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Abstract

In several research domains concerned with
classification tasks, curves like ROC are of-
ten used to assess the quality of a particu-
lar model or to compare two or more mod-
els with respect to various operating points.
Researchers also often publish some statis-
tics coming from the ROC, such as the so-
called break-even point or equal error rate.
The purpose of this paper is to first argue
that these measures can be misleading in a
machine learning context and should be used
with care. Instead, we propose to use the
Ezpected Performance Curves (EPC) which
provide unbiased estimates of performance at
various operating points. Furthermore, we
show how to use adequately a non-parametric
statistical test in order to produce EPCs with
confidence intervals or assess the statistical
significant difference between two models un-
der various settings.

1. Introduction

Two-class classification problems are common in ma-
chine learning. In several domains, on top of select-
ing the appropriate discriminant function, practition-
ers also modify the corresponding threshold in order
to better suit an independent cost function. Moreover,
they compare models with respect to the whole range
of possible values this threshold could take, generating
curves such as ROCs. In order to also provide quan-
titative comparisons, they often select one particular
point on this curve (such as the so-called break-even
point or equal error rate).

The main purpose of this paper is to argue that such
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curves, as well as particular points on it like break-even
point or equal error rate can be misleading when used
to compare two or more models, or to obtain a realistic
estimate of the expected performance of a given model.

We thus propose instead the use of a new set of curves,
called Expected Performance Curves (EPC), which re-
ally reflect the expected (and reachable) performance
of systems. While EPCs are presented here for gen-
eral machine learning tasks, they were first presented
specifically in the context of person authentication
in (Bengio & Mariéthoz, 2004).

Furthermore, we propose here the use of a simple non-
parametric technique to show a confidence interval
along the EPCs or to show regions where two models
are statistically significantly different from each other
with a given level of confidence.

In Section 2, we review the various performance mea-
sures used in several research domains in front of 2-
class classification tasks, such as person authentica-
tion and text categorization. In Section 3, we explain
why some of these measures can be misleading. In
Section 4, we present the family of EPCs, that really
reflects the expected performance of a given model,
hence enabling a fair comparison between models. Fi-
nally, in Section 5, we present a technique to compute
confidence intervals and statistical significance tests
together with EPCs. Section 6 concludes the paper.

2. Performance Measures for 2-Class
Classification Tasks

Let us consider two-class classification problems de-
fined as follows: given a training set of examples
(z4,y;) where x; represents the input and y; is the tar-
get class € {0,1}, we are searching for a function f(-)
and a threshold 6 such that

f(z;) > 0 wheny; = 1land f(z;) <=6 wheny, =0, Vi.
(1)

The obtained function f(-) (and associated threshold
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Table 1. Types of errors in a 2-class classification problem.

) can then be tested on a separate test data set and
one can count the number of utterances of each pos-
sible outcome: either the obtained class corresponds
to the desired class, or not. In fact, one can decom-
pose these outcomes further, as exposed in Table 1,
in 4 different categories: true positives (where both
the desired and the obtained class is 1), true negatives
(where both the desired and the obtained class is 0),
false positives (where the desired class is 0 and the
obtained class is 1), and false negatives (where the de-
sired class is 1 and the obtained class is 0). Let TP,
TN, FP and FN represent respectively the number of
utterances of each of the corresponding outcome in the
data set.

Note once again that TP, TN, FP, FN and all other
measures derived from them are in fact dependent both
on the obtained function f(-) and the threshold 6. In
the following, we will sometimes refer to, say, FP by
FP(0) in order to specifically show the dependency
with the associated threshold.

Several tasks are in fact specific incarnations of 2-class
classification problems. However, often for historical
reasons, researchers specialized in these tasks have cho-
sen different methods to measure the quality of their
systems. In general the selected measures come by
pair, which we will call generically here V1 and V2,
and are simple antagonist combinations of TP, TN,
FP and FN. Moreover, a unique measure (V) often
combines V1 and V2. For instance,

e in the domain of person authentication (Verlinde
et al., 2000), the chosen measures are
FP FN
=———and V2= ——— 2
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and are called false acceptance rate (FAR) and
false rejection rate (FRR) respectively. Several
aggregate measures have been proposed, the sim-
plest being the half total error rate (HTER)
V1+V2 FAR+FRR
2 2

V1

V:

=HTER, (3)

e in the domain of text categorization (Sebastiani,
2002),

TP TP

1
v TP + FN

and are called precision and recall respectively.
Again several aggregate measures exist, such as
the F'1 measure

2 V1-V2 2 Precision - Recall _
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e in medical studies,

TP TN

1
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and are called sensitivity and specificity respec-
tively (Zweig & Campbell, 1993).

In all the cases, in order to use the system effectively,
one has to select the threshold § according to some
criterion which is in general of the following generic
form

0* = arg mein g(V1(0),V2(0)) . (7)

Examples of g(-,-) are the HTER and F1 functions
already defined in equations (3) and (5) respectively.
However, the most used criterion is called the break
even point (BEP) or equal error rate (EER) and corre-
sponds to the threshold nearest to a solution such that
V1 = V2, often estimated as follows:

0* = arg main [V1(0) — V2(6)| . (8)

Note that the choice of the threshold can have a signif-
icant impact in the resulting system: in general 6 rep-
resents a trade-off between giving importance to V1 or
V2. Hence, instead of committing to a single operating
point, an alternative method to present results often
used in the research community is to produce a graph
that presents V1 with respect to V2 for all possible
values of . Such a graph is called the Receiver Op-
erating Characteristic (ROC) (Green & Swets, 1964)1.
Figure 1 shows an example of two typical ROCs. Note
that depending on the precise definition of V1 and V2,
the best curve would tend to one of the four corners of
the graph. In Figure 1, the best curve corresponds to
the one nearest to the bottom left corner (correspond-
ing to simultaneous small values of V1 and V2).

Instead of providing the whole ROC, researchers of-
ten summarize it by some typical values taken from
it; the most common summary measure is computed
by using the BEP, already described in equation (8),
which produces a single value of § and to produce some

!Note that the original ROC plots the true positive
rate with respect to the false positive rate, but several re-
searchers use the name ROC with various other definitions
of V1 and V2.
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Figure 1. Example of two typical ROCs.

aggregate value V() (such as F1 or HTER). On Fig-
ure 1, the line intersecting the two ROCs is the BEP
line and the intersections with each ROC correspond
to their respective BEP point.

3. Cautious Interpretation of ROC and
BEP

As explained above, researchers often use ROC and
BEP to present and compare their results; for example,
all results presented in (Sebastiani, 2002), which is a
very good survey of text categorization, are presented
using the BEP; a recent and complete tutorial on text
independent speaker verification (Bimbot et al., 2004)
proposes to measure performance through the use of
DET curves, which are non-linear versions of ROCs,
as well as the error corresponding to equal error rate,
hence the BEP. We would like here to draw the at-
tention of the reader to some potential risk of using
ROC or BEP for comparing two systems, as it is done
for instance in Figure 1, where we compare the test
performance of models A and B. As can be seen on
this Figure, and reminding that in this case V1 and
V2 must be minimized, the best model appears to al-
ways be model A, since its curve is always below that
of model B. Moreover, computing the BEP of models
A and B yields the same conclusion.

Let us now remind that each point of the ROC cor-
responds to a particular setting of the threshold 6.
However, in real applications, € needs to be decided
prior to seeing the test set. This is in general done
using some criterion of the form of equation (7) such
as searching for the BEP, equation (8), using some de-
velopment data (obviously different from the test set).

Hence, assuming for instance that one decided to se-

lect the threshold according to (8) on a development
set, the obtained threshold may not correspond to the
BEP on the test set. There are many reasons that
could yield such mismatch, the simplest being that as-
suming the test and development sets to come from the
same distribution but be of fixed (non-infinite) size, the
estimate of (8) on one set is not guaranteed to be the
same as the estimate on the other set.

Let us call 6% the threshold estimated on the develop-
ment set using model A and similarly for 5. While
the hope is that both of them should be aligned, on the
test set, with the BEP line, there is nothing, in the-
ory, that prevents them to be slightly or even largely
far from it. Figure 1 shows such an example, where
indeed,

V1(05) +V2(05) < V1(0%) + V2(0%) 9)

even though the ROC of model A is always below that
of model B, including at the intersection with the BEP
line?. One might argue that this may only rarely hap-
pen, but we have indeed observed this scenario sev-
eral times in person authentication and text catego-
rization tasks, including a text independent speaker
verification application where the problem is described
in more details in (Bengio & Mariéthoz, 2004). We
replicate in Figure 2 the ROCs obtained on this task
using two different models, with model B apparently
always better than model A. However, when selecting
the threshold on a separate validation set (hence sim-
ulating a real life situation), the HTER of model A
becomes lower than of model B (the graph shows the
operating points selected for the two models).

In summary, showing ROCs has potentially the same
drawbacks and risks as showing the training error (in-
deed, one parameter, the threshold, has been implic-
itly tuned on the test data) and expect that it reflects
the expected generalization error: this is true when
the size of the data is huge, but false in the general
case. Furthermore, real applications often suffer from
an additional mismatch between training and test con-
ditions which should be reflected in the procedure.

4. The Expected Performance Curve

We have seen in Section 2 that given the trade-off be-
tween V1 and V2, researchers often prefer to provide
a curve that assesses the performance of their model
for all possible values of the threshold. On the other
hand, we have seen in Section 3 that ROCs can be
misleading since selecting a threshold prior to seeing
the test set (as it should be done) may end up in ob-

*Note that at BEP, V1 =V2 = 1(V1+V2).
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Figure 2. ROCs of two real models for a Text-Independent
Speaker Verification task.

taining a different trade-off in the test set. Hence, we
would like here to propose the use of new curves which
would let the user select a threshold according to some
criterion, in an unbiased way, and still present a range
of possible expected performances on the test set. We
shall call these curves Expected Performance Curves
(EPC).

4.1. General Framework

The general framework of EPCs is the following.
Let us define some parametric performance measure
C(V1(6,D),V2(0,D);«) which depends on the pa-
rameter a as well as V1 and V2 computed on some
data D for a particular value of 6. Examples of
C(-,; «) are the following:

e in person authentication, one could use for in-
stance
C(V1(0,D),V2(0,D); a) (10)
= C(FAR(0, D),FRR(0, D); a)
=« -FAR(0,D)+ (1 — «) - FRR(6, D)
which basically varies the relative importance of

V1 (FAR) with respect to V2 (FRR); in fact, set-
ting a = 0.5 yields the HTER cost (3);

e in text categorization, since the goal is to maxi-
mize precision and recall, one could use

C(V1(6, D), V2(6, D); a) (11)

= C(Precision(f, D), Recall(0, D); «)

= —(a - Precision(6, D) + (1 — «) - Recall(d, D))

where V1 is the precision and V2 is the recall;

e in general, one could also be interested in trying
to reach a particular relative value of V1 (or V2),
such as I am searching for a solution with as close
as possible to 10% false acceptance rate; in that
case, one could use

C(V1(6,D),V2(6, D);a) = |a — V1(6, D)| (12)

C(V1(0,D),V2(0, D)) = |a—V2(6, D)| . (13)

Having defined C(-, -; &), the main procedure to gener-
ate the EPC is to vary « inside a reasonable range (say,
from 0 to 1), and for each value of «, to estimate 6 that
minimizes C(-, -; &) on a development set, and then use
the obtained 6 to compute some aggregate value (say,
V), on the test set. Algorithm 1 details the procedure,
while Figure 3 shows an artificial example of compar-
ing the EPCs of two models. Looking at this figure,
we can now state that for specific values of « (say, be-
tween 0 and 0.5), the underlying obtained thresholds
are such that model B is better than model A, while
for other values, this is the converse. This assessment
is unbiased in the sense that it takes into account the
possible mismatch one can face while estimating the
desired threshold.

Let us suppose that Figure 3 was produced for a per-
son authentication task, where V is the HTER, V1
is the FAR, and V2 is the FRR. Furthermore let us
define the criterion as in (10). In that case, a varies
from 0 to 1, and when o = 0.5 this corresponds to
the setting where we tried to obtain a BEP (or Equal
Error Rate, as it is called in this domain), while when
a < 0.5 it corresponds to settings where we gave more
importance to false rejection errors and when a > 0.5
we gave more importance to false acceptance errors.

In order to illustrate EPCs in real applications, we
have generated them for both a person authentica-
tion task and a text categorization task. The resulting
curves can be seen in Figures 4 and 5. Note that the
graph reporting F'1 seems inverted with respect to the
one reporting HTER, but this is because we are search-
ing for low HTERs in person authentication but high
F1 in text categorization. Note also that the EPC of
Figure 4 corresponds to the ROC of Figure 2. Finally,
note that we kindly provide a C++ tool that generates
such EPCs3.

3An EPC generator is available at
http://wuw.Torch.ch/extras/epc as a package of
the Torch machine learning library.



Algorithm 1 Method to generate the Expected Per-
formance Curve
Let devel be the development set
Let test be the test set
Let V (6, D) be the value of V obtained on the data
set D for threshold 6
Let C(V1(0,D),V2(0, D); ) be the value of a cri-
terion C' that depends on «, and is computed on the
data set D
for values a € [a,b] where a and b are reasonable
bounds do
0* = arg ming C(V1(0, devel), V2(0, devel); o)
compute V(6*,test)
plot V(6*,test) with respect to «

end for
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Figure 3. Example of two typical EPCs.

4.2. Areas Under the Expected Performance
Curves

In general, people often prefer to compare their models
according to a unique quantitative performance mea-
sure, rather than through the use of curves which can
be difficult to interpret. One solution proposed by sev-
eral researchers is to summarize the ROC by some ap-
proximation of the area under it.

Knowing that the ROC may in fact be a misleading
measure of the expected performance of a system, the
corresponding area under it may also be misleading.
Would it be possible to obtain a measure of the ex-
pected performance over a given range of operating
points? We propose here to compute E[V], the ex-
pected value of V', which would be defined as the av-
erage between two antagonist measures V1 and V2
given a criterion C(-,-; ). We will show that this
is in fact related to the area under the ROC curve
(AUC), although it now concerns an area under a curve

0.5
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Figure 4. Expected Performance Curves for person authen-
tication, where one wants to trade-off false acceptance rates
with false rejection rates.
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Figure 5. Expected Performance Curves for text catego-
rization, where one wants to trade-off precision and recall
and print the F'1 measure.

of reachable solutions instead of theoretical solutions.
Note that there are several theoretical properties of the
AUC measure which makes it appealing, such as the
fact that, when V1 and V2 are respectively defined as
the true and false positive rates, it corresponds to the
well-known Mann-Whitney statistical test which can
be used to compare two independent groups of sam-
pled data (Hanley & McNeil, 1982).

Let 87—, be the threshold such that
07—c = argmin|a — f(0)] (14)

we can write the expected value of V' = YA£V2

V1 as a threshold selection criterion, as follows:

using

EVl[V] = 1/6[0 | [Vl(@\/l:a) + V2(0V1:a)] da,
| (15)



and using V2 as criterion,

_ 1
Eyo[V] = f/ [V1(0va=g) + V2(0yvo=p)] dB.
B€[0,1]
(16)
Note that if we select the thresholds 6 on the test set
then,

V1(lviza) = o, V2(Ovo=p) = B,

/ V2(0y1—a)da = AUC and  (17)
a€l0,1]

/ V1(8yap)dB = AUC .
BE(0,1]

Thus, using the fact that fol ydy = %, we can obtain

the relation between the expected V' when the thresh-
olds are computed on the test set (which we will call
E[V]post) and the area under the ROC, by comput-
ing the average of equations (15) and (16) when the
threshold is chosen on the test set:

_ 1 _ _
G(V)post 5 {EVI[V]post + EVQ[V]post}

;{AUCJF;}. (18)

Of course, if we select the thresholds using a sepa-
rate development set, the result obtained in (18) is
not true anymore. However, in this case the average
G(V) remains interesting since it can be interpreted
as a measure summarizing two EPCs. Indeed, the
two components of the average, (15) and (16), are the
area under an EPC computed using respectively cri-
teria (12) and (13), hence it integrates two antagonist
performance measures over a large range of operating
points.

Note that in equations (15) and (16), we integrate V
over expected values of V1 and V2 from 0 to 1. How-
ever in some cases, a value of V1 around, say 0, may
be reachable but of no interest. In the field of person
authentication it is common to only pay attention to
“reasonable” values of FAR and FRR (hence it is not
useful to take into account values of FAR greater than
0.5 for instance). The values of “reasonable” bounds
are task dependent, but their choice can be decisive,
and should be taken into account when computing the
expected performance of the system.

5. Confidence Intervals and Statistical
Difference Tests

While producing unbiased quantitative measures is im-
portant when assessing the performance of a model, it

is also important to take into account some of the pos-
sible variability induced by the training or testing pro-
cedure involved in the process. Several statistical tech-
niques do exist to estimate confidence intervals around
an obtained performance or to assess the statistical sig-
nificantness of the difference between the performance
of two models (see for instance (Dietterich, 1998) for
a good comparison of some of the available tests used
in machine learning).

However, in most cases, these tests involve several hy-
potheses that cannot be met in the general case where
the reported measure is some arbitrary combination
of TP, TN, FP and FN (for instance the F'1 measure
used in text categorization cannot be considered as
following a Normal distribution for which one could
easily estimate the variance; moreover, the difference
of two F'1 measures cannot be decomposed into a sum
of independent variables, since the numerator and the
denominator are both non-constant sums of indepen-
dent variables).

Hence, we would like to propose here the use of a
non-parametric test based on the Bootstrap Percentile
Test (Efron & Tibshirani, 1993) which has recently
been applied to compute confidence intervals around
ROCs (Bolle et al., 2004). We here suggest its use for
the practical case of EPCs. The aim of this test is to es-
timate a given distribution using bootstrap replicates
of the available data. Given the estimated distribu-
tion, it is then easy to compute the probability that
the random variable of interest is higher than a given
threshold, which is the basis of most statistical tests.

Let us here give a generic example where the goal is
to verify whether a given model A is statistically sig-
nificantly better than a second model B, when their
respective performance is measured with V, and Vp,
which are aggregates of V14, V1pg, V24 and V2p,
which are themselves defined using TP, TN, FP and
FN, as explained in Section 2. Let us further assume
that these measures were computed on some test set
containing N examples, for a given threshold (nor-
mally selected on a separate development set, as ex-
plained in Section 4).

Let T be a table of two columns and N rows contain-
ing, for each of the N test examples, whether it was
considered as a true positive, a true negative, a false
positive or a false negative, for both models A (first
column) and B (second column). It should be clear
that with such a table, one can compute again any ag-
gregate value V' based on the numbers TP, TN, FP,
and FN gathered from the table.

Let us now create M (where M should be a big integer,



the bigger the better, say 10000) bootstrap replicates
of table T'. The i*" bootstrap replicate of T' is done by
creating a new table T; also containing N rows of two
columns, and where each row is a copy of one of the
row of T, selected randomly with replacement. Thus,
replicate T; may contain some of the original rows of
T in more than one copy, and may not contain some
other rows of T'. Interestingly, it can be shown that the
T; are drawn from the same distribution as T which is
an empirical, unbiased and exhaustive estimate of the
true distribution (Efron & Tibshirani, 1993).

Using each bootstrap replicate T;, we now compute
an estimate of our aggregate measure of interest, nor-
mally based on V4 and Vp: it could be the signed dif-
ference of V4 and Vp if we are interested in estimating
whether model A is better than model B, or it could
be only based on Vj if we want to estimate a confi-
dence interval around V4. This yields M estimates of
our statistics of interests.
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Figure 6. Example of an obtained histogram distribution
of V4 — Vg, where the frequency of particular values of
V4 — Vp is plotted with respect to the values of V4 — V.
The two vertical thick lines show the bounds of the 95%
confidence interval and the vertical dashed line shows the
value of 0, which in that case is not inside the interval.

Figure 6 shows an example of a histogram plot of M
estimates of V4 — V. Using this histogram, one can
for instance verify whether 0 (which corresponds to
the point where V4 = Vp) is inside or outside a 95%
confidence interval centered at the empirical mean; if
it is outside (as it is the case in Figure 6), then one
can assert with 95% confidence that V4 is statistically
significantly different from Vg (in the case of Figure 6,
Vg is higher than V4 more than 95% of the times);
on the other hand, if O lies inside the bounds, then
we cannot assert any statistical difference with 95%
confidence.

The same technique could be used to compute a con-
fidence interval around a single measure (say, V4) by
generating a histogram of V4 and looking at the points
in the histogram corresponding to the bounds of the
interval centered at the empirical mean of V4 and com-
prising 95% of the distribution.

Note that in (Bolle et al., 2004), the authors further
modify the procedure to take into account possible de-
pendencies between examples. Note furthermore that
this technique has also been used recently in other re-
search areas such as in automatic speech recognition
where the measure of interest is the word error rate
and is an aggregate of word insertions, deletions and
substitutions between the target sentence and the ob-
tained sentence (Bisani & Ney, 2004).
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Figure 7. Example of an EPC and its corresponding 95%
confidence interval

Going back to EPCs, one can now combine any EPC
with a confidence interval by simply computing the in-
terval for all possible values of « using the above tech-
nique, and the result is depicted in Figure 7. Note that
the width of the interval will vary with respect to «,
showing the importance of such graph. Alternatively,
one can compute the statistical significance level of the
difference between two models over a range of possi-
ble values of «a, as shown in Figure 8 where we high-
lighted in gray the range of « for which the two models
were statistically significantly different with 95% con-
fidence.

6. Conclusion

In this paper, we have explained why the current use
of ROCs in machine learning, as well as measures such
as EER and BEP, used regularly in several publica-
tions related to domains such as person authentica-
tion, text categorization, or medical applications, can
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Figure 8. Example of two EPCs where we show in gray
the regions where the difference between the two models is
statistically significant with 95% confidence.

be misleading when used to compare performance be-
tween models or to assess the expected performance of
a given model.

We have thus proposed the use of new curves called
Expected Performance Curves (EPC), which reflect
more precisely the criteria underlying the real applica-
tion and therefore enable a more realistic comparison
between models as well as a better analysis of their
respective expected performance. From these curves,
several single measures can also be obtained, and all
of them should reflect a realistic performance compar-
ison for a particular (and reachable) operating point
of the system. Moreover, a summary measure, simi-
lar to the AUC, reflecting the expected performance
of the system under a large range of reachable condi-
tions, has also been proposed. Note that a free soft-
ware is available to compute these curves and statistics
(http://www.torch.ch/extras/epc).

Finally, we have proposed to link such EPCs with a
non-parametric statistical test in order to show con-
fidence intervals or statistical significant differences
along a range of operating points.

It might be argued that one weakness of this new set of
measures is the need for a separate development set.
While this is true and necessary in order to obtain
realistic expected performances, one could always rely
on cross-validation techniques to solve this problem of
a lack of training data.

ROCs can certainly still be used when the goal is to
understand the behavior of a model without taking
into account the selection of the threshold, however
this should be done with caution, since it does not
correspond to a real application setting.
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