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1. Introduction and motivation

Cost context

In cost-sensitive classification we penalise misclassified positives with
a cost c0 and misclassified negatives with a cost c1, jointly referred to
as the cost context.

It is usually assumed that only the cost proportion c = c0/(c0 + c1)
matters, so that the following are all equivalent:

c0 = 1,c1 = 3;
c0 = 2/3,c1 = 2; and
c0 = 1/2,c1 = 3/2.

Furthermore, the latter cost context has the advantage of leading to
cost-sensitive loss being expressed on a scale commensurate with
error rate, which has cost context c0 = 1,c1 = 1.
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1. Introduction and motivation

From additive to harmonic cost contexts
This carries an implicit assumption that costs are expressed on an
additive scale, summing up to a fixed budget. It is then natural to
investigate what happens when we assume different scales. For
example, the cost context c0 = 2/3,c1 = 2 is commensurate with error
rate if we measure costs on a harmonic scale, since 1/c0 +1/c1 = 2.

The main technical result of the paper is that, for harmonic cost
contexts, expected loss of a probabilistic classifier which sets its
decision threshold equal to c, averaged over uniform c, is equal to the
model’s Log-Loss (while it is equal to the model’s Brier score for
additive cost contexts).

Both Brier score and Log-Loss are so-called proper scoring rules used
to evaluate probability estimators. The cost-based perspective then
allows to enumerate a family of candidate proper scoring rules.

Peter Flach (University of Bristol) Cost-Sensitive Classification Meets Proper Scoring Rules 11 September 2015 4 / 11



2. Brier score and Brier curve

Cost-sensitive loss

b = c0 + c1

c0 = bc,c1 = b(1− c)

Q(t;π0,b,c) = b{cπ0(1−F0(t))+(1− c)π1F1(t)}

Expected loss for b, c independent and π0 fixed

L = E{b}
∫ 1

0
{cπ0(1−F0(t))+(1− c)π1F1(t)}w(c)dc

Brier score obtains if E{b}= 2 and c uniform

BS = π0

∫ 1

0
s2 f0(s)ds+π1

∫ 1

0
(1− s)2 f1(s)ds
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2. Brier score and Brier curve
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(left) The Brier curve is a piecewise linear cost curve (solid lines) jumping
between different cost lines (dashed lines). The vertical dotted lines denote
actual scores assigned by the model, and hence determine the values of c
where the operating point changes. Score-driven thresholds are sub-optimal
whenever the Brier curve departs from the lower envelope. The area under
the Brier curve is the Brier score. (right) Optimal Brier curve resulting from
perfectly calibrated scores (dashed verticals).
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3. Harmonic cost contexts and Log-Loss

Harmonic cost contexts

1/d = 1/c0 +1/c1

c0 = d/(1− c),c1 = d/c

Q(t;π0,d,c) = d
{

1
1− c

π0(1−F0(t))+
1
c

π1F1(t)
}

Expected loss for d, c independent

L = E{d}
∫ 1

0

{
1

1− c
π0(1−F0(t))+

1
c

π1F1(t)
}

w(c)dc

Theorem

If E{d}= 1/2 and c uniform, expected loss is equal to Log-Loss:

LL = π0/2
∫

ln
1

1− s
f0(s)ds+π1/2

∫
ln

1
s

f1(s)ds
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3. Harmonic cost contexts and Log-Loss
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(left) Comparison between Brier curve (in blue) and Log-Loss curve (in red).
Comparatively, the Log-Loss curve is more affected by the model’s behaviour
at extreme values of c. (right) Optimal Brier and Log-Loss curves.
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4. A family of cost contexts
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Different cost contexts: additive (in blue), harmonic (in red), geometric (in
green) and Euclidean (in violet). All of these are scaled to be commensurate
to error rate, which means that they all go through (c0 = 1,c1 = 1).
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4. A family of cost contexts
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(left) In addition to the Brier curve for additive cost contexts (in blue) and the
Log-Loss curve for harmonic contexts (in red), this plot shows cost curves for
geometric cost contexts (in green) and Euclidean cost contexts (in violet).
(right) Corresponding optimal cost curves.
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5. Discussion

Discussion

The cost-sensitive perspective helps to understand the difference
between scoring rules and evaluation metrics.

Ultimately, the ‘correct’ parametrisation of cost contexts, and the
corresponding evaluation metric, depends on the domain of
application.

Log-Loss is usually justified by information-theoretic considerations,
but from a cost-sensitive perspective the justification for a harmonic
cost scale is less clear.

Euclidean cost contexts de-emphasise extreme values of c, which
might be a good thing.
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