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Abstract

Evaluating classifier performance with ROC
curves is popular in the machine learning
community. To date, the only method to
assess confidence of ROC curves is to con-
struct ROC bands. In the case of severe class
imbalance, ROC bands become unreliable.
We propose a generic framework for classifier
evaluation to identify the confident segment
of an ROC curve. Confidence is measured by
Tango’s 95%-confidence interval for the dif-
ference in classification errors in both classes.
We test our method with severe class imbal-
ance in a two-class problem. Our evaluation
favors classifiers with low numbers of classi-
fication errors in both classes. We show that
our evaluation method is more confident than
ROC bands when faced with severe class im-
balance.

1. Motivation

Recently, the machine learning community has in-
creased the focus on classifier evaluation. Evaluation
schemes that compute accuracy, precision, recall, or F-
score have been shown to be insufficient or inappropri-
ate (Ling et al., 2003; Provost & Fawcett, 1997). Fur-
thermore, the usefulness of advanced evaluation mea-
sures, like ROC curves (Cohen et al., 1999; Provost &
Fawcett, 1997; Swets, 1988) and cost curves (Drum-
mond & Holte, 2000; Drummond & Holte, 2004), de-
teriorates in the presence of a limited number of pos-
itive examples. The need for confidence in classifier
evaluation in machine learning has lead to the con-
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Table 1. The statistical proportions in a confusion matrix.

Predicted + Predicted - | total
Class + a (q11) b (q12) a+b
Class - ¢ (g21) d (g22) c+d
total a+c b+d n

struction of ROC confidence bands. Methods in (Mac-
skassy et al., 2005; Macskassy & Provost, 2004) con-
struct ROC bands by computing confidence intervals
for points along the ROC curve. These methods are ei-
ther parametric (making assumptions of data distribu-
tions), or non-parametric and rely on carefully crafted
sampling methods. When faced with severe class im-
balance, sampling methods become unreliable, espe-
cially when the data distribution is unknown (Mac-
skassy & Provost, 2004). In fact, with severe imbal-
ance, the entire issue of evaluation becomes a serious
challenge even when making assumptions of data dis-
tributions (Drummond & Holte, 2005). In contrast,
biostatistical and medical domains impose strong em-
phasis on error estimates, interpretability of prediction
schemes, scientific significance, and confidence (Mo-
tulsky, 1995) whilst machine learning evaluation mea-
sures fail to provide such guarantees. Consequently,
the usefulness of some machine learning algorithms
remains inadequately documented and unconvincingly
demonstrated. Thus, despite their interest in using
learning algorithms, biostatisticians remain skeptical
of their evaluation methods and continue to develop
customized statistical tests to measure characteristics
of interest. Our work adopts Tango’s test (Tango,
1998) from biostatistics in an attempt to provide con-
fidence in classifier evaluation. Tango’s test is a non-
parametric confidence test designed to measure the dif-
ference in binomial proportions in paired data. Com-
puting the confidence based on the positive or neg-
ative rates (using a or d of the confusion matrix in
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Figure 1. % and Tango’s 95%-confidence intervals for

ROC points. Left: all the ROC points. Right: only confi-
dent ROC points whose Tango’s intervals contain 0.

table 1) can be influenced by class imbalance in favor
of the majority class. Alternatively, applying a sta-
tistical significance test to those entries (b or ¢) that
resist such influence may provide a solution. Hence, to
counter the class imbalance, we favor classifiers with
similar normalized number of errors in both classes,
rather than similar error rates to avoid the imbalance.

In this paper; (1) we propose a framework for classi-
fier evaluation that identifies confident points along an
ROC curve using a statistical confidence test. These
points form a confident ROC segment to which we
recommend restricting the evaluation. (2) Although
our framework can be applied to any data, this work
focuses on the presence of severe imbalance where
ROC bands, ROC curves and AUC struggle to pro-
duce meaningful assessments. (3) We produce a rep-
resentation of classifier performance based on the av-
erage difference in classification errors and the Area
Under the Confident ROC Segment. We present ex-
perimental results that show the effectiveness of our
approach in severe imbalanced situations compared to
ROC bands, ROC curves, and AUC. Having motivated
this work, subsequent sections present discussions of
classification error proportions in both classes (in sec-
tion 2), our evaluation framework (in section 3), and
our experimental results (in section 4) followed by con-
clusions and future work (in section 5). We review
Tango’s statistical test of confidence in appendix A
(section 6).

2. Difference in Classification Errors

Common classifier performance measures in machine
learning estimate classification accuracy and/or errors.
ROC curves provide a visualization of a possible trade-
off between accuracy and error rates for a particular
class. For the confusion matrix presented in table 1 on
page 1, the ROC curve for the class + plots the true
positive rate 5 against the false positive rate c_f_ =
When the number of positive examples is significantly

lower than the number of negative examples, the row

totals a +b << c+d. When changing the class proba-
bility threshold, the rate of change in the true positive
rate climbs faster with each example than that of the
false positives (due to using ¢ and d). This inconsis-
tent rate of change gives the majority class (—) a clear
advantage in the rates calculated for the ROC curve.
Ideally, a classifier classifies both classes proportion-
ally, but due to the severe imbalance, comparing the
rates of accuracy and/or errors on both classes does
not evaluate proportionally. We propose to favor the
classifier that performs with similar number of errors
in both classes to eliminate the use of the number of
correctly classified examples (a and d) in the evalua-
tion to avoid a large portion of examples in the major-
ity class. In fact, our approach favors classifiers that
have lower difference in classification errors in both
classes, b;c. Furthermore, we normalize entries in the
confusion matrix by dividing by the number of exam-
b—c

ples n so the difference >~ remains within [—1, 41].

ROC curves are generated by classifying examples
while increasing class probability threshold T. When
T = 0, all data examples are classified as +, thus,
a = | 4| (the number of positives), b =0, ¢ = | — |,
d =0, and % € [-1,0]. Similarly, for T =1, all ex-
amples are classified as —, then, a =0, b= |+, ¢ =0,
d=]—|, and % € [0,+1]. In fact, these two extreme
negative and positive values of % depend on class dis-

b—c

tributions in the data. Within these two extremes,
exhibits a monotone behavior as the threshold varies
from 0 to 1. This is illustrated in figure 1. For each
threshold value T' := 0 to 1, the classification produces
a confusion matrix a,b, c,d. Initially, ¢ and c are at
their maximum values, while b and d are 0. As T in-
creases, examples are classified in any combination of
three possibilities; (1) ¢ decreases when false positives
become correctly classified, (2) b increases when true
positives become misclassified, (3) or, b and ¢ remain
unchanged because examples are correctly classified.
Since ¢ never increases, b never decreases, and n is con-
stant, then 2=¢ exhibits a monotone non-decreasing
behavior for a classifier on a set of data. Our eval-
uation method computes Tango’s 95%-confidence in-
tervals for bgc for ROC points. Those points whose
confidence intervals include the value zero, show no
evidence of statistically significant b;C and are con-
sidered confident. This is explained in more details
in the next section. In addition, Tango’s confidence
test is presented in (Tango, 1998) and is reviewed in
appendix A (section 6).
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Figure 2. Evaluating classifier K (on data D with T class
probability thresholds) by Tango at confidence level (1-a).
S contains confident ROC points, CAUC is the area under
S, and AveD is the average error difference.
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Figure 3. Sample Confident ROC segment (left). Area un-
der ROC segment (right).

3. The Proposed Method of Evaluation

Presented in figure 2, our evaluation consists of four
steps: (1) Generate an ROC curve for a classifier K
applied on test examples D with increasing class prob-
ability thresholds ¢; (0 to 1). (2) For each resulting
point (a confusion matrix along the ROC curve), ap-
ply Tango’s test to compute the 95%-confidence inter-
val [u;,;], within which lies the point of the observed
difference [’Zn;c’ If 0 € [u;,1;], then this point is iden-
tified as a confident point and is added into the set
of confident points S. Points in S form the confident
ROC segment illustrated in the left plot of figure 3.
Our framework is generic and accommodates a test of
choice provided that it produces a meaningful interpre-
tation of results. (3) Compute CAUC the area under
the confident ROC segment .S, shown in the right plot
of figure 3. (4) Compute AveD the average normal-
ized difference (2=¢) for all points in S. In our ex-
periments, we plot the area under the confident ROC

Table 2. UCI data sets (Newman et al., 1998)
Data Set Testing

dis 45(4)/()2755  13(+)/(-)959
hypothyroid 151(+)/(-)3012 -

sick 171(+)/(-)2755  13(+)/(-)959
sick-euthyroid 293(+)/(-)2870
SPECT 40(+)/(-)40
SPECTF 40(+)/(-)40

Training

15(+);(-)172
55(+)/(-)214

segment CAUC against the average observed classifi-
cation difference AveD. Lower values for AveD sug-
gests low classification difference and higher values for
CAUC indicate larger confident ROC segment. An
effective classifier shows low AveD and high CAUC.

4. Experiments

Having presented our evaluation framework, we now
present an overview of our experiments and their data
sets followed by an assessment of results to motivate
conclusions. The data sets, listed in table 2, are
selected from the UCI-Machine Learning repository
(Newman et al., 1998) and consist of examples of two-
class problems. They are severely imbalanced with the
number of positive examples reaching as low as 1.4%
(dis) and not exceeding 26% (spectf). Only (spect)
and (spectf) data sets have a balanced training set
and imbalanced testing set. On these data sets, we
train four classifiers and compare their performances
as reported by the ROC, by the AUC, and by our
method. If testing data sets are unavailable, we use
cross-validation of 10 folds. Using Weka 3.4.6 (Wit-
ten & Frank, 2005), we build a decision stump classifier
without boosting (S), a decision tree (T), a random for-
est (F), and a Naive Bayes (B) classifier. The rationale
is to build classifiers for which we can expect a ranking
of performance. A decision stump built without boost-
ing is a decision tree with one test at the root (only
2 leave nodes) and is expected to perform particularly
worse than a decision tree. Relatively, a decision tree
is a stronger classifier since it is more developed and
has more leave nodes that cover the training examples.
The random forest classifier is a reliable classifier and is
expected to outperform a single decision tree. Finally,
the naive Bayes classifier tends to minimize classifica-
tion error and is expected to perform reasonably well
when trained on a balanced training set.

We first investigate the usefulness of ROC confidence
bands on data with imbalance. Figure 4 shows the
ROC confidence bands for our four classifiers on the
most imbalanced dis data set. These bands are gen-
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Figure 4. ROC confidence bands for decision stump (S),
decision tree (T), random forest (F), and naive Bayes (B)
on (dis) data set. The bands are wide and are not very
useful.

Table 3. AUC values for decision stump (S), decision tree
(T), random forest (F), and naive Bayes (B) on data sets.

Data Set (S) (T) (F) (B)

dis 0.752 0.541 0.805 0.516
hypothyroid 0.949 0.936 0.978 0.972
sick 0.952 0.956 0.997 0.946
sick-euthyroid 0.931 0.930 0.978 0.922
spect 0.730 0.745 0.833 0.835
spectf 0.674 0.690 0.893 0.858

erated using the empirical fixed-width method (Mac-
skassy & Provost, 2004) at the 95% level of confi-
dence (like Tango’s test, this method of generating
ROC bands does not make assumptions of the under-
lying distributions of the data). We claim that with
severe imbalance, sampling-based techniques do not
work. Clearly, the generated bands are very wide and
contain more than 50% of the ROC space proving that
they are not very useful. This result is also consistent
on the other data sets.

Next, we consider the ROC curves of our four classi-
fiers on all data sets shown in figure 5. Recall, ROC
curves are compared by being more dominantly placed
towards the north-west of the plot (higher true positive
rate and lower false positive rate). We observe that the
decision stump (S) performs the same or better than
the decision tree (T) on all data sets. In addition, the
random forest (F), consistently, outperforms the naive
Bayes (B). In fact, (F') shows the best performance on
most data sets. When we consider the AUC values
of these classifiers, shown in table 3, (S) has similar or
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Figure 5. ROC curves for decision stump (S), decision tree
(T), random forest (F), and naive Bayes (B) on all data
set. The dark segments are Tango’s confident points.

higher AUC values than (T). Furthermore, the AUC of
(F) is, clearly, higher than that of the others on most
the data sets (the bold numbers in table 3). When
trained on a balanced data set (SPECT), (F) and (B)
classifiers perform significantly better than the others.

In contrast, the results obtained by our proposed eval-
uation measure are presented in figure 6. Each plot in
the figure reports our evaluation of the four classifiers
on each data set. The z-axis represents the average
normalized classification difference % for those con-
fident points on the ROC. The y-axis represents the
area under the confident segment of the ROC. This
area includes the TP area (vertical area) and the FP
area (the horizontal area) as illustrated in figure 3 on
page 3. Classifiers placed towards the top-left corner
perform better (bigger area under the confident ROC
segment and less difference in classification error) than
those placed closer to the bottom right corner (smaller
confident area and higher difference in classification er-
ror). Classifiers that fail to produce confident points
on their ROC curves are excluded from the plots. The
decision stump (S) fails to produce confident points
along its ROC, therefore, it does not appear in any of
the plots in the left column of figure 6. This is consis-
tent with our expectation of it being less effective. In
fact, plots in the right column of the same figure show
that (S) also performs poorly producing higher classi-
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Figure 6. Our evaluation for decision stump (S), decision
tree (T), random forest (F), and naive Bayes (B) on our
data sets. The y-axis shows the area under the confident
ROC segment and the x-axis shows the average observed
classification difference %.

fication difference and/or covering smaller area under
its confident ROC segment. In fact, even when (S)
has higher confident AUC than (T), in the right plots
of figure 6, (S) still shows a significantly higher differ-
ence in classification error than that of (T). The deci-
sion tree (T), on the other hand, performs well in most
cases and outperforms all other classifiers in the bot-
tom right plot in figure 6. (T) certainly outperforms
the (S) which contradicts observations based on the
ROCs and AUCs. Furthermore, (T) fails to produce
confident points on the (spect) data set (bottom left
plot of the same figure). Perhaps, since (spect) is a bi-
nary data set extracted from the continuous (spectf)
set, this may suggest that the extraction process hin-
ders the decision tree learning. (F) and (B) classifiers
appear reasonably consistent on all data sets with (B)
being particularly strong on the (dis) data set. How-
ever, the surprise is (B) showing significantly higher
confident AUC than (F) on all data sets with the ex-
ception of the spect data set in the bottom left plot
of figure 6. Moreover, (B) shows significantly better
performance particularly on the (dis) data set.

Our results, clearly, contradict conclusions based on
the ROC and AUC evaluations. Therefore, we inves-
tigate those confident points along the ROCs for two
situations. First, when the four classifiers are trained
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Figure 7. Tango’s 95%-confidence intervals for ROC points
of decision tree (T), random forest (F), and naive Bayes (B)
on (dis) set. The center points are (2¢). (T) has a wide
range of thresholds (x-axis).

and tested on the same imbalanced dis data set us-
ing cross-validation. Second, when the four classifiers
are trained on a balanced training set and are tested
on an imbalanced testing SPECTF data set. For the
first situation (dis data set), the ROC curves reveal
that three of the classifiers produce confident classifi-
cation points in the bottom left section of the ROC
space (see the bold segments in the top left plot of
figure 5). These confident points are detected by our
method at the 95% level of confidence and are consis-
tent with having severely imbalanced data sets. When
we consider the corresponding Tangos 95%-confidence
intervals for these classifier (see figure 7), we see that
confident points produced by (T) cover a wider range
of probability threshold (0.1 to 0.65 on the z-axis of
the top left plot) with a low classification difference
(y-axis). This indicates added confidence in (T)’s per-
formance. (T) produces only two points which may
be due to the very low number of positive examples.
Alternatively, despite generating many more confident
points, (F) and (B) classifiers show higher variations
of classification difference for a much narrower range
of thresholds values. At the least, this indicates a dis-
tinction between these classifiers.

For the second situation (SPECTF data set), consider
the ROC curves in the bottom right plot of figure 5.
(T) and (B), clearly, outperform (S) and (F) on this
data set. Tango’s 95%-confidence intervals of the con-
fident ROC points (shown in figure 8) show that (T)
and (B) outperform the other classifiers. When trained
on the balanced spectf data set, (T) shows the least
difference in classification error and has a significantly
wider range of threshold values in which it produces
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Figure 8. Tango’s 95%-confidence intervals for ROC points
of decision stump (S), decision tree (T), random forest (F),
and naive Bayes (B) on (spectf) set. The center points are
(2=2). (T) and (B) have a wider range of thresholds (x-
axis) and produce more confident points.

many confident points (0 to 1 along the x-axis of the
top right plot in figure 8). Also in this figure, (S) and
(T) produce classification points that have exactly zero
classification difference while the other two come close
to the zero classification difference.

5. Conclusions and Future Work

We propose a method to address classifier evaluation
in the presence of severe class imbalance with signifi-
cantly fewer positive examples. In this case, our exper-
iments show that ROC confidence bands fail to provide
meaningful results. We propose a notion of statistical
confidence by using a statistical tests, borrowed from
biostatistics, to compute the 95%-confidence intervals
on the difference in classification. Our framework in-
corporates this evaluation test into the space of the
ROC curves to produce confidence oriented evaluation.
Our method results in the presentation of the trade-
off between classification difference and area under the
confident segment of the ROC curve. Our experiments
show that our method is more reliable than general
ROC and AUC measures.

In the future, we plan to compare our evaluation re-
sults to other methods of generating ROC bands to
show further usefulness of our framework. Also, it can
be useful to compute confidence bands or intervals for
these proposed confident ROC segments. This remains
a difficult task because the confidence in our method
is computed on the classification difference which may
not map easily to the ROC space. We plan to inves-
tigate the feasibility of mapping the confidence inter-

vals from this work into the ROC space. This may
be interesting particularly when there is no danger of
imbalance. Although this work addresses the case of
severe imbalance in the data, Tango’s test of confi-
dence can still be applied to balanced data sets. We
plan to explore our framework in balanced situations
with the aim to drive useful and meaningful evaluation
metrics to provide confidence and reliability. Further-
more, Tango’s test is a clinical equivalence test. This
may possibly provide the basis to derive a notion of
equivalence on classification.
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6. Appendix A: Tango’s Confidence
Intervals

Clinical trials, case-control studies, and sensitivity
comparisons of two laboratory tests are examples of
medical studies that deal with the difference of two
proportions in a paired design. Tango’s test (Tango,
1998) builds a model to derive a one-sided test for
equivalence of two proportions. Medical equivalence
is defined as no more than 100A percent inferior,
where A(> 0) is a pre-specified acceptable difference.
Tango’s test also derives a score-based confidence in-
terval for the difference of binomial proportions in
paired data. Statisticians have long been concerned

with the limitations of hypothesis testing used to sum-
marize data (Newcombe, 1998b). Medical statisticians
prefer the use of confidence intervals rather than p-
values to present results. Confidence intervals have the
advantage of being close to the data and on the same
scale of measurement, whereas p-values are a proba-
bilistic abstraction. Confidence intervals are usually
interpreted as margin of errors because they provide
magnitude and precision. A method deriving confi-
dence intervals must be a priori reasonable (justified
derivation and coverage probability) with respect to
the data (Newcombe, 1998b).

The McNemar test is introduced in (Everitt, 1992) and
has been used to rank the performance of classifiers in
(Dietterich, 1998). Although inconclusive, the study
showed that the McNemar test has low Type I error
with high power (the ability to detect algorithm differ-
ences when they do exist). For algorithms that can be
executed only once, the McNemar test is the only test
that produced an acceptable Type I error (Dietterich,
1998). Despite Tango’s test being an equivalence test,
setting the minimum acceptable difference A to zero
produces an identical test to the McNemar test with
strong power and coverage probability (Tango, 1998).
In this work, we use Tango’s test to compute confi-
dence intervals on the difference in classification errors
in both classes with a minimum acceptable difference
A =0 at the (1-«) confidence level. Tango makes few
assumptions; (1) the data points are representative of
the class. (2) The predictions are reasonably corre-
lated with class labels. This means that the misclassi-
fied positives and negatives are relatively smaller than
the correctly classified positives and negatives respec-
tively. In other words, the classifier does reasonable
well on both classes, rather than performing a random
classification. We consider classifier predictions and
class labels as paired machines that fit the matched
paired design. As shown in table 1 on page 1, entries
a and d are the informative or the discordant pairs
indicating the agreement portion (q11 + g22), while b
and c are the uninformative or concordant pairs rep-
resenting the proportion of disagreement (qi2 + go1)
(Newcombe, 1998a). The magnitude of the difference
0 in classifications errors can be measured by testing
the null hypothesis Hy : 6 = q12 — g1 = 0. This mag-
nitude is conditional on the observed split of b and ¢
(Newcombe, 1998a). The null hypothesis Hy is tested
against the alternative H; : § # 0. Tango’s test de-
rives a simple asymptotic (1-«)-confidence interval for
the difference § and is shown to have good power and
coverage probability. Tango’s confidence intervals can
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be computed by:

b—c—nd
N e W

where Zo denotes the upper $-quantile of the normal
2

distribution. In addition, ¢2; can be estimated by the
maximum likelihood estimator for g¢o1:

VW2 —8n(—c6(1—0)) — W
4n

@21 = (2)
where W = —b—c+ (2n — b+ ¢)d. Statistical hypoth-
esis testing begins with a null hypothesis and searches
for sufficient evidence to reject that null hypothesis.
In this case, the null hypothesis states that there is no
difference, or § = 0. By definition, a confidence inter-
val includes plausible values for the null hypothesis.
Therefore, if the zero is not included in the computed
interval, then the null hypothesis § = 0 is rejected.
On the other hand, if the zero value is included in
the interval, then we do not have sufficient evidence
to reject the difference being zero, and the conclusion
is that the difference can be of any value within the
confidence interval at the specified level of confidence
(1-a).

Tango’s test of equivalence can reach its limits in two
cases; (1) when the values of b and ¢ are both equal to
zero where the Z statistic does not produce a value.
This case occurs when we build a perfect classifier and
is consistent with the test not using the number of cor-
rectly classified examples a and d. (2) The values b and
c differ greatly. This is consistent with the assump-
tion that the classifier is somewhat reasonably good,
i.e. the classifier is capable of detecting a reasonable
portion of the correct classifications in the domain. In
both cases of limitations, the confidence intervals are
still produced and are reliable (Tango, 1998) but may
be wider in range. Tango’s confidence intervals are
shown not to collapse nor they exceed the boundaries
of the normalized difference of [—1,1] even for small
values of b and c.



