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Abstract 

The Sigma-Point Kalman Filters (SPKF) is a
family of filters that achieve very good
performance when applied to time series.
Currently most researches involving time series
forecasting use the Sigma-Point Kalman Filters,
however they do not use an ensemble of them,
which could achieve a better performance. The
REC analysis is a powerful technique for
visualization and comparison of regression
models. The objective of this work is to advocate
the use of REC curves in order to compare the
SPKF and ensembles of them and select the best
model to be used.

1.  Introduction

In the past few years, several methods for time series
prediction were developed and compared. However, all
these studies based their conclusions on error
comparisons.

Results achieved by Provost, Fawcett and Kohavi (1998)
raise serious concerns about the use of accuracy, both for
practical comparisons and for drawing scientific
conclusions, even when predictive performance is the
only concern. They indicate ROC analysis (Provost &
Fawcett, 1997) as a superior methodology than the
accuracy comparison in the evaluation of classification
learning algorithms. Receiver Operating Characteristic
(ROC) curves provide a powerful tool for visualizing and
comparing classification results. A ROC graph allows the
performance of multiple classification functions to be
visualized and compared simultaneously and the area
under the ROC curve (AUC) represents the expected
performance as a single scalar.

But ROC curves are limited to classification problems.
Regression Error Characteristic (REC) curves (Bi &
Bennett, 2003) generalize ROC curves to regression with
similar benefits. As in ROC curves, the graph should
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characterize the quality of the regression model for
different levels of error tolerance.

The Sigma-Point Kalman Filters (SPKF) (van der Merwe
& Wan, 2003) is a family of filters based on
derivativeless statistical linearization. It was shown that
Sigma-Point Kalman Filters achieve very good
performance when applied to time series (van der Merwe
& Wan, 2003).

Current research on time series forecasting mostly relies
on use of Sigma-Point Kalman Filters, achieving high
performances. Although most of these works use one of
the filters from the SPKF family, they do not use an
ensemble (Dietterich, 1998) of them, which could achieve
a better performance. Therefore, the main goal of this
paper is to advocate the use of REC curves in order to
compare ensembles of Sigma-Point Kalman Filters and
choose the best model to be used with each time series.

This paper is organized as follows. The next section has a
brief review of REC curves. Then, a summary of the main
characteristics of the Sigma-Point Kalman Filters is
presented in Section 3. An experimental evaluation
comparing the REC curves provided by each algorithm
and ensembles of them is reported in Section 4. Finally, in
Section 5, the conclusions and the plans for future
research are presented.

2.  Regression Error Characteristic Curves

Results achieved by Provost, Fawcett and Kohavi (1998)
indicate ROC analysis (Provost & Fawcett, 1997) as a
superior methodology to the accuracy comparison in the
evaluation of classification learning algorithms. But ROC
curves are limited to classification problems. Regression
Error Characteristic (REC) curves (Bi & Bennett, 2003)
generalize ROC curves to regression with similar benefits.

The REC curve is a technique for evaluation and
comparison of regression models that facilitates the
visualization of the performance of many regression
functions simultaneously in a single graph. A REC graph
contains one or more monotonically increasing curves
(REC curves), each corresponding to a single regression
model.
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One can easily compare many regression functions by
examining the relative position of their REC curves. The
shape of the curve reveals additional information that can
be used to guide modeling.

REC curves plot the error tolerance on the x-axis and the
accuracy of a regression function on the y-axis. Accuracy
is defined as the percentage of points predicted within the
tolerance. A good regression function provides a REC
curve that climbs rapidly towards the upper-left corner of
the graph, in other words, the regression function achieves
high accuracy with a low error tolerance.

In regression, the residual is the analogous concept to the
classification error in classification. The residual is
defined as the difference between the predicted value f(x)
and actual value y of response for any point (x, y). It could
be the squared error (y − f(x))2 or absolute deviation | y −
f(x) | depending on the error metric employed. Residuals
must be greater than a tolerance e before they are
considered as errors.

The area over the REC curve (AOC) is a biased estimate
of the expected error for a regression model. It is a biased
estimate because it always underestimates the actual
expectation. If e is calculated using the absolute deviation
(AD), then the AOC is close to the mean absolute
deviation (MAD). If e is based on the squared error (SE),
the AOC approaches the mean squared error (MSE). The
evaluation of regression models using REC curves is
qualitatively invariant to the choices of error metrics and
scaling of the residual. The smaller the AOC is, better the
regression function will be. However, two REC curves
can have equal AOC's but have different behaviors. The
one who climbs faster towards the upper-left corner of the
graph (in other words, the regression function that
achieves higher accuracy with a low error tolerance) may
be preferable. This kind of information can not be
provided by the analysis of an error measure.

Figure 1. Example of REC graph.

In order to adjust the REC curves in the REC graph, a null
model is used to scale the REC graph. Reasonable
regression approaches produce regression models that are
better than the null model. The null model can be, for
instance, the mean model: a constant function with the
constant equal to the mean of the response of the training
data.

An example of REC graph can be seen in Figure 1. The
number between parentheses in the figure is the AOC
value for each REC curve. A regression function
dominates another one if its REC curve is always above
the REC curve corresponding to the other function. In the
figure, the regression function dominates the null model,
as should be expected.

3.  Sigma-Point Kalman Filters

It is known that for most real-world problems, the optimal
Bayesian recursion is intractable. The Extended Kalman
Filter (EKF) (Jazwinsky, 1970) is an approximate solution
that has become one of the most widely used algorithms
with several applications.

The EKF approximates the state distribution by a
Gaussian random variable, which is then propagated
through the “first-order” linearization of the system. This
linearization can introduce large errors which can
compromise the accuracy or even lead to divergence of
any inference system based on the EKF or that uses the
EKF as a component part.

The Sigma-Point Kalman Filters (SPKF) (van der Merwe
& Wan, 2003), a family of filters based on derivativeless
statistical linearization, achieve higher performance than
EKF in many problems and are applicable to areas where
EKFs can not be used.

Instead of linearizing the nonlinear function through a
truncated Taylor-series expansion at a single point
(usually the mean value of the random variable), SPKF
rather linearize the function through a linear regression
between r points, called sigma-points, drawn from the
prior distribution of the random variable, and the true
nonlinear functional evaluations of those points. Since
this statistical approximation technique takes into account
the statistical properties of the prior random variable the
resulting expected linearization error tends to be smaller
than that of a truncated Taylor-series linearization.

The way that the number and the specific location of the
sigma-points are chosen, as well as their corresponding
regression weights, differentiate the SPKF variants from
each other. The SPKF Family is composed by four
algorithms: Unscented Kalman Filter (UKF), Central
Difference Kalman Filter (CDKF), Square-root Unscented
Kalman Filter (SR-UKF) and Square-root Central
Difference Kalman Filter (SR-CDKF).
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Now we will present a brief overview of the main
characteristics of the Sigma-Point Kalman Filters. See
(van der Merwe & Wan, 2003) for more details.

3.1  The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) (Julier, Uhlmann &
Durrant-Whyte, 1995) derives the location of the sigma-
points as well as their corresponding weights so that the
sigma-points capture the most important statistical
properties of the prior random variable x. This is achieved
by choosing the points according to a constraint equation
which is satisfied by minimizing a cost-function, whose
purpose is to incorporate statistical features of x which are
desirable, but do not necessarily have to be met. The
necessary statistical information captured by the UKF is
the first and second order moments of p(x).

3.2  The Central Difference Kalman Filter

The Central Difference Kalman Filter (CDKF) (Ito &
Xiong, 2000) is another SPKF implementation, whose
formulation was derived by replacing the analytically
derived first and second order derivatives in the Taylor
series expansion by numerically evaluated central divided
differences. The resulting set of sigma-points for the
CDKF is once again a set of points deterministically
drawn from the prior statistics of x. Studies (Ito & Xiong,
2000) have shown that in practice, just as UKF, the
CDKF generates estimates that are clearly superior to
those calculated by an EKF.

3.3  Square-Root Forms of UKF and CDKF

SR-UKF and SR-CDKF (van der Merwe & Wan, 2001)
are numerically efficient square-root forms derived from
UKF and CDKF respectively. Instead of calculating the
matrix square-root of the state covariance at each time
step (a very costly operation) in order to buid the sigma-
point set, these forms propagate and update the square-
root of the state covariance directly in Cholesky factored
form, using linear algebra techniques. This also provides
more numerical stability.

The square-root SPKFs (SR-UKF and SR-CDKF) achieve
equal or slightly higher accuracy when compared to the
standard SPKFs. Besides, they have lower computational
cost and a consistently increased numerical stability.

4.  Experimental Evaluation

Since the experiments described in (Bi & Bennett, 2003)
used just one data set and their results were only for REC
demonstration, we first did tests with two well-known
regression algorithms using 25 regression problems, in
order to better evaluate the REC curves as a tool for
visualizing and comparing regression learning algorithms.

Then we present the results of the comparison by using
REC curves of SPKFs and EKF applied to time series and

finally we investigate the use of an ensemble method
(stacking (Wolpert, 1992)) with the tested models,
evaluating it with REC curves, as suggested by Bi and
Bennett (2003). In this work, 12 time series with real-
world data were used in order to try to establish a general
ranking among the models tested. The names and sizes of
the used time series are shown in Table 1. All data are
differentiated and then the values are rescaled linearly to
between 0.1 and 0.9. As null model we choose the mean
model, a constant function with the constant equal to the
mean of the response of the training data.

Table 1. Time series used in the experimental evaluation.

Time series Data points
A1 1000
Burstin2 2001
Darwin2 1400
Earthquake2 2097
Leuven3 2000
Mackey-Glass4 300
Series 15 96
Series 2 5 96
Series 3 5 96
Soiltemp2 2306
Speech2 1020
Ts1 2 1000

4.1  Preliminary Results with Regression

Initial experiments were carried out in order to reinforce
the conclusions reached out by Bi and Bennett (2003) in
favor of the use of REC curves as a mean to compare
regression algorithms (similarly to arguments for ROC
curves in classification).

We have used REC curves in order to compare the
performance of the Naive Bayes for Regression (Frank,
Trigg, Holmes & Witten, 2000) to the performance of
Model Trees (Quinlan, 1992). Naive Bayes for
Regression (NBR) uses the Naive Bayes methodology for
numeric prediction tasks by modeling the probability
distribution of the target value with kernel density
estimators. Model Tree predictor is a state-of-the-art
method for regression. Model trees are the counterpart of

—————
1 Data from a competition sponsored by the Santa Fe

Institute. (http://www-psych.stanford.edu/%7Eandreas/Time-
Series/SantaFe)

2 Data from the UCR Time Series Data Mining Archive
(Keogh & Folias, 2002).

3 Data from the K.U. Leuven competition. (ftp://ftp.esat.
kuleuven.ac.be/pub/sista/suykens/workshop/datacomp.dat)

4 Numerical solution for the Mackey-Glass delay-
differential equation.

5 Data of monthly electric load forecasting from Brazilian
utilities (Teixeira & Zaverucha, 2003).
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decision trees for regression tasks. They have the same
structure as decision trees, but employ linear regression at
each leaf node to make a prediction. In (Frank, Trigg,
Holmes & Witten, 2000) an accuracy comparison of these
two learning algorithms is presented and its results show
that Model Trees outperform NBR significantly for
almost all data sets tested.

The 25 regression data sets used in this study were
obtained from the UCI Repository of Machine Learning
Databases (Blake & Merz, 2006). With 16 of the data sets
the Model Tree predictor clearly outperforms NBR, as
can be seen, for instance, in Figure 2. The number
between parentheses in the figure is the AOC value for
each REC curve. Note that the REC curve for Model Tree
covers completely the REC curve for NBR, becoming
clear the superiority of the former algorithm when applied
to this specific data set.

Figure 2. REC graph used to compare the performances of
NBR and Model Tree when applied to data set pwLinear.

4.2  Comparing SPKFs by means of REC Curves

First, we have compared UKF and CDKF with their
square-root forms, SR-UKF and SR-CDKF respectively.
As expected, the REC curves for UKF and for SR-UKF
are very similar. This means that the difference between
the performances of the models provided by UKF and
SR-UKF was negligible. The same fact could be verified
with the REC curves for CDKF and SR-CDKF.
Therefore, because of these results and the other
advantages mentioned before in Section 3, we have
continued our experiments only with the square-root
forms of the SPKF.

By analyzing the generated REC graphs, we could verify
that, for most time series, the model provided by SR-UKF
dominates the models provided by SR-CDKF and EKF,
that is, the REC curve for the SR-UKF model is always
above the REC curves for SR-CDKF and EKF. Therefore,

the model provided by SR-UKF would be preferable. An
example is shown in Figure 3.

Figure 3. EKF and SPKFs applied to Burstin time series.

SR-UKF was outperformed by SR-CDKF only for the
Mackey-Glass time series (Figure 4). Note that the curves
cross each other at error tolerance of 0.7. SR-CDKF and
EKF achieved similar performances for almost all time
series, as can be seen, for instance, in Figure 5. However,
the analysis of the AOC’s gives a small advantage to SR-
CDKF. The lower performance of EKF when compared
to the others is probably caused by the non-linearity of the
series. Therefore, SR-UKF consistently showed to be the
best alternative to use with these series, followed by SR-
CDKF and EKF, in this order. The Model Tree predictor
and NBR were also tested for the prediction of the time
series, but both provided poor models.

Figure 4. EKF and SPKFs applied to Mackey-Glass time
series.
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Figure 5. EKF and SPKFs applied to Earthquake time series.

4.3  Stacking of Sigma-Point Kalman Filters

Stacking (Wolpert, 1992) is an ensemble method
(Dietterich, 1998) used to combine different learning
algorithms. It works as follows. Suppose we have a set of
different learning algorithms and a set of training
examples. Each of these algorithms, called base learners,
is applied to the training data in order to produce a set of
hypotheses. The results computed by this set of
hypotheses are combined into new instances, called meta-
instances. Each "attribute" in the meta-instance is the
output of one of the base learners and the class value is
the same of the original instance. Another learning
algorithm, called meta-regressor (or meta-classifier, for
classification), is trained and tested with the meta-
instances and provides the final result of the stacking.

We have used stacking to build ensembles of SPKFs and
EKF. A Model Tree predictor was chosen as a meta-
regressor not only because it achieved good results in the
initial experiments, but also because it is a state-of-the-art
regression method and it has already been successfully
used as a meta-classifier for stacking (Dzeroski & Zenko,
2004), outperforming all the other combining methods
tested.

Table 2. Stackings built.

Stackings Base learners
Stacking 1 EKF, SR-CDKF
Stacking 2 EKF, SR-UKF
Stacking 3 SR-CDKF, SR-UKF
Stacking 4 EKF, SR-CDKF, SR-UKF

In order to determine which subset of algorithms can
provide the best ensemble, we built four models by
stacking: one containing the square-root SPKFs and EKF,
and the others leaving one of them out. If we were testing
several algorithms we could use a method to build the

ensembles (Caruana & Niculescu-Mizil, 2004). Table 2
shows the stackings built: Stacking 1 is composed by
EKF and SR-CDKF, Stacking 2 is composed by EKF and
SR-UKF, Stacking 3 is composed by SR-CDKF and SR-
UKF, and Stacking 4 is composed by EKF, SR-CDKF
and SR-UKF. The REC curves show that all stackings
that have the SR-UKF as a base learner achieve similar
high performances. This can be seen, for example, in
Figure 6.

Figure 6. Stackings applied to Series 2 time series.

Table 3 shows the AOC values of the REC curves
provided for the stackings with SR-UKF as a base learner.
By analyzing the values we can see that among the three
stackings that contain the SR-UKF, those who have SR-
CDKF as a base learner achieve a slightly better
performance. Since the number of time series for which
Stacking 3 achieved the best performance is almost the
same number of time series for which Stacking 4 was the
best, we have considered that the inclusion of EKF as a
base learner does not compensate the overhead in terms of
computational cost. Thus, the model chosen as the best is
that provided by Stacking 3 (SR-CDKF and SR-UKF as
base learners).

Table 3. AOC’s of the REC curves provided for the stackings
with SR-UKF as a base learner.

Time series Stacking 2 Stacking 3 Stacking 4
A 0.001366 0.001497 0.001310
Burstin 0.001740 0.001613 0.001740
Darwin 0.013934 0.014069 0.014052
Earthquake 0.000946 0.000943 0.000946
Leuven 0.005172 0.005190 0.005142
Mackey-Glass 0.228064 0.133420 0.128672
Series 1 0.001167 0.001306 0.001111
Series 2 0.013139 0.012294 0.012639
Series 3 0.000800 0.000717 0.000767
Soiltemp 0.000884 0.000780 0.000782
Speech 0.000714 0.000713 0.000706
Ts1 0.005010 0.005044 0.004881
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By comparing the best stacking model (SR-CDKF and
SR-UKF as base learners and Model Tree predictor as
meta-regressor) to the best individual algorithm (SR-
UKF) we could verify that the stacking achieved a
significantly higher performance for all time series tested.
This can be clearly noted in Figure 7.

Figure 7. SR-UKF and Stacking 3 applied to Darwin time
series.

5.  Conclusions and Future Works

We have used REC curves in order to compare the SPKF
family of filters (state-of-the-art time series predictors)
and ensembles of them, applied to real-world time series.

The results of the experiments pointed SR-UKF as the
best SPKF to use for forecasting with the series tested.
Further experiments showed that a stacking composed by
SR-CDKF and SR-UKF as base learners and a Model
Tree predictor as meta-regressor can provide a
performance statistically significantly better than that
provided by the SR-UKF algorithm working individually.
The REC curves showed to be very efficient in the
comparison and choice of time series predictors and base
learners for ensembles of them.

Currently, we are conducing tests with REC curves in
order to compare Particle Filters (Doucet, de Freitas &
Gordon, 2001), sequential Monte Carlo based methods
that allows for a complete representation of the state
distribution using sequential importance sampling and
resampling. Since Particle Filters approximate the
posterior without making any explicit assumption about
its form, they can be used in general nonlinear, non-
Gaussian systems. As a future work we intend to
investigate further the use of ensembles with SPKFs, as
well as with Particle Filters.
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