

An adaptive probabilistic classification method for dynamic class hierarchies

C. Ferri, M.J. Ramírez-Quintana, M.Kull, A. Martínez-Usó and P. Flach

> DSIC, Universidad Politécnica de Valencia, Spain University of Bristol, U.K. {cferri,mramirez,admaru}@dsic.upv.es {Mellis.Kull,Peter.Flach}@bristol.ac.uk

Overview

- Introduction
- Reframing hierarchical classifiers
- Experimental Evaluation
- Conclusions and Future work

- Many classification tasks involve a large number of categories
 - Usually these categories are ordered in a hierarchy:
 - ¹ Bioinformatic, text categorization, film or music genre classification

In hierarchical classification a model labels an instance by using the structure of the hierarchy

- In many contexts the hierarchy of classes is dynamic, i.e., the structure of classes can change
 - Reordering of categories: Biotechnology can be under computer science or medicine
- We investigate a scenario ("mandatory leaf-node") where class hierarchies can change from learning to deployment time
 - We do not contemplate deletion or creation of categories

- We analyse GPS tracks for medical reasons
- We learn a hierarchical classifier using the following model that considers: locomotion form, surface type and speed.

We now consider a new hierarchy based on the intensity of the sport:

- In this situation, we can:
 - Retrain: Ignore previous models and learn a new classifier with the new context
 - Reframe: Try to adapt existing models to the new context

- Cost Sensitive-Classification:
 - A new context means a different skew
 - We adapt probabilistic models by assigning classes based on the minimisation of the expected cost
- ▶ Based on this approach we propose a a new hierarchical classification technique:
 - Hprb: hierarchical probabilistic method

- Hierarchical classification loss:
 - We use a distance-based metric that considers the distance between the predicted and the actual class in the hierarchy
 - Classes that are close to each other in the hierarchy tend to be similar

- Hierarchical classification loss:
 - Given a predicted class *p*, and an actual class *r* in a hierarcy *T*
 - hlossT(p,r) = d(p,r)/dmax(T)
 - d(p,r) is the number of edges of the shortest path between p and r in T
 - dmax(T) is the size in edges of the longest path between two classes in T

- Hierarchical classification loss:
 - hlossT(Mountain Biking,Trail Bike)=4/5
 - hlossT(Trail Bike, Trail Bike)=0
 - hlossT(Motorcycling,Trail Bike)=5/5

▶ Hpbr.

- Given a probabilistic model *M* with *C* classes, a hierarchy *T*, and an instance *e* to be classified.
- p(c/e) is the estimated probability by M that example e belongs to a class c

$$hprb(e) = argmin_{c \in C} (\sum_{\forall k \in C} p(k|e) * hloss_T(k,c))$$

- Contexts where the hierarchical structure is variable
- Two class hierarchies.
 - T: Old context is used in the training phase
 - NT: New context is employed in the test phase
- Hierachy is automatically induced by building a dendrogram from a confussion matrix
 - ZeroR for T
 - **J48** for *NT* ⋅

- ▶ 12 Learning Methods
 - J48: decision tree
 - J48Unp: unpruned decision tree
 - Jrip: propositional rule learner

 - Logist: logistic regression
 - · IBK: K-nearest neighbours with ten neighbours
 - RF: random rorest
 - Bagging: ten J48 models combined by Bagging
 - PART: decision list
 - Boosting: boosting of J48 models
 - Stump: decision stump
 - LB: Boosted Logistic Regression

Datasets: 50% train, 50% test

dataset	NumInst	NumAtt	Numclass
1 anneal	898	39	5
2 glass	214	10	6
3 zoo	101	18	7
4 autos	205	26	6
5 grub-damage	155	9	4
6 soybean	683	36	19
7 eucalyptus	736	20	5
8 vowel	990	14	11
9 pendigits	10992	17	10
10 segment	2310	20	7

- ▶ **NB** 300 iterations.
- ▶ PAVCal Calibration

	dataset	flat_error	flat	hpnt	hp	hpntcal	hpcal	MSE	MSEcal
1	anneal	0.1216	0.0929	0.0929	0.0929	0.0748	0.0748	0.0449	0.0321
2	glass	0.5159	0.2917	0.2899	0.2902	0.3206	0.3215	0.1342	0.1228
3	ZOO	0.0461	0.0261	0.0262	0.0265	0.0284	0.0300	0.0110	0.0145
4	autos	0.4613	0.3128	0.3123	0.3130	0.3203	0.3224	0.1347	0.1161
5	grub-damage	0.5189	0.3776	0.3757	0.3760	0.3742	0.3748	0.1806	0.1768
6	soybean	0.1627	0.0720	0.0673	0.0718	0.0593	0.0652	0.0129	0.0131
7	eucalyptus	0.5254	0.3709	0.3708	0.3707	0.3686	0.3695	0.1672	0.1380
8	vowel	0.4006	0.2184	0.2153	0.2170	0.2164	0.2194	0.0493	0.0498
9	pendigits	0.1426	0.0956	0.0957	0.0956	0.0937	0.0929	0.0257	0.0213
10	$\operatorname{segment}$	0.1974	0.1048	0.1048	0.1048	0.0873	0.0879	0.0518	0.0320
	Average	0.3092	0.1963	0.1951	0.1959	0.1944	0.1958	0.0812	0.0716

Average results of the classification methods:

	Method	flat_error	flat	$_{ m hpnt}$	hpntcal	hpntcal vs flat	MSE	MSEcal	MSEcal vs MSE
1	J48	0.2558	0.1655	0.1655	0.1618	905-1284-811	0.0679	0.0609	1745-406-849
2	$_{ m JRip}$	0.2844	0.1831	0.1830	0.1846	96-2607-297	0.0689	0.0664	1785-520-695
3	logist	0.2738	0.1760	0.1759	0.1798	876-750-1374	0.0861	0.0771	1884-161-955
4	NB	0.3092	0.1963	0.1951	0.1944	1993-139-868	0.0812	0.0716	2245-48-707
5	$_{\mathrm{IBK}}$	0.3862	0.2484	0.2383	0.2333	2102-52-846	0.0728	0.0731	1811-40-1149
6	RF	0.2098	0.1379	0.1393	0.1352	1362-176-1462	0.0542	0.0523	1999-38-963
7	bagging	0.2301	0.1497	0.1497	0.1475	1199-309-1492	0.0546	0.0555	1310-99-1591
8	PART	0.2609	0.1679	0.1684	0.1641	770-1689-541	0.0693	0.0621	1963-376-661
9	boosting	0.2198	0.1427	0.1426	0.1450	1006-799-1195	0.0638	0.0571	2340-326-334
10	lb	0.2446	0.1578	0.1566	0.1564	1269-294-1437	0.0568	0.0573	1298-88-1614
11	J48Unp	0.2542	0.1642	0.1692	0.1672	801-624-1575	0.0643	0.0619	2227-44-729
12	stump	0.6145	0.3953	0.3752	0.3761	1567-1259-174	0.0987	0.1001	613-1145-1242
Total						13946-9982-12072			21220-3291-11489

Conclusions

- We have addressed the problem of hierarchical classification in dynamic contexts
- New method based on predicting the label that minimises the expected loss with respect to the deployment context (class hierarchy)
 - It is able to adapt the predictions to a novel context.

Conclusions

- We have analysed the performance of the proposal over 10 datasets and 12 learning methods.
- Hierarchies are artificially induced by computing similarities between classes
- We have studied the effect of applying multiclass calibration over probabilities (PAV Calibration)

Future work

- Consider other scenarios:
 - ""non-mandatory leaf-node" problem
 - Drastic changes in the hierarchy of classes
- We also want to explore the adaption of hierarchical methods such as the Top Down approach to dynamic contexts.

Thank you

