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Abstract  
Receiver Operating Characteristic (ROC) 
analysis is a common tool for assessing the 
performance of various classification tools 
including biological markers, diagnostic tests, 
technologies or practices and statistical models. 
ROC analysis gained popularity in many fields 
including diagnostic medicine, quality control, 
human perception studies and machine learning. 
The area under the ROC curve (AUC) is widely 
used for assessing the discriminative ability of a 
single classification method, for comparing 
performances of several procedures and as an 
objective quantity in the construction of 
classification systems. Resampling methods such 
as bootstrap, jackknife and permutations are 
often used for statistical inferences about AUC 
and related indices when the alternative 
approaches are questionable, difficult to 
implement or simply unavailable. Except for the 
simple versions of the jackknife, these methods 
are often implemented approximately, i.e. based 
on the random set of resamples, and, hence, 
result in an additional sampling error while often 
remaining computationally burdensome. As 
demonstrated in our recent publications, in the 
case of the nonparametric estimator of the AUC 
these difficulties can sometimes be circumvented 
by the availability of closed-form solutions for 
the ideal (exact) quantities. Using these exact 
solutions we discuss the relative merits of the 
jackknife, permutation test and bootstrap in 
application to a single AUC or difference 
between two correlated AUCs. 

1.  Introduction 

Many different fields are faced with the practical 
problems of detection of a specific condition or 

classification of findings – the tasks that can be 
collectively described as classification of the subjects into 
categories. The system that defines the specific manner of 
a classification process is termed differently depending on 
the field and task at hand (e.g. diagnostic marker, 
diagnostic system, technology or practice, predictive 
model, etc.). In this manuscript we will use the terms 
classification system or tool to refer to such a system 
regardless of the field and the task. 

————— 
Key words: ROC, AUC, bootstrap, permutations, jackknife, exact 
variances 

Since the ultimate goal is an application of the 
classification system to subjects from the general “target” 
population the performance in the target population is one 
of the important characteristics of the classification 
system. Since in practice it is usually impossible to apply 
the classification system to the whole population it is 
applied to a sample of subjects from the target population. 
Based on such a sample the performance of the 
classification system in the target population can be 
assessed using statistical methods. 

For classification problems, performance is typically 
assessed in terms of the multiple probabilities of the 
possible outputs conditional on the true status of subjects 
(for binary classification - sensitivity or true positive rate 
and specificity or false positive rate). Multiple 
probabilities are considered in order to avoid specification 
of the relative costs and conditioning on the true class is 
performed in order to eliminate a dependence on the class 
distribution within the sample. 

Some classification systems can be supervised to produce 
different classification rules. Most commonly such 
classification systems produce a quantitative output (e.g. 
probability of belonging to a specific class) and a decision 
rule is determined by a specific threshold. Another 
example is an unlabelled classification tree where a 
decision rule is determined by a specific labeling of the 
terminal nodes (Ferri, Flach, & Hernandez-Orallo 2002). 
For such classification systems an operating mode 
(threshold, labeling etc.) is often chosen considering the 
class distribution in the target population and relative cost 
and benefits of the specific decisions. Because of that, 
when assessing the performance of the classification 
system using a sample from the population it is often 
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desirable to have a performance measure that is also 
independent from a specific operating mode. 

For binary classification tasks (subjects are classified into 
the two classes), conventional ROC analysis provides a 
tool to assess the performance of a classification system 
simultaneously for all operating thresholds and 
independently of the class distribution in the sample and 
costs and benefits of various decisions. The conventional 
ROC analysis originated in signal detection theory and 
presently is a widely used tool for the evaluation of 
classification systems (Swets & Picket, 1982; Zhou, 
Obuchowski and McClish, 2002; Pepe, 2003). The 
keystone of ROC analysis is the ROC curve which is 
defined as a plot of sensitivity (true positive rate) versus 
1-specificity (false positive rate) computed at different 
possible operating modes. It illustrates the tradeoff 
between the two classification rates and enables the 
assessment of the inherent ability of a classification 
system to discriminate between subjects from different 
classes (e.g. with and without a specific disease or 
abnormality). Another beneficial feature of the ROC 
curve is its invariance to monotone transformations of the 
data. For example, the ROC curve corresponding to a pair 
of normal distributions representing classification scores 
(binormal ROC) is the same as the ROC curve for any 
pair of distribution that is monotonically transformable to 
the original pair. 

Because its construction requires the probabilities of 
various classifications conditional on the true class of the 
subjects, a conventional Receiver Operating 
Characteristic (ROC) analysis is only applicable in 
situations where the true class is known for all subjects. 
On the other hand this feature enables ROC analysis to be 
used for studies where a fixed number of subjects have 
been selected from each class separately as opposed to 
taking a sample from the total population. Selection of 
subjects from each class separately eliminates problem 
resulting from low frequency of a specific class (e.g. low 
prevalence of a specific disease) and permits more 
efficient study design in regard to statistical 
considerations.  

Although the ROC curve is quite a comprehensive 
measure of performance, because it is a whole curve there 
is often a desire to obtain a simpler summary index. Thus, 
for summarizing the performance of a classification 
system, more simple indices such as the area under the 
ROC curve (AUC), or partial AUC are typically used. 
The area under the ROC curve (AUC) is a widespread 
measure of the overall diagnostic performance and has a 
practically relevant interpretation as the probability of a 
correct discrimination in a pair of randomly selected 
representatives of each class (Bamber, 1975; Hanley & 
McNeil, 1982). In the presence of a continuous 
classification score the AUC is the probability of 
stochastic dominance of an “abnormal’ class versus 
“normal” class, where “abnormal” class is expected to 
have greater scores on average. 

The AUC is used for assessing the performance of a 
single classification system, comparing several systems 
and as an objective quantity for constructing a classifier 
(Verrelst et al 1998; Pepe & Tompson 2000; Ferri, Flach, 
& Hernandez-Orallo 2002; Yan et al 2003; Pepe, 2006). 

An assessment of the performance of a single or a 
comparison of several classification systems is often  
initiated by computing the AUCs from the sample 
selected from the target population (“sample AUC”). 
Since the performances in the sample might differ from 
that in the target population, inferences about the 
population performance should incorporate assessment of 
the sample-related uncertainty. A common approach to 
evaluate the sample-related uncertainty is to estimate the 
variance of the AUC estimator. The variance estimator 
can than be used to place confidence intervals, test 
hypothesis or plan future studies. 

When comparing two classification systems, an attempt is 
often made to control for variability by design. Namely, 
the data is collected under a paired design where the same 
set of subjects is evaluated under different classification 
systems, reducing the effect of heterogeneity of the 
samples of subjects. On the one hand the paired design 
leads to correlated estimators of the AUCs, requiring 
specific analytic methods, but on the other hand, similar 
to the paired t-test, because of the completely paired 
structure the variance for the difference of the correlated 
AUCs can be obtained from the variance of a single AUC 
by direct substitution. 

Many nonparametric estimators of the variance of a single 
AUC and the difference between two correlated AUCs 
have been proposed. The methods proposed by Bamber in 
1975 (based on formula from Noether 1967) and Wieand, 
Gail & Hanley (1983) provide unbiased estimators of the 
variance of a single AUC and the covariance of two 
correlated AUCs correspondingly. Hence, these 
estimators are useful for assessing the magnitude of the 
variability but may provide no advantages in hypothesis 
testing. The estimator proposed by Hanley & McNeil 
(1982) explicitly depends only upon the AUC and sample 
size and thus enables simple estimation of the sample size 
for a planned study. However, this estimator is known to 
underestimate or overestimate variance depending on the 
underlying parameters (Obuchowski 1994; Hanley & 
Hajian-Tilaki 1997) and thus is not optimal for either 
variance estimation or hypothesis testing (an improved 
estimator of the same kind was proposed by Obuchowski 
in 1994). Perhaps the most widely used estimator which 
offers both relatively accurate estimator of the variability 
and leads to acceptable hypothesis testing is the estimator 
proposed by DeLong, DeLong and Clarke-Pearson 
(1988). This estimator possesses an upward bias which on 
the one hand results in an improved (compared to the 
unbiased estimator) type I error of the statistical test for 
equality of the AUCs when AUCs are small, but on the 
other hand results in loss of statistical power when AUCs 
are large (Bandos 2005; Bandos, Rockette & Gur 2005). 
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Absence of a uniformly superior method, potentially poor 
small-sample properties of the asymptotic procedures; 
complexity or unavailability of the variance formulas for 
generalized indices (such as for AUC extensions for 
clustered, repeated and multi-class data) have lead many 
investigators to suggest using the resampling methods 
such as jackknife, bootstrap and permutations in 
applications to the AUC and its extensions (Dorfman, 
Berbaum & Metz, 1992; Mossman 1995; Song, 1997; 
Beiden, Wagner, & Campbell, 2000; Emir et al, 2000; 
Rutter, 2000; Hand & Till, 2001; Nakas & Yiannoutsos 
2004; Bandos, Rockette, & Gur, 2005, 2006a,b).  
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where the order indicator, ψ, is defined as follows: 
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Also, the dot in the place of the index in the subscript of a 
quantity denotes summation over the corresponding 
index; and the bar over the quantity, placed in addition to 
the dot in the subscript, denotes the average over the 
doted index. 

Because of the variety of methods for assessing variability 
of a single AUC estimate or comparing several AUCs it is 
important to know their relative advantages and 
limitations. Previously we developed a permutation test 
for comparing AUCs with paired data, constructed a 
precise approximation based on the closed-form solution 
for the exact permutation variance and investigated its 
properties relative to the conventional approach (Bandos 
et al 2005). The closed-form solutions for the exact (ideal) 
resampling variances that we derived in that as well as in 
our other works permit a better understanding of the 
relationships and relative advantages of resampling 
procedures and other methods for the assessment of 
AUCs (Bandos 2005; Bandos et al. 2006b). In this paper 
we discuss the relative merits of the jackknife, bootstrap 
and permutation procedures applied to a single AUC or 
difference between two correlated AUCs. 

Under a paired design, the difference in AUCs can be 
written as: 
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where 
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This representation illustrates that the difference in areas 
under a paired design has the same structure as the single 
AUC estimator (1) and allows one to modify expressions 
derived for a single AUC to those for the AUC difference 
simply by replacing ψij with wij. 2.  Preliminaries 

We assume that the true class (“normal” or “abnormal”) is 
uniquely determined and known for each subject. Hence, 
according to the true status, every subject in the 
population can be classified as normal or abnormal. We 
term the ordinal output of the classification as the 
subject’s classification score and denote x and y as scores 
for normal and abnormal subjects correspondingly. 
Furthermore, without loss of generality, we will assume 
that higher values of the scores are associated with higher 
probabilities of the presence of “abnormality”. 

3.  Resampling approaches 

Resampling approaches such as jackknife, bootstrap, 
permutations and combination thereof are widely used 
whenever conventional solutions are questionable, 
difficult to derive or unavailable. Major advantages of 
these methods include offering reliable statistical 
inferences in small sample problems and circumventing 
the difficulties of deriving the statistical moments of 
complex summary statistics.  

The general layout of the data we consider consists of 
scores assigned to samples of N “normal” and M 
“abnormal” subjects by each of the classification systems. 
We enumerate subjects with subscripts i, k (for normal); j, 
l (for abnormal). Thus, i , j  denote the classification 
scores assigned to the ith “normal” and jth “abnormal” 
subjects. When operating with more than one 
classification system we distinguish between them with 
the superscript m (e.g. i ). However, when the 
discussion concerns primarily a single-system setting we 
omit the corresponding index for the sake of simplicity.  

x y

m

3.1  Jackknife 

Jackknife is a simple resampling approach that is often 
attributed to Quenouille (1949) and Tukey (1958). Many 
different varieties of the jackknife can be implemented in 
practice. The performance of several of them in 
hypothesis testing about AUC was considered by Song 
(1997). Although often forgotten, the variance estimators 
used in the procedure proposed by the DeLong et al. 
(1989) is also a jackknife variance estimator for the two-
sample U-statistics (Arvesen, 1969). This procedure, 
which we will often term as “two-sample jackknife”, is 
perhaps the most commonly used nonparametric method 
for comparing several correlated AUCs. In a more 
complex multi-reader setting a conventional “one-

x

Using the conventions defined above, the nonparametric 
estimator of the AUC or “sample AUC” (equivalent to the 
Wilxocon-Mann-Whitney statistic) can be written as: 
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sample” jackknife was employed by Dorfman, Berbaum 
& Metz (1992) within an ANOVA framework. 

The general idea of the jackknife is to generate multiple 
samples from the single original one by eliminating a 
fixed number of observations. The jackknife samples are 
then used as a base for calculation of the pseudo-values of 
a summary statistic, that are later used for inferential 
purposes. Since the nonparametric estimator of the AUC 
is an unbiased statistic, the one-sample and two-sample 
jackknife estimator (averages of the pseudovalues) are 
equal to the original one. Thus, the difference in these 
jackknife approaches occurs in the variances. A one-
sample jackknife computes the variability of the 
pseudovalues regardless of the class of the eliminated 
subject while the two-sample jackknife computes a 
stratified variance. Both variances can be expressed in a 
closed-form and thus permit an easy comparison of these 
(Bandos 2005). Namely, the two-sample jackknife 
variance for the AUC (DeLong et al) can be written as: 
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A one-sample jackknife variance has the following form:  
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A straightforward comparison of formulas (5) and (6) 
reveals that a one-sample jackknife variance is always 
larger than the two-sample one. This fact limits the 
usefulness of a one-sample variance since the two-sample 
jackknife variance is already greater than the Bamber-
Wieand unbiased estimator and thus has an upward bias 
(Bandos 2005). 

Although the jackknife approach is straightforward to 
implement and possesses good asymptotic properties, it is 
generally considered to be inferior compared to more 
advanced resampling techniques such as bootstrap. In 
application to the difference between AUCs the bootstrap 
variance estimator was also found to have lower mean 
squared error than the jackknife (Bandos, 2005). 
However, under certain conditions the jackknife can be 
considered as a linear approximation to the bootstrap 
(Efron & Tibshirani, 1993) and for some problems the 
jackknife might result in a statistical procedure that is 
practically indifferent from the bootstrap-based one. 

3.2  Bootstrap 

A good summary of the general bootstrap methodology 
can be found in the book by Efron & Tibshirani (1993). In 
ROC analysis bootstrap is commonly used for estimation 
of variability or for construction of confidence intervals. 

In recent years it has gained increased popularity in 
connection with its ability to obtain insight into the 
components of the variability of the indices estimated in 
multi-reader data (Beiden, Wagner & Campbell, 2000). 
The bootstrap was also proposed to be used for estimation 
of the variance of the partial AUC (Dodd & Pepe, 2003b), 
variance of the AUC computed from patient-clustered 
(Rutter, 2000) and repeated measures data (Emir et al., 
2000). 

The concept of the bootstrap is to build a model for the 
population sample space from the resamples (with 
replacement) of the original data. The nonparametric 
bootstrap completes the formation of the bootstrap sample 
space by assigning equal probability to all bootstrap 
samples. Next, a value of the summary statistic (called its 
bootstrap value) is calculated from every bootstrap 
sample and the set of all bootstrap values determines a 
bootstrap distribution. Such a bootstrap distribution of the 
summary statistic is a nonparametric maximum likelihood 
estimator of the distribution of the statistic computed on a 
sample randomly selected from a target population and 
serves as the basis for the bootstrap estimators of 
distributional parameters.  

Since, even for a moderately sized problem, it may not be 
computationally feasible to draw all possible bootstrap 
samples, the conventional approach is to approximate the 
bootstrap distribution by computing the bootstrap values 
corresponding to a random sample of the bootstrap 
samples. Such a procedure is often called Monte Carlo or 
approximate bootstrap and the quantities computed from 
an approximate bootstrap distribution are called Monte 
Carlo bootstrap estimators in contrast to the quantities of 
the exact bootstrap distribution which are called ideal 
bootstrap estimators. The Monte Carlo bootstrap might 
still be computationally burdensome and also leads to an 
additional sampling error in the resulting estimators.  

Some summary statistics permit circumventing the 
drawbacks of the Monte Carlo approach by allowing 
computation of ideal (exact) bootstrap quantities directly 
from the data. Unfortunately, the exact bootstrap variance 
is rarely obtainable except for simple statistics such as the 
sample mean. Some other estimators for which the exact 
bootstrap moments have been derived include sample 
median (Maritz & Jarret, 1978) and L-estimators (Hutson 
& Ernst, 2000).  

In our recent work (Bandos 2005; Bandos, Rockette & 
Gur, 2006b) we have shown that the nonparametric 
estimator of the AUC permits the derivation of the 
analytical expression for the ideal bootstrap variance for 
several commonly used data structures (the bootstrap 
expectation of the AUC is equal to the original estimate). 
These results not only eliminate the need of the Monte 
Carlo approximation to the bootstrap of the AUC in 
existing methods, but can also be extended to the 
bootstrap applications for the patient-clustered data, 
repeated measure data, partial areas and potentially to a 
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multi-class AUC extension (Hand & Till, 2001; Nakas & 
Yiannoutsos, 2004). For the single AUC the exact 
bootstrap variance has the following form: 
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Unfortunately, there is no uniform relationship between 
the bootstrap variance and that of any of the considered 
jackknife variances. The Monte Carlo investigations 
indicate that the bootstrap variance has uniformly smaller 
mean squared error. It also has a smaller bias except for 
very large AUC. Thus, the bootstrap often provides a 
better estimator of the variability than the jackknife. 
However, the estimator of Bamber (1975) and Wieand et 
al. (1983), because of its unbiasedness, might be preferred 
by some investigators. 

Although the nonparametric bootstrap is a powerful 
approach that produces nonparametric maximum 
likelihood estimators, it is not uniformly the best 
resampling technique. Davison & Hinkley (1997) indicate 
that for hierarchical data a combination of resampling 
with and without replacement may better reflect the 
correlation structure in the general population. 
Furthermore, although the bootstrap can be implemented 
for a broad range of problems, in situations where there is 
something to permute (e.g. single index hypothesis 
testing, comparison of several indices) the permutation 
approach may be preferable because of the exact nature of 
the inferences (Efron & Tibshirani, 1993). 

3.3  Permutations 

Permutation procedures are usually associated with the 
early works of Fisher (1935). In ROC analysis 
permutation tests have been employed for comparison of 
the diagnostic modalities (Venkatraman & Begg, 1996; 
Venkatraman 2000; Bandos, Rockette & Gur, 2005). 

Permutation based procedures are resampling procedures 
that are specific to hypothesis testing. Similar to the 
bootstrap, a permutation procedure constructs a 
permutation sample space, which consists of the equally 
likely permutation samples. The permutation samples are 
created by interchanging the units of the data that are 
assumed to be “exchangeable” under the null hypothesis. 
However, unlike the bootstrap sample space, the 
permutation sample space is the exact probability space of 
the possible arrangements of the data under the null 
hypothesis given the original sample.  

The same permutation scheme can be used with different 
summary statistics resulting in different statistical tests. 
The choice of the summary statistic determines the 

alternatives that are more likely to be detected, but may 
not affect the null hypothesis. In this respect, permutation 
tests are similar to the tests of trend which, still assuming 
overall equality under the null hypothesis, aim to detect 
specific alternatives in the complementary hypothesis, 
e.g. a specific trend (linear, quadratic). 

For example, when two diagnostic systems are to be 
compared with paired data, the natural permutation 
scheme consists of exchanging the paired units. Several 
reasonable permutation tests are possible under such a 
permutation scheme. One of these was developed by 
Venkatraman & Begg (1996) for detecting any 
differences between two ROC curves. For this purpose 
the authors used a measure specifically designed to detect 
the differences at every operating point. In our recent 
work (Bandos, Rockette & Gur, 2005) on a test that is 
especially sensitive to the difference in overall diagnostic 
performance we used the differences in nonparametric 
AUCs as a summary measure. Both of these tests assume 
the same condition of exchangeability of the diagnostic 
results under the null hypothesis, but differ with respect to 
their sensitivity to specific alternatives and the availability 
of an asymptotic version. Namely our permutation test 
better detects different ROC curves if they differ with 
respect to the AUC, and it has an easy-to-implement and 
precise approximation which is unavailable for the test of 
Venkatraman & Begg. 

The availability of the asymptotic approximation to the 
permutation test can be an important issue since the exact 
permutation tests are practically impossible to implement 
with even moderate sample sizes and the Monte Carlo 
approximation to the permutation test is associated with a 
sampling error. Fortunately, in some cases the asymptotic 
approximation can be constructed by appealing to the 
asymptotic normality of the summary statistic and using 
the estimator of its variance, if the latter is derivable. For 
the nonparametric estimator of the difference in the AUC 
we demonstrated (Bandos, Rockette & Gur, 2005) that the 
exact permutation variance can be calculated directly 
without actually permuting the data, i.e.: 
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denotes the difference in the order indicators computed 
over the scores combined over the two systems. 

The availability of an analytical expression for the exact 
permutation variance not only permits constructing an 
easy-to-compute approximation, but also makes such an 
approximation very precise even with small samples. 
Because of the restriction to the null hypothesis, the 
permutation variance is not directly comparable to 
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previously mention estimation methods which provide 
estimators of the variance regardless of the magnitude of 
the difference. However, the properties of the statistical 
tests can be compared directly with Monte Carlo and the 
availability of the closed-form solution for the 
permutation variance greatly alleviates the computational 
burden of this task. The comparison of the asymptotic 
permutation test with the widely used procedure of 
DeLong et al. indicate the advantages of the former for 
the range of parameters common in diagnostic imaging , 
i.e. AUC greater than 0.8 and correlation between scores 
greater than 0.4 (Bandos et al., 2005).  

4.  Discussion 

In this paper we discussed the relative merits of basic 
resampling approaches and outline some recent 
developments in the resampling-based procedures focused 
on the area under the ROC curve. The major drawbacks 
of the advanced resampling procedures are computational 
burden and sampling error. Sampling error results from 
the application of the Monte Carlo approximation to the 
resampling process, and adds to the uncertainty of the 
obtained results. Although alleviated by the development 
of faster computers the computational burden can still be 
substantial especially in the case of iteratively obtained 
estimators such as m.l.e. of AUC (Dorfmann & Alf 1969; 
Metz, Herman & Shen 1998) or when assessing the 
uncertainty of the resampling-based estimators (e.g. 
jackknife- or bootstrap-after-bootstrap). In our previous 
works we showed that for the nonparametric estimator of 
the AUC presented here all of the considered resampling 
procedures permit derivation of the ideal variances 
directly avoiding implementation of the resampling 
process or its approximation. Such closed-form solutions 
greatly reduce computational burden, eliminate a 
sampling error associated with the Monte Carlo 
approximation to the resampling variances, permit 
construction of precise approximations to the exact 
methods and facilitate assessment and comparison of the 
properties of various statistical procedures based on 
resampling. 

In general jackknife provides a somewhat simplistic 
method that, depending on the problem, may still offer 
valuable solutions. In application to estimation of the 
nonparametric AUC, the two-sample jackknife is 
preferable over the one-sample due to a smaller upward 
bias. Bootstrap is a more elaborate resampling procedure 
that provides nonparametric maximum likelihood 
estimators by offering an approximation to the population 
sample space. Bootstrap is usually preferred over the 
jackknife because of cleaner interpretation and sometimes 
better precision. Exploiting a formula for the exact 
bootstrap variance of the AUC we demonstrated that it 
provides an estimator of the variance that is more accurate 
in terms of the mean squared error than the two-sample 
jackknife variance and is often more efficient than the 
unbiased estimator. In the case of comparing two AUCs 

the asymptotic tests based on the bootstrap and jackknife 
variances have very similar characteristics. However, for 
more complex problems the bootstrap may perform better 
than the jackknife. The permutations explore the 
properties of the population sample space assuming the 
exchangeability satisfied under the null hypotheses. For 
the comparison of the performances under a paired design 
the permutation test can be considered as preferable over 
the bootstrap and jackknife due to the exact nature of the 
permutation inferences. The availability of the exact 
permutation variance permits construction of an easy-to–
implement and precise approximation and facilitates 
investigation of the properties of the permutation test. 
Compared to the two-sample jackknife asymptotic test for 
comparing two correlated AUCs, the asymptotic 
permutation test was shown to have greater statistical 
power for the range of parameter common in diagnostic 
radiology.  

Although this paper focuses on the most commonly used 
summary index, AUC, the availability of the analytical 
expression for the exact variances is not limited to this 
relatively simple case. Formulas for ideal variances may 
also appear derivable for other AUC related indices and 
for different types of data (multi-reader, clustered, 
repeated measures and multi-class data) as well as under 
other, more complex, resampling schemes or study 
designs. 
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