
 o

f S
hi

ft

Program as Target

P1 on P2 P2 on P1

Page 2

Fig. 5. Magnitude of shift

7 Discussion of Ideas for Reframing

We have identified a number of methods which may allow a P1 model to be re-
framed for P2. Firstly, we could look for patterns in the feature vector which may
identify the subset of programs for which O3 can be improved upon significantly
on P1 but not P2. Another idea is to exploit our knowledge of differences be-
tween the architectures. A selection of hardware specifications for each platform
could be encoded as additional features. We also know that some optimizations
(such as scheduling and section anchors) are only supported on P1 and not P2.
Therefore, it is possible that some of these unsupported flags are required to
achieve the gains that were only seen on P1. Furthermore, other optimizations
that are available to both platforms may have a bigger effect on P1 than P2
(since the more complex hardware of P1 may be able to gain more benefit from



them than P2). In future work, we aim to establish whether there are certain
flags which improve performance significantly on P1 but not on P2.

8 Conclusion

We have identified classification and regression tasks for predicting the perfor-
mance of compiler settings and shown that execution times are dependent on the
target program and platform. We focused on two platforms and showed that the
model learned for one platform was not directly applicable to the other platform.
Therefore, we argue that exploring reframing for this problem would be highly
valuable for two reasons. Firstly, obtaining training data for each new platform
is a time-consuming task, therefore it would be highly cost effective to reuse the
model from one platform and apply it to many others. Secondly, we argued that
although it was not possible to learn a model for P2 based on P2’s training data,
it may be possible to learn a model for P1 and apply reframing techniques in
order to adapt the model to target P2.

We discussed several ways in which the P1 model may be reframed for P2
by exploiting differences between the two platforms including: identifying flags
that are only supported on one platform, identifying flags that are only bene-
ficial/detrimental to one platform, analyzing the subset of programs for which
the P1 and P2 class differs and encoding hardware specifications as additional
features. In future work we will investigate these options in order to develop a
methodology for reframing on the tasks presented in this study.

Finally, this paper focused on execution time, however, the methods can be
applied to any metric such as energy consumption, code size and compilation
time or a multi-objective goal such as reducing both energy and execution time.
Our future work will extend this study further to target energy consumption,
which is a critical factor in embedded systems development.

References

1. Ahmed, C.F., Charnay, C., Lachiche, N., Braud, A.: Reframing on relational
data. In: International Conference on Inductive Logic Programming (ILP), Nancy,
France (2014)

2. Ahmed, C.F., Lachiche, N., Charnay, C., Braud, A.: Dataset shift in a real-life
dataset. In: LMCE 2014: First International Workshop on Learning over Multiple
Contexts (ECML-PKDD Workshop LMCE) (2014)

3. Ahmed, C.F., Lachiche, N., Charnay, C., Braud, A.: Reframing continuous input
attributes. In: Proceedings of the 2014 IEEE 26th International Conference on
Tools with Artificial Intelligence. pp. 31–38. IEEE (2014)

4. ARM: Cortex-M3 technical reference manual (Revision: r1p1) (2006)
5. Atmel: ATmega48A/PA/88A/PA/168A/PA/328/P datasheet (2014)
6. Baralis, E., Chiusano, S., Garza, P.: A lazy approach to associative classification.

Knowledge and Data Engineering, IEEE Transactions on 20(2), 156–171 (2008)
7. Fursin, G., Kashnikov, Y., Memon, A.W., Chamski, Z., Temam, O., Namolaru, M.,

et al.: Milepost GCC: Machine learning enabled self-tuning compiler. International
Journal of Parallel Programming 39(3), 296–327 (2011)



8. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation.
arXiv preprint arXiv:1409.7495 (2014)

9. GCC: GCC, the gnu compiler collection. http://gcc.gnu.org/ (2015), [Accessed
02/04/2015]

10. Gunst, R.F., Mason, R.L.: Fractional factorial design. Wiley Interdisciplinary Re-
views: Computational Statistics 1(2), 234–244 (2009)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

12. Jose, H.O., Ricardo, B.P., Kull, M., Flach, P., Chowdhury, F.A., Lachiche, N.,
Martynez-Uso, A.: Reframing in context: A methodology for model reuse in ma-
chine learning. AI Communications (submitted) (2015)

13. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Meth-
ods for imputation of missing values in air quality data sets. Atmospheric Envi-
ronment 38(18), 2895–2907 (2004)

14. Kull, M., Flach, P.: Patterns of dataset shift. In: LMCE 2014: First International
Workshop on Learning over Multiple Contexts (ECML-PKDD Workshop LMCE)
(2014)

15. Kuncheva, L.I., Rodriguez, J.J.: Classifier ensembles with a random linear oracle.
Knowledge and Data Engineering, IEEE Transactions on 19(4), 500–508 (2007)

16. Moreno-Torres, J.G., Raeder, T., Alaiz-Rodŕıguez, R., Chawla, N.V., Herrera, F.:
A unifying view on dataset shift in classification. Pattern Recognition 45(1), 521–
530 (2012)

17. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
The Journal of Logic Programming 19, 629–679 (1994)

18. Muggleton, S.: Inverse entailment and progol. New Generation Computing 13(3-4),
245–286 (1995), http://dx.doi.org/10.1007/BF03037227

19. Namolaru, M., Cohen, A., Fursin, G., Zaks, A., Freund, A.: Practical aggre-
gation of semantical program properties for machine learning based optimiza-
tion. In: Proceedings of the International Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems. pp. 197–206. ACM (2010), http:

//doi.acm.org/10.1145/1878921.1878951

20. Pallister, J., Hollis, S.J., Bennett, J.: BEEBS: Open benchmarks for energy mea-
surements on embedded platforms. arXiv:1308.5174v2 [cs.PF] (2013)

21. Pallister, J., Hollis, S.J., Bennett, J.: Identifying compiler options to minimize
energy consumption for embedded platforms. The Computer Journal (2013)

22. Pan, S.J., Yang, Q.: A survey on transfer learning. Knowledge and Data Engineer-
ing, IEEE Transactions on 22(10), 1345–1359 (2010)

23. Piccart, B., Georges, A., Blockeel, H., Eeckhout, L.: Ranking commercial machines
through data transposition. In: Workload Characterization (IISWC), 2011 IEEE
International Symposium on. pp. 3–14. IEEE (2011)

24. Quinlan, J.R., et al.: Learning with continuous classes. In: 5th Australian joint
conference on artificial intelligence. vol. 92, pp. 343–348. Singapore (1992)

25. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset
shift in machine learning. The MIT Press (2009)

26. Rahman, M.G., Islam, M.Z.: Missing value imputation using a fuzzy clustering-
based em approach. Knowledge and Information Systems pp. 1–34 (2015)


