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1 Introduction

The ECML-PKDD Challenge on ”Model Reuse with Bike rental Station data”
is a novel competition announced in 2015. The proposed competition put focus
on investigating model reuse potential in a bike sharing system. The challenge
offered a unique approach to forecasting public bicycle availability, since compe-
tition participants needed to generate forecasts for previously unseen stations.
This methodological difference promotes resourcefulness and offers a vast space
for creative and even wild research ideas.

The report contains five sections:

1. Methods show the underlying models in detail with references.
2. Data description provides some statistics and description about the target

variables and the features used throughout the competition.
3. Experiment Methodology summarizes the training and testing environment

and evaluation scheme the challenge was conducted on.
4. Modeling details are presented in a the corresponding section.
5. Conclusions are drawn at the end.

2 Methods

Previous experience showed us that oftentimes multiple regressors are better
than one[1]. Therefore I used an ensemble method that was successful in various
other competitions: Gradient Boosted Regression Trees (GBR)[2–4] combined
with Random Forests (RF). Experimental results were benchmarked and later
extended using Ordinary Least Squares regression; a model widely used for time
series regression. GBR and RF implementation was provided by Python’s Scikit-
learn[5] and OLS by the Statsmodels [6] library.
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2.1 Random Forest

The Random forest is perhaps the best-known of ensemble methods, thus it com-
bines simple models called base learners for increased performance. In this case
multiple tree models are used to create a forest as introduced by Leo Breiman
in 2001.

There are three key factors of forest creation:

1. bootstrapping the dataset
2. growing unpruned trees
3. limiting the candidate features at each split

These steps ensure that reasonably different trees are grown in each turn of
iteration, which is key to effective model combination.

The bootstrapping step of the model creation carries out a random sampling
of a dataset with N observations with replacement that results in N rows, but
only ca. 63% of the data used. The probability that an observation x does not
get into the sample S equals

P (x /∈ S) = (1− 1

n
) ≈ e−1 = 0.368 (1)

Pruning the trees would reduce variance between trees and thus considered
inessential as the overfitting of individual trees is balanced anyway by the en-
semble.

When growing trees a different set of features are proposed as candidates in
finding the best split based on an information criteria like gini or enthropy. The
subset of features are selected randomly further increasing the variance between
trees.

The output of the trees is then combined by averaging the results based on
some weights or by performing a majority vote in case of classification problems.

Random forests have very few vital parameters to tune, they are effectively
non-parametric. The unique architecture provides many benefits and is widely
recognized as a good initial approach to most problems. Unlike decision trees,
the ensemble method’s averaging property inherently finds a balance between
high variance and bias. It is insensitive to many data related issues such as the
large number and heterogeneity of features, outliers, missing data, and even an
unbalanced target. Other than being a great out-of-the-box tool it offers various
useful services. Random forest gives intrinsic evaluation of the results based
on the data discarded by bootstrapping (called out-of-bag error), it also gives
estimates what variables are important.

ExtraTrees is a slightly different Random forest variant suggested by Pierre
Geurts, Damien Ernst and Louis Wehenkel in the article Extremely randomized
trees in 2006. The extreme randomization comes from the fact that the variable
splitting in each node is no longer based on finding the best split, but done in
a completely random manner. This causes the trees grown to be even less data
dependent, thus introducing extra variance between them.
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2.2 Gradient Boosting Decision Trees

Gradient boosting is another ensemble method responsible for combining weak
learners for higher model accuracy, as suggested by Friedman in 2000 [7]. The
predictor generated in gradient boosting is a linear combination of weak learners,
again we use tree models for this purpose. We iteratively build a sequence of
models, and our final predictor will be the weighted average of these predictors.
Boosting generally results in an additive prediction function:

f∗(X) = β0 + f1(X1) + . . .+ fp(Xp) (2)

In each turn of the iteration the ensemble calculates two set of weights:

1. one for the current tree in the ensemble
2. one for each observation in the training dataset

The rows in the training set are iteratively reweighted by upweighting previ-
ously misclassified observations.

The general idea is to compute a sequence of simple trees, where each suc-
cessive tree is built for the prediction residuals of the preceding tree. Each new
base-learner is chosen to be maximally correlated with the negative gradient of
the loss function, associated with the whole ensemble. This way the subsequent
stages will work harder on fitting these examples and the resulting predictor is
a linear combination of weak learners.

Utilizing boosting has many beneficial properties; various risk functions are
applicable, intrinsic variable selection is carried out, also resolves multicollinear-
ity issues, and works well with large number of features without overfitting.

3 Data description

The original competition goal was to predict hourly bike availability for a num-
ber of docking stations for a given hour on a given day. The provided dataset
contained information about bike availability on hourly resolution for a roughly
2.5 year long period between 2012 and 2014 for 10 docking stations in the city of
Valencia. In addition, 1 month worth of partial training data was provided for
190 other stations throughout the city. The evaluation in the intial phase was
carried out on 25 previously unseen stations, leaving the last 50 stations for the
final evaluation. Also, no additional data sources were allowed to be used for
this competition.

3.1 Data preparation

Each station in the dataset has two very unique features originating from the
bike sharing system; it’s location given by GPS coordinates (latitude, longitude)
and bicycle capacity (numDocks). In order to maintain model re-usability all
capacity-related features were normalized by the numDocks attribute. These
features include bikes, bikes 3h ago, full profile 3h diff bikes, full profile bikes,
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short profile 3h diff bikes and short profile bikes. This transforms capacity-
related attributes to take values from [0, 1] range and capacity differences from
[−1, 1].

Throughout the datasets missing values appear for unknown reasons (eg. sys-
tem malfunction, blackout, rolling window of different models) spanning various
length. All rows with missing target label were discarded. Input variables were
imputed simply with zero for precipitation.l.m2, full profile 3h diff bikes,
short profile 3h diff bikes or the mean of the two closest known values for
bikes 3h ago, windMaxSpeed.m.s, windMeanSpeed.m.s, windDirection.grades,
temperature.C, relHumidity.HR and airPressure.mb.

The feature engineering work created 9 new input attributes to enhance
model performance. There were 4 new variables added containing baseline model
outputs as suggested by the competition website; base ago sprofdiff , base ago fprofdiff ,
base ago sprofdiff sprof and base ago fprofdiff sprof . This step essentially
implements model stacking of the baseline outputs and machine learning meth-
ods. 5 basic date-related attributes were also extracted including month of year,
day of week (in numerical format), day of year, day of month and week of year.

Constructing the model training set involved various tricks. The original
deployment station data contained the month of October only which results
on a weak modelling performance on the test data of November and December
(especially with the holiday season around). It is highly desirable to have at least
a full year’s worth of training data at hand. Incidentally this is only provided
for the 10 partial train stations. A Pearson correlation analysis was performed
on the previously normalized bikes values to find suitable donors of training set
extension.

Figure 1 shows interesting correlation patterns regarding bicycle rental. The
stations in the top-left corner tend to move together, similarly so the larger block
in the bottom-right. Caused by their location or functionality these stations act
similarly acting as sources and sinks of bikes during a day of the city. Remember,
the data has hourly granularity and most bike trips last less, which makes some
of the source-sink pairs directly recognizable due to their very strong negative
correlation (dark blues). Figure 2 depicts such a relation between stations 7 and
222 with an obvious weekend pattern in addition.

Table 1. Transforming stations with strong negative correlation

Input variable Transformation applied

bikes 1 - bikes
bikes 3h ago 1 - bikes 3h ago
full profile bikes 1 - full profile bikes
short profile bikes 1 - short profile bikes
short profile 3h diff bikes (-1) * short profile 3h diff bikes
full profile 3h diff bikes (-1) * full profile 3h diff bikes
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Fig. 1. Pearson correlation of stations 1-10 and 201-225
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Fig. 2. Strong negative correlation between stations 7 and 222

As an extra twist in the training set construction negatively correlated sta-
tions were also included if no suitable addition was found previously. This step
required capacity-related attributes to be swapped accordingly (see Table 1 for
details). The resulting training set construction is summarized in Table 2, the
value ’All’ denote the usage of both stations 1-10 and their capacity-swapped
negative counterparts. Optimal training set constructs listed in Table 2 were
found by taking two aspects into account. Possible training set donors were
identified by demonstrating an outstanding Pearson correlation with the target
(taking the top decile of all station correlations). An optimal subset was finalized
by the test result measurements shown in the following section.

4 Experiment Methodology

I used data from the second half of October 2014 as a validation set in my
research methodology (unlike in the test set where specic dates were marked for
evaluation for each station). To receive more generalized insights two batch of
model evaluation run was performed; the first period starting 2014-10-17 and
the second 2014-10-24. The MAE error measurements were averaged over the
two.

The test set does not consist of a single continuous time interval, but rather
20 selected time points for each test station. This has two distinct effects, lagged
and rolling features are unavailable (and against rules), but it is feasible to
create a separate model for each test observation. Due to the training set con-
struction often times many unrelated observations are included from loosely
correlated stations. Nearest neighbor methods address this problem efficiently,
but they usually offer mediocre performance in forecasting problems, thus a
hybrid approach was pursued. To include relevant observations only a similar-
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Table 2. Construction of the extended training set for the small test stations 201-225

Test station nr. Additional train data from

201 7
202 1
203 5
204 7,6
205 6,7
206 6,7,8
207 7,9
208 6,7
209 All
210 10
211 None
212 8,7
213 8,6,7,5
214 6,5
215 5,7,6
216 5
217 7
218-225 All

ity check was introduced, implemented by Scikit-learn’s KDTree module with-
out limiting the choice of regression models. Distance measures were taken on
different sets of attributes; with a backward selection starting with all vari-
ables, optimal performance was found when using baseline model outputs only
(eg. full profile bikes, bikes 3h ago, full profile 3h diff bikes, short profile bikes,
short profile 3h diff bikes).

5 Modeling

Bike availability was forecasted using 3 robust and proven machine learning mod-
els; Ordinary Least Square Regression, Random Forest and Gradient Boosting
Regression Trees. Experiments showed that model ensembles offered even lower
error rates, the final model consists of the arithmetic mean of the 2 base model
outputs GBR and RF. OLS was discarded from the ensemble due to inconsistent
outputs observed. Both RF and GBR models are fairly robust against useless
features, meaning almost no prior feature selection is required. OLS regression is
very sensitive in this matter, here only the significant attributes are kept (T-stat
p value<0.05), but multicollinearity is still an issue.

All three models are quite robust and offer only a handful tuning parameters.
Table 3 summarizes the parameter fine tuning carried out with a grid search
approach. Unmentioned parameters were left at default.
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Table 3. Grid search parameters and optimums found

Hyperparameter Considered values Optimum

KDTree neighbors 100,200,500,1000,2000,10000 2000
RF no. estimators 200,400,800,1000,2000 1000
GBR no. estimators 100,200,400,500,1000 500
RF maximum depth 5,7,9,None 7
GBR maximum depth 3,4,5,7 4

6 Conclusions and future work

The 2015 ECML-PKDD Challenge offered a novel way of forecasting; model
reuse in time series analysis is an interesting open question and an approach
worth investigating. My efforts in the contest were focused on complex data
preparation and developing a specialized evaluation scheme. As well as providing
accurate forecasts with the help of well-established estimators in the literature
used in a fairly different context.

The methodology used in this paper can be easily applied in other domains
of forecasting as well. Local validation indicated a mean absolute error of 2.476
over stations, while the full test results provided by the contest organizers had
a somewhat lower MAE of 2.416.

During the competition I filtered the training set to better represent the
characteristics of the day to be forecasted, which greatly improved model per-
formance. Automating this process is also a promising and chief goal of ongoing
research.
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