
Cost-Sensitive Classification Meets Proper Scoring Rules

Peter Flach

Intelligent Systems Laboratory, University of Bristol, UK

Abstract. In cost-sensitive classification we penalise false negatives and false
positives with distinct cost parameters, jointly referred to as the cost context.
In this paper I argue that the standard analysis carries an implicit assumption
that costs are expressed on an additive scale, summing up to a fixed budget. It
is then natural to investigate what happens when we assume alternate scales.
The main technical result of the paper is that, for cost contexts expressed on a
harmonic scale, expected loss of a probabilistic cost-sensitive classifier is equal
to the model’s Log-Loss (as opposed to additive cost contexts where expected
loss is equal to the model’s Brier score for additive cost contexts, as proved by
Hernández-Orallo et al. (2012)). Both Brier score and Log-Loss are proper scor-
ing rules used to evaluate probability estimators. I argue that the cost-based per-
spective allows to enumerate a family of candidate proper scoring rules, and give
a preliminary analysis of some of these using cost curves.

Keywords: ROC analysis, cost curve, operating context, classification performance
metrics, Brier score, Log-Loss.

1 Introduction and motivation

In cost-sensitive classification we penalise false positives with a cost c0 and false nega-
tives with a cost c1, jointly referred to as the cost context. It is usually assumed that only
the cost proportion c = c0/(c0 + c1) matters, so that c0 = 1,c1 = 3; c0 = 2/3,c1 = 2;
and c0 = 1/2,c1 = 3/2 are all equivalent. Furthermore, the latter cost context has the
advantage of leading to cost-sensitive loss being expressed on a scale commensurate
with error rate, which has cost context c0 = 1,c1 = 1.

In this paper I argue that this carries an implicit assumption that costs are expressed
on an additive scale, summing up to a fixed budget. It is then natural to investigate what
happens when we assume different scales. For example, the second cost context above
is commensurate with error rate if we measure costs on a harmonic scale, since 1/c0 +
1/c1 = 2. The main technical result of the paper is that, for harmonic cost contexts,
expected loss of a probabilistic classifier which sets its decision threshold equal to c,
averaged over uniform c, is equal to the model’s Log-Loss (while it is equal to the
model’s Brier score for additive cost contexts (Hernández-Orallo et al., 2012)). Both
Brier score and Log-Loss are so-called proper scoring rules used to evaluate probability
estimators (Dawid and Musio, 2014). I argue that the cost-based perspective allows to
enumerate a family of candidate proper scoring rules, and give a preliminary analysis
of some of these using cost curves (Drummond and Holte, 2006).
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The outline of the paper is as follows. In Section 2 I give general definitions and
notation pertaining to cost-sensitive classification. Section 3 recalls some of the main
results of Hernández-Orallo et al. (2012), and Section 4 extends these results to Log-
Loss. In Section 5 I discuss other possible cost contexts, and Section 6 concludes with
a short discussion.

2 Cost-sensitive classification

This section mostly follows Hernández-Orallo et al. (2012).
A (single-label) classifier is a function that maps instances x from an instance space

X to classes y from an output space Y . For this paper I will assume binary classifiers,
i.e., Y = {0,1}. A model is a function m : X → R that maps examples to real num-
bers (scores) on an unspecified scale. I use the convention that higher scores express
a stronger belief that the instance is of class 1. A probabilistic model is a function
m : X→ [0,1] that maps examples to estimates p̂(1|x) of the probability of example x to
be of class 1. In order to make predictions in the Y domain, a model can be converted
to a classifier by fixing a decision threshold t on the scores. Given a predicted score
s = m(x), the instance x is classified in class 1 if s > t, and in class 0 otherwise. Given
a dataset D ⊂ 〈X ,Y 〉 of size n = |D|, I denote by Dk the subset of examples in class
k ∈ {0,1}, and set nk = |Dk|. The (positive) class proportion or class context is then
π = n0/n.

For a given, unspecified model and population from which data are drawn, I denote
the score density for class k by fk and the cumulative distribution function by Fk. Thus,
F0(t) =

∫ t
−∞

f0(s)ds = P(s≤ t|0) is the proportion of class 0 points correctly classified
if the decision threshold is t, which is the sensitivity or true positive rate at t. Similarly,
F1(t) =

∫ t
−∞

f1(s)ds=P(s≤ t|1) is the proportion of class 1 points incorrectly classified
as 0 or the false positive rate at threshold t. The average score of actual class k is
sk =

∫ 1
0 s fk(s)ds.1

In classification a typical loss function is the error rate, which can be defined in
terms of class distribution and true and false positive rates as follows:

Q(t;π), π(1−F0(t))+(1−π)F1(t) (1)

In cost-based classification we can denote the cost of misclassifying a positive as c0 and
of misclassifying a negative as c1, leading to the following cost-sensitive loss:

Q(t;π,c0,c1), c0π(1−F0(t))+ c1(1−π)F1(t) (2)

3 Brier score and Brier curve

Setting b , c0 + c1 for the cost associated with misclassifying one positive and one
negative, and c , c0/b for the relative cost of misclassifying a positive, we obtain the

1 Note that I use 0 for the positive class and 1 for the negative class, but scores increase with
p̂(1|x). That is, F0(t) and F1(t) are monotonically non-decreasing with t. This has some nota-
tional advantages and is the same convention as used by, e.g., Hand (2009).
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Fig. 1. (left) The Brier curve is a piecewise linear cost curve (solid lines) jumping between differ-
ent cost lines (dashed lines). The vertical dotted lines denote actual scores assigned by the model,
and hence determine the values of c where the operating point changes. Score-driven thresholds
are sub-optimal whenever the Brier curve departs from the lower envelope. The area under the
Brier curve is the Brier score. (right) Optimal Brier curve resulting from perfectly calibrated
scores (dashed verticals).

following alternative parametrisation:

Q(t;π,b,c), b{cπ(1−F0(t))+(1− c)(1−π)F1(t)} (3)

Hernández-Orallo et al. (2012) argued that it makes sense in many situations to assume
b and c independent (I will revisit this later). If we also assume π fixed this leads to the
following expected loss:

L = E{b}
∫ 1

0
{cπ(1−F0(t))+(1− c)(1−π)F1(t)}w(c)dc (4)

This means that for the expected loss the variability in b is only captured through its
expected value, which can be rescaled to E{b} = 2 to ensure commensurability with
error rate.

Hernández-Orallo et al. (2011) introduced the score-driven threshold choice method
which sets the threshold of a probabilistic classifier equal to c in order to account for
unequal misclassification costs. They obtained the following result: assuming proba-
bilistic scores and a decision threshold equal to the cost context c, expected loss under
a uniform distribution of cost contexts is equal to the model’s Brier score

BS = π

∫ 1

0
s2 f0(s)ds+(1−π)

∫ 1

0
(1− s)2 f1(s)ds (5)
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Using integration by parts we can rewrite the per-class components of the Brier score
in terms of true and false positive rate:

BS0 =
∫ 1

0
s2 f0(s)ds =

∫ 1

0
2s(1−F0(s))ds (6)

BS1 =
∫ 1

0
(1− s)2 f1(s)ds =

∫ 1

0
2(1− s)F1(s)ds (7)

The right-most expressions under the integral sign are linear in s, and so the Brier score
can be constructed as the area under a piecewise linear cost curve known as the Brier
curve (Hernández-Orallo et al., 2011). Example Brier curves are given in Figure 1.

4 Harmonic cost contexts and Log-Loss

In the previous section we had c = c0/(c0+c1) and b equal to the sum of c0 and c1, i.e.,
twice their arithmetic mean. Alternatively, we can take d to be half the harmonic mean
of c0 and c1: i.e., 1/d , 1/c0 +1/c1.2 Keeping the definition of c the same, it now fol-
lows that c1 = d/c and c0 = d/(1−c). Instead of assuming b and c independent we may
wonder what happens if we assume c and d independent – we will call these harmonic
cost contexts (contrasting with the additive cost contexts in the previous section).

The expression for loss is now

Q(t;π,d,c), d
{

1
1− c

π(1−F0(t))+
1
c
(1−π)F1(t)

}
(8)

and hence expected loss becomes

L = E{d}
∫ 1

0

{
1

1− c
π(1−F0(t))+

1
c
(1−π)F1(t)

}
w(c)dc (9)

To keep commensurability with error rate I will assume E{d}= 1/2.
We can then obtain the following novel result.

Theorem 1. Assuming probabilistic scores, harmonic cost contexts and a decision thresh-
old equal to the cost parameter c, expected loss under a uniform distribution of c is
equal to Log-Loss, defined as

LL = π/2
∫

ln
1

1− s
f0(s)ds+(1−π)/2

∫
ln

1
s

f1(s)ds = πLL0/2+(1−π)LL1/2

(10)

Proof. Use integration by parts to obtain∫ 1
1− s

(1−F0(s))ds =
∫

ln
1

1− s
f0(s)ds = LL0 (11)∫ 1

0

1
s

F1(s)ds =
∫

ln
1
s

f1(s)ds = LL1 (12)

and use this to rewrite Equation 9, noting that E{d}= 1/2, w(c) = 1 and t = c = s.
2 This is in fact the choice made by (Zhao et al., 2013, p.1048) – they write ‘[. . . ] we find it most

convenient to normalize the two costs c0 and c1 (by multiplying them by a common factor)
such that c0c1

c0+c1
= 0.5, that is, c−1

0 + c−1
1 = 2.’
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Fig. 2. (left) Comparison between Brier curve (in blue) and Log-Loss curve (in red). Compar-
atively, the Log-Loss curve is more affected by the model’s behaviour at extreme values of c.
(right) Optimal Brier and Log-Loss curves.

We can thus draw Log-Loss curves in a similar way to Brier curves, such that the
area under the Log-Loss curve is equal to Log-Loss. Figure 2 shows this for the running
example. Note that cost lines for harmonic cost contexts are not linear but hyperbolic.
This difference arises since, for example, in additive cost contexts c = 0 means c0 = 0
and c1 = b; whereas in harmonic cost contexts it means c1 = ∞ and c0 = d. Conse-
quently, the always-positive classifier has zero loss in an additive cost context with
c = 0, whereas it has non-zero loss dπ in a harmonic cost context with the same cost
proportion. Conversely, if c = 1/2 the two losses are equal. In conclusion, Log-Loss
emphasises the extreme values of c when evaluating a model.

5 A family of cost contexts

In this section I will generalise the idea of a cost context with associated scale further.
We have seen two examples where the cost parameters are governed by a fixed budget:
in the additive scenario we have c0 + c1 = b, whereas in the harmonic case we have
1/c0 +1/c1 = 1/d. In both cases this gives a functional relationship between c0 and c1
which is symmetric in c0 and c1 and monotonically decreasing. I will now consider a
few other choices which are visualised in Figure 3.

5.1 Geometric cost contexts

Define e2 , c0c1 to be the square of the geometric mean of c0 and c1, then

c0 = e
√

c
1− c

(13)

c1 = e

√
1− c

c
(14)
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Fig. 3. Different cost contexts: additive (in blue), harmonic (in red), geometric (in green) and
Euclidean (in violet). All of these are scaled to be commensurate to error rate, which means that
they all go through (c0 = 1,c1 = 1).

The expression for loss becomes

Q(t;π,e,c), e

{√
c

1− c
π(1−F0(t))+

√
1− c

c
(1−π)F1(t)

}
(15)

and hence expected loss is now

L = E{e}
∫ 1

0

{√
c

1− c
π(1−F0(t))+

√
1− c

c
(1−π)F1(t)

}
w(c)dc (16)

To keep commensurability with error rate I will assume E{e}= 1.
Equation 16 is sufficient to draw a cost curve for geometric cost contexts (Figure 4).

I leave the derivation of a corresponding expected loss metric, which requires rewriting
the integral in terms of score densities, for future work.

5.2 A general case

I will now derive a general formulation covering all cost contexts considered in this
paper except the geometric one. Put f k , ck

0 + ck
1 for arbitrary real k 6= 0, then

c0 = f
(

ck

(1− c)k + ck

)1/k

(17)

c1 = f
(

(1− c)k

(1− c)k + ck

)1/k

(18)
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Fig. 4. (left) In addition to the Brier curve for additive cost contexts (in blue) and the Log-Loss
curve for harmonic contexts (in red), this plot shows cost curves for geometric cost contexts (in
green) and Euclidean cost contexts (in violet). (right) Corresponding optimal cost curves.

The expression for loss becomes

Q(t;π,e,c), f

{(
ck

(1− c)k + ck

)1/k

π(1−F0(t))+
(

(1− c)k

(1− c)k + ck

)1/k

(1−π)F1(t)

}
(19)

and hence expected loss becomes

L = E{ f}
∫ 1

0

(
ck

(1− c)k + ck

)1/k

π(1−F0(t))+
(

(1− c)k

(1− c)k + ck

)1/k

(1−π)F1(t)

}
w(c)dc

(20)

Commensurability with error rate requires E{ f}= 21/k. This general expression covers
additive cost contexts (k = 1) and harmonic cost contexts (k = −1), as well as, e.g.,
Euclidean cost contexts (c = 2), all three of which are plotted in Figure 4 together with
geometric cost contexts.

6 Discussion

A scoring rule is designed to evaluate probability estimates. A wide variety of such
scoring rules exists (Dawid and Musio, 2014), yet the concept occurs only sporadically
in the machine learning literature. Exceptions include Hernández-Orallo et al. (2012),
which connects cost-sensitive classification to the Brier score, and Zhao et al. (2013),
which makes an alternative connection to Log-Loss and information entropy. This paper
attempts to lift the discussion to a more general level by distinguishing different scales
on which cost contexts can be expressed. Besides the additive and harmonic scales
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on which the previous two results are based, and which can be seen as instantiations
of a more general case, I have considered the geometric case. Deriving the geometric
expected loss is an interesting open problem as the form of the loss suggests a possible
connection with boosting.

Putting forward these alternatives raises the question whether some may be bet-
ter suited than others. This question can be addressed in different ways. One possi-
ble answer would be that it is ultimately the application context which dictates the
scale on which costs are expressed – in the absence of such information, additive costs
seem most intuitive. Another way to address this question is to look at the shape of
the cost curves. I have already remarked that Log-Loss puts more emphasis than the
Brier score on extreme values of c, as can be clearly seen in Figure 2. One can argue,
with Hand (2009), that such extreme values are much less likely and should rather be
de-emphasised. This would then be an argument against the use of Log-Loss (another
argument against Log-Loss is that in a multi-class setting it penalises uncertainty re-
garding the true class only). Conversely, it can be seen in Figure 4 that Euclidean cost
contexts de-emphasise extreme c values a bit more than the additive context, which
suggests that this may be another interesting candidate to consider.
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José Hernández-Orallo, Peter A. Flach, and Cèsar Ferri. A unified view of performance
metrics: Translating threshold choice into expected classification loss. Journal of
Machine Learning Research, 13:2813–2869, 2012.

Ming-Jie Zhao, Narayanan Edakunni, Adam Pocock, and Gavin Brown. Beyond Fano’s
inequality: bounds on the optimal F-score, BER, and cost-sensitive risk and their
implications. Journal of Machine Learning Research, 14(1):1033–1090, 2013.


