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Abstract

Reliable classifiers abstain from uncertain in-
stance classifications. In this paper we ex-
tend our previous approach to construct re-
liable classifiers which is based on isometrics
in Receiver Operator Characteristic (ROC)
space. We analyze the conditions to obtain
a reliable classifier with higher performance
than previously possible. Our results show
that the approach is generally applicable to
boost performance on each class simultane-
ously. Moreover, the approach is able to con-
struct a classifier with at least a desired per-
formance per class.

1. Introduction

Machine learning classifiers were applied to various
classification problems. Nevertheless, only few classi-
fiers were employed in domains with high misclassifica-
tion costs, e.g., medical diagnosis and legal practice. In
these domains it is desired to have classifiers that ab-
stain from uncertain instance classifications such that
a desired level of reliability is obtained. These classi-
fiers are called reliable classifiers.

Recently, we proposed an easy-to-visualize approach
to reliable instance classification (Vanderlooy et al.,
2006). Classification performance is visualized as an
ROC curve and a reliable classifier is constructed by
skipping the part of the curve that represents instances
difficult to classify. The transformation to the ROC
curve of the reliable classifier was provided. An anal-
ysis showed when and where this new curve dom-
inates the original one. If the underlying data of
both curves have approximately equal class distribu-
tions, then dominance immediately results in perfor-
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mance increase. However, in case of different class
distributions and a performance measure that is class-
distribution dependent, dominance of an ROC curve
does not always guarantee an increase in performance.

In this paper we analyze for which performance metrics
the approach boosts performance on each class simul-
taneously. We restrict to widely used metrics char-
acterized by rotating linear isometrics (Fürnkranz &
Flach, 2005). Furthermore, skew sensitive metrics are
used to generalize the approach to each possible sce-
nario of error costs and class distributions.

This paper is organized as follows. Section 2 provides
terminology and notation. Section 3 gives a brief back-
ground on ROC curves. Sections 4 and 5 introduce
skew sensitive evaluation and isometrics, respectively.
Section 7 defines reliable classifiers and their visualiza-
tion in ROC space. In Section 8 we provide our main
contribution. Section 9 concludes the paper.

2. Terminology and Notation

We consider classification problems with two classes:
positive (p) and negative (n). A discrete classifier is a
mapping from instances to classes. Counts of true pos-
itives, false positives, true negatives and false negatives
are denoted by TP , FP , TN , and FN , respectively.
The number of positive instances is P = TP + FN .
Similarly, N = TN + FP is the number of negative
instances.

From these counts the following statistics are derived:

tpr =
TP

TP + FN
tnr =

TN
TN + FP

fpr =
FP

FP + TN
fnr =

FN
TP + FN

True positive rate is denoted by tpr and true negative
rate by tnr . False positive rate and false negative rate
are denoted by fpr and fnr , respectively. Note that
tnr = 1− fpr and fnr = 1− tpr .

Most classifiers are rankers or scoring classifiers. They



output two positive values l(x|p) and l(x|n) that indi-
cate the likelihood that an instance x is positive and
negative, respectively. The score of an instance com-
bines these values as follows:

l(x) =
l(x|p)
l(x|n)

(1)

and can be used to rank instances from most likely pos-
itive to most likely negative (Lachiche & Flach, 2003).

3. ROC Curves

The performance of a discrete classifier can be rep-
resented by a point (fpr , tpr) in ROC space. Opti-
mal performance is obtained in (0, 1). Points (0, 0)
and (1, 1) represent classifiers that always predict the
negative and positive class, respectively. The ascend-
ing diagonal connects these points and represents the
strategy of random classification.

A threshold on the score l(x) transforms a scoring clas-
sifier into a discrete one. Instances with a score higher
than or equal to this threshold are classified as posi-
tive. The remaining instances are classified as nega-
tive. An ROC curve shows what happens with the cor-
responding confusion matrix for each possible thresh-
old (Fawcett, 2003). The convex hull of the ROC curve
(ROCCH) removes concavities.

Theorem 1 For any point (fpr , tpr) on an ROCCH a
classifier can be constructed that has the performance
represented by that point.

Provost and Fawcett (2001) prove this theorem. For
simplicity of presentation, in the following we will as-
sume that ROC curves are convex and all points can
be obtained by a threshold.

4. Skew Sensitive Evaluation

The metrics tpr , fpr , tnr , and fnr evaluate perfor-
mance on a single class. This follows from the confu-
sion matrix since values are used from a single column.
In most cases a metric is desired that indicates perfor-
mance on both classes simultaneously. Unfortunately,
such metric assumes that the class distribution of the
application domain is known and used in the test set.

Accuracy is a well-known example. Provost et al.
(1998) showed that classifier selection with this metric
has two severe shortcomings with regard to class and
error costs distributions.

To overcome these problems, Flach (2003) considers
class and error costs distributions as a parameter of
performance metrics. Evaluation with these metrics

is called skew sensitive evaluation. The parameter is
called the skew ratio and expresses the relative impor-
tance of negative versus positive class:

c =
c(p, n)
c(n, p)

P (n)
P (p)

(2)

Here, c(p, n) and c(n, p) denote the costs of a false
positive and false negative, respectively1. The proba-
bilities of a positive and negative instance are denoted
by P (p) = P

P+N and P (n) = N
P+N , respectively. The

class ratio is then P (n)
P (p) = N

P .

From Eq. 2 it is clear that we can cover all possible
scenarios of class and cost distributions by a single
value of c used as parameter in the performance metric.
If c < 1 (c > 1), then the positive (negative) class is
most important.

In the following we assume without restriction that c
is the ratio of negative to positive instances in the test
set, i.e., c = N

P . The reader should keep in mind that
our results are also valid for c = c(p,n)

c(n,p)
N
P .

5. ROC Isometrics

Classifier performance is evaluated on both classes.
We define a positive (negative) performance metric as
a metric that measures performance on the positive
(negative) classifications. The skew sensitive metrics
used in this paper are summarized in Table 1. An
explanation of these metrics follows.

ROC isometrics are collections of points in ROC space
with the same value for a performance metric. Flach
(2003) and Fürnkranz and Flach (2005) investigate iso-
metrics to understand metrics. However, isometrics
can be used for the task of classifier selection and to
construct reliable classifiers (see Section 6).

Table 1 also shows the isometrics for the performance
metrics. They are obtained by fixing the performance
metric and rewriting its equation to that of a line in
ROC space. Varying the value of the metric results in
linear lines that rotate around a single point in which
the metric is undefined.

5.1. Precision

Positive precision, precc
p, is defined as the proportion

of true positives to the total number of positive clas-
sifications. The isometrics are linear lines that rotate
around the origin (0, 0).

1Benefits of true positives and true negatives are incor-
porated by adding them to the corresponding errors. This
operation normalizes the cost matrix such that the two
values on the main diagonal are zero.



Table 1. Performance metrics and corresponding isometrics defined in terms of fpr , tpr , c = N
P

, α ∈ R+, and m̂ = m
P+N

.

Metric Indicator Formula Isometric

Pos. precision precc
p

tpr
tpr+c fpr tpr = precc

p

1−precc
p

c fpr

Neg. precision precc
n

tnr
tnr+ 1

c fnr
tpr = 1−precc

n

precc
n

c fpr + 1− 1−precc
n

precc
n

c

Pos. F -measure F c,α
p

(1+α2)tpr
α2+tpr+c fpr tpr = F c,α

p

1+α2−F c,α
p

c fpr + α2 F c,α
p

1+α2−F c,α
p

Neg. F -measure F c,α
n

(1+α2)tnr

α2+tnr+ 1
c fnr

tpr = 1+α2−F c,α
n

F c,α
n

c fpr + 1 + (1+α2)(F c,α
n −1)

F c,α
n

c

Pos. gm-estimate gmc,m̂
p

tpr+m̂
tpr+c fpr+m̂(1+c) tpr = gmc,m̂

p

1−gmc,m̂
p

c fpr +
m̂(gmc,m̂

p (1+c)−1)
1−gmc,m̂

p

Neg. gm-estimate gmc,m̂
n

tnr+m̂
tnr+ 1

c fnr+m̂ 1+c
c

tpr = 1−gmc,m̂
n

gmc,m̂
n

c fpr + 1− 1−gmc,m̂
n

gmc,m̂
n

c +
m̂(gmc,m̂

n (1+c)−c)
gmc,m̂

n

Figure 1. Precision isometrics in ROC space: solid lines are
prec1

p-isometrics and dashed lines are prec1
n-isometrics.

The case of negative precision, precc
n, is similar. Cor-

responding isometrics rotate around point (1, 1). Fig-
ure 1 shows precc

p-isometrics and precc
n-isometrics for

c = 1. In this and subsequent figures the value of the
performance metric is varied from 0.1 to 0.9.

5.2. F -measure

Positive precision is maximized when all positive clas-
sifications are correct. To know if precc

p uses enough
positive instances to be considered as reliable, it is
combined with tpr . Note that precc

p and tpr are an-
tagonistic, i.e., if precc

p goes up, then tpr usually goes
down (and vice versa).

Rijsbergen (1979) introduced the positive F -measure
for the trade-off between these metrics:

F c,α
p =

(1 + α2) precc
p tpr

α2 precc
p + tpr

=

(
1 + α2

)
tpr

α2 + tpr + c fpr
(3)

where the parameter α indicates the importance given

Figure 2. F -measure isometrics in ROC space: solid lines
are F 1,1

p -isometrics and dashed lines are F 1,1
n -isometrics.

to precc
p relative to tpr . If α < 1 (α > 1) then tpr is

less (more) important than precc
p. If α = 1, then both

terms are equally important.

The isometrics of F c,α
p are linear lines rotating around

(−α2

c , 0). Therefore, they can be seen as a shifted
version of the positive precision isometrics. The larger
c and/or the smaller α, the smaller the difference with
precc

p-isometrics.

Similar to F c,α
p the negative F -measure is a metric for

the trade-off between precc
n and tnr . Isometrics are

a shifted version of the precc
n-isometrics and rotate

around (1, 1 + α2c). Figure 2 shows F c,α
p -isometrics

and F c,α
n -isometrics for c = 1 and α = 1 in the relevant

region (0, 1)× (0, 1) of ROC space.

5.3. Generalized m-estimate

The m-estimate computes a precision estimate assum-
ing that m instances are a priori classified. One of the



main reasons why it is favored over precision is that it
is less sensitive to noise and more effective in avoiding
overfitting (Fürnkranz & Flach, 2005; Lavrac & Dze-
roski, 1994, Chapters 8-10). This is especially true if
the metric is used for the minority class when the class
distribution is very skewed.

The positive m-estimate assumes that m instances are
a priori classified as positive. These instances are
distributed according to the class distribution in the
training set:

gmc,m
p =

TP + m P
P+N

TP + FP + m
(4)

or equivalently:

gmc,m
p =

tpr + m
P+N

tpr + c fpr + m
P

(5)

To eliminate absolute numbers P and N we define m̂ =
m

P+N and obtain the formula in Table 1. Fürnkranz
and Flach (2005) call this metric the positive gm-
estimate (generalized m-estimate) since m̂ defines the
rotation point of the isometrics (see below)2.

The isometrics of the gmc,m̂
p -estimate rotate around

(−m̂,−m̂). If m̂ = 0, then we obtain precc
p-isometrics.

For m̂ → ∞ the performance metric converges to
1

1+c = P (p) and the corresponding isometric is the
ascending diagonal.

The case of the negative gm-estimate is similar. The
rotation point of the isometrics is (1+ m̂, 1+ m̂). Fig-
ure 3 shows gmc,m̂

p -isometrics and gmc,m̂
n -isometrics for

c = 1 and m̂ = 0.1.

For simplicity of presentation, in the following the iso-
metric of a positive (negative) performance metric is
simply called a positive (negative) isometric.

6. Classifier Design through Isometrics

In Vanderlooy et al. (2006) we used precision isomet-
rics as a tool to design classifiers. We generalize this
approach to include all isometrics defined in Section 5.

For specific skew ratio, a positive isometric is build
with a desired positive performance. By definition,
the intersection point (fpra, tpra) with an ROCCH
represents a classifier with this performance. Simi-
larly, the intersection point (fpr b, tpr b) of a negative
isometric and the ROCCH represents a classifier with
negative performance defined by that isometric. If we

2The gm-estimate of Fürnkranz and Flach (2005) is
more general than ours since they also vary a = 1

P+N
in

Eq. 5.

Figure 3. Generalized m-estimate isometrics in ROC space:
solid lines are gm1,0.1

p -isometrics and dashed lines are
gm1,0.1

n -isometrics.

(a) (b) (c)

Figure 4. Location of intersection between a positive and
negative isometric: (a) Case 1, (b) Case 2, and (c) Case 3.

assume that the positive and negative isometrics inter-
sect each other in the relevant region of ROC space,
then three cases can be distinguished to construct the
desired classifier (see Figure 4).

Case 1: the isometrics intersect on the ROCCH
The discrete classifier corresponding to this point has
the performance defined by both isometrics. Theorem
1 guarantees that we can construct it. Therefore, the
isometrics provide an approach to construct a classifier
with a desired performance per class.

Case 2: the isometrics intersect below the ROCCH
This classifier can also be constructed. However, the
classifiers corresponding to any point on the ROCCH
between (fpr b, tpr b) and (fpra, tpra) have better per-
formance.

Case 3: the isometrics intersect above the ROCCH
There is no classifier with the desired perfor-
mances. To increase performance instances between
(fpra, tpra) and (fpr b, tpr b) are not classified. In case



of more than one intersection point for the positive
(negative) isometric and the ROCCH, the intersection
point with highest tpr (lowest fpr) is chosen such that
fpra < fpr b. Then, the number of unclassified in-
stances is minimized. The resulting classifier is called
a reliable classifier.

7. Reliable Instance Classification

A scoring classifier is almost never optimal: there ex-
ists negative instances with higher score than some
positive instances. A reliable classifier abstains from
these uncertain instance classifications. It simulates
the behavior of a human expert in fields with high er-
ror costs. For example, in medical diagnosis an expert
does not state a possibly incorrect diagnosis but she
says “I do not know” and performs more tests.

Similar to Ferri and Hernández-Orallo (2004), we de-
fine a reliable classifier as a filtering mechanism with
two thresholds a > b. An instance x is classified as pos-
itive if l(x) ≥ a. If l(x) ≤ b, then x is classified as neg-
ative. Otherwise, the instance is left unclassified. Un-
classified instances can be rejected, passed to a human,
or to another classifier (Ferri et al., 2004). Pietraszek
(2005) chooses a and b to minimize expected cost, also
considering the abstention costs. Here, we focus on
performance on the classified instances.

Counts of unclassified positives and unclassified neg-
atives are denoted by UP and UN , respectively. Un-
classified positive rate and unclassified negative rate
are then defined as follows:

upr = UP
TP+FN+UP (6)

unr = UN
FP+TN+UN (7)

We define thresholds a and b to correspond with points
(fpra, tpra) and (fpr b, tpr b), respectively. The ROC
curve of the reliable classifier is obtained by skipping
the part between (fpra, tpra) and (fpr b, tpr b). By def-
inition we have:

upr = tpr b − tpra (8)
unr = fpr b − fpra (9)

The transformation from the original ROC curve to
that of the reliable classifier is given in Theorem 2.

Theorem 2 If the part between points (fpra, tpra)
and (fpr b, tpr b) of an ROC curve is skipped with 0 <
upr < 1 and 0 < unr < 1, then points (fprx, tprx)
on this curve between (0, 0) and (fpra, tpra) are trans-
formed into points (fpr ′x, tpr ′x) such that:

fpr ′x =
fprx

1− unr
, tpr ′x =

tprx

1− upr
(10)

Figure 5. ROCCH 2 is obtained by not covering the part
between (fpra, tpra) and (fprb, tprb) of ROCCH 1. The
length of the horizontal (vertical) line below ROCCH 1
equals unr (upr).

Points (fprx, tprx) between (fpr b, tpr b) and (1, 1) are
transformed into points (fpr ′x, tpr ′x) such that:

fpr ′x = 1− 1− fprx

1− unr
, tpr ′x = 1− 1− tprx

1− upr
(11)

The proof is in Vanderlooy et al. (2006). Note that
the transformations of (fpra, tpra) and (fpr b, tpr b) are
the same point on the new ROC curve. Figure 5
shows an example of a transformation. The intersec-
tion points are obtained with precision isometrics for
c = 1, precc

p = 0.93, and precc
n = 0.87.

Theorem 3 If the original ROC curve is convex, then
the ROC curve obtained by not considering the points
between (fpra, tpra) and (fpr b, tpr b) is also convex.

We proved this theorem in Vanderlooy et al. (2006).
There, we also analyzed when and where the original
ROCCH is dominated by that of the reliable classifier.
Note that the underlying data of both ROCCHs can
have a different class distribution when upr 6= unr .
For skew insensitive metrics or when upr ≈ unr , dom-
inance of a ROCCH will immediately result in perfor-
mance increase. In the next Section 8 we analyze when
the skew sensitive performance metrics in Table 1 can
be boosted by abstention.

8. Effect on Performance

We defined (fpra, tpra) and (fpr b, tpr b) as intersection
points of an ROCCH and positive and negative iso-
metric, respectively. The type of isometrics defines
the effect on the performance of the reliable classifier
corresponding to (fpr ′a, tpr ′a) as defined in Theorem 2.



8.1. Precision

Theorem 4 provides an easy and computationally effi-
cient approach to construct a classifier with a desired
precision per class.

Theorem 4 If points (fpra, tpra) and (fpr b, tpr b) are
defined by an precc

p-isometric and precc
n-isometric re-

spectively, then the point (fpr ′a, tpr ′a) has the precisions
of both isometrics.

The proof of this theorem and also of following the-
orems are included in the appendix. Since isometrics
of skew sensitive performance metrics are used, the
approach does not commit to costs and class distribu-
tions3. Thus, when the application domain changes
a new reliable classifier can be constructed from the
original ROC curve only.

Theorem 4 together with the next Theorem 5 provides
an approach to construct a classifier with desired ac-
curacy. This approach overcomes the problems with
accuracy explained in Section 4. From the proof it
follows that if the precisions are not equal, then the
accuracy is bounded by the smallest and largest pre-
cision.

Theorem 5 If point (fpr ′a, tpr ′a) has precc
p = precc

n,
then the accuracy in this point equals the precisions.

8.2. F -measure

Theorem 6 shows that also the F -measure can be
boosted on both classes if a part of an ROC curve is not
covered. In this case, the resulting classifier has higher
performance than defined by both isometrics. Figure
6 gives an example where positive (negative) perfor-
mance is increased with approximately 5% (10%).

Theorem 6 If points (fpra, tpra) and (fpr b, tpr b) are
defined by an F c,α

p -isometric and F c,α
n -isometric re-

spectively, then the point (fpr ′a, tpr ′a) has higher per-
formance than defined by both isometrics.

8.3. Generalized m-estimate

To analyze the effect of abstention on the gm-estimate,
we can consider the number of a priori classified in-
stances m to be fixed or the parameter m̂ to be fixed.

Consider the case when m is not changed after trans-
formation. In this case upr and unr can change the
distribution of a priori instances over the classes. If
upr < unr , then the distribution of these instances in

3Remember that, although our proofs use the simplest

case c = N
P

, the results are also valid for c = c(p,n)
c(n,p)

N
P

.

Figure 6. Designing with F -measure isometrics: F 2,1
p =

0.72 in (fpra, tpra) and F 2,1
n = 0.75 in (fprb, tprb). The

reliable classifier represented by (fpr ′
a, tpr ′

a) has F 1.84,1
p =

0.7693 and F 1.84,1
n = 0.8597. The abstention is represented

by upr = 0.1541 and unr = 0.2116.

the positive gm-estimate moves to the true positives
resulting in higher performance. For the negative gm-
estimate, the distribution moves to the false negatives
resulting in lower performance. The case of upr > unr
is the other way around. Therefore, an increase in per-
formance in both classes is only possible iff upr = unr .

For the case when m̂ is not changed after transfor-
mation, a similar reasoning results in improvement of
the positive gm-estimate if upr ≤ unr and tpra ≥
fpra. The latter condition holds for all points on the
ROCCH. Similarly, improvement in the negative gm-
estimate occurs if upr ≥ unr and tpr b ≥ fpr b. Thus,
we find the following theorems for the gm-estimate.

Theorem 7 If point (fpra, tpra) is defined by an
gmc,m̂

p -estimate isometric with m > 0 and if upr ≤
unr, then the point (fpr ′a, tpr ′a) has at least the posi-
tive performance defined by that isometric.

Theorem 8 If point (fpr b, tpr b) is defined by an
gmc,m̂

n -estimate isometric with m > 0 and if upr ≥
unr, then the point (fpr ′a, tpr ′a) has at least the nega-
tive performance defined by that isometric.

Corollary 1 If points (fpra, tpra) and (fpr b, tpr b) are
defined by an gmc,m̂

p -estimate isometric and gmc,m̂
n -

estimate isometric respectively with m > 0 and if
upr = unr, then the point (fpr ′a, tpr ′a) has at least the
gm-estimates of both isometrics.

We suggest to use the gm-estimate for the minority
class only and to use a normal precision for the ma-
jority class. From Theorems 7 and 8, if the minority



Figure 7. Designing with precision and gm-estimate iso-
metrics: prec0.3

p = 0.97 in (fpra, tpra) and gm0.3,0.1
n =

0.55 in (fprb, tprb). The reliable classifier represented by
(fpr ′

a, tpr ′
a) has prec0.3

p = 0.97 and gm0.34,0.18
n = 0.5584.

The abstention is represented by upr = 0.4549 and unr =
0.3763.

class is the positive (negative) class, then we need an
abstention characterized by upr ≤ unr (upr ≥ unr).

Figure 7 shows an example with fixed m and the neg-
ative class as minority class. Therefore, we want that
the gmc,m̂

n -estimate isometric covers a large part in
ROC space and consequently the condition upr ≥ unr
is easily satisfied.

9. Conclusions

A reliable classifier abstains from uncertain instance
classifications. Benefits are significant in application
domains with high error costs, e.g., medical diagnosis
and legal practice. A classifier is transformed into a
reliable one by not covering a part of its ROC curve.
This part is defined by two isometrics indicating per-
formance on a different class.

In case of a classifier and corresponding reliable clas-
sifier, dominance of an ROC curve immediately repre-
sents an increase in performance if the underlying data
of both curves have approximately equal class distribu-
tions. Since this assumption is too strong, we analyzed
when performance can be boosted by abstention.

We showed how to construct a (reliable) classifier with
a desired precision per class. We did the same for
accuracy. For the F -measure a classifier is obtained
with at least the desired performance per class. To
prevent a possible performance decrease with the gm-
estimate, we propose to use it for the minority class
and to use a normal precision for the majority class.

We may conclude that the proposed approach is able to
boost performance on each class simultaneously. Ben-
efits of the approach are numerous: it guarantees a
classifier with an acceptable performance in domains
with high error costs, it is efficient in terms of time
and space, classifier independent, and it incorporates
changing error costs and class distributions easily.
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A. Proofs

Proof of Theorem 4
The positive precisions in (fpra, tpra) and (fpr ′a, tpr ′a)
are defined as follows:

precc
p (fpra, tpra) =

tpra

tpra + c fpra

(12)

precc′

p

(
fpr ′a, tpr ′a

)
=

tpr ′a
tpr ′a + c′ fpr ′a

(13)

with c′ = c 1−unr
1−upr . Substitution of Eq. 10 in Eq. 13

results in Eq 12. In a similar way, Eq. 11 is used to
show that the negative precisions in (fpr b, tpr b) and
(fpr ′b, tpr

′
b) are the same. The theorem follows since

(fpr ′b, tpr
′
b) = (fpr ′a, tpr ′a). �

Proof of Theorem 5
Since the positive precision and negative precision in
(fpr ′a, tpr ′a) are equal, we can write:

tpr ′a = a
(
tpr ′a + c′ fpr ′a

)
(14)

tnr ′a = a

(
tnr ′a +

1
c′

fnr ′a

)
(15)

with a = precc′

p = precc′

n . It follows that:

tpr ′a + c′ tnr ′a =

a
(
tpr ′a + c′ fpr ′a + c′ tnr ′a + fnr ′a

)
(16)

or equivalently:

a =
tpr ′a + c′ tnr ′a

tpr ′a + c′ fpr ′a + c′ tnr ′a + fnr ′a
(17)

and this is the accuracy with skew ratio c′. �

Proof of Theorem 6
The positive F -measures in (fpra, tpra) and
(fpr ′a, tpr ′a) are defined as follows:

F c,α
p (fpra, tpra) =

(
1 + α2

)
tpra

α2 + tpra + c fpra

(18)

F c′,α
p

(
fpr ′a, tpr ′a

)
=

(
1 + α2

)
tpr ′a

α2 + tpr ′a + c′ fpr ′a
(19)

Using Eq. 10 and c′ = c 1−unr
1−upr , the right-hand side of

Eq. 19 becomes: (
1 + α2

)
tpra

α2(1− upr) + tpra + c fpra

(20)

It follows that F c′,α
p

(
fpr ′a, tpr ′a

)
> F c,α

p (fpra, tpra)
since 0 < upr < 1. The case of the negative F -measure
is similar. �

Proof of Theorem 7
The positive gm-estimates in (fpra, tpra) and
(fpr ′a, tpr ′a) are defined as follows:

gmc,m̂
p (fpra, tpra) = tpr+m̂

tpr+c fpr+m̂(1+c) (21)

gmc′,m̂′

p

(
fpr ′a, tpr ′a

)
= tpr ′+m̂′

tpr ′+c′ fpr ′+m̂′(1+c′) (22)

with m̂ = m
P+N , and c′ = c 1−unr

1−upr .

Case 1: m is not changed after transformation
In this case we can write m̂′ = m

P (1−upr)+N(1−unr) .
Substitution of Eq. 10 in Eq. 22 results in the follow-
ing right-hand side:

tpr + m 1−upr
P (1−upr)+N(1−unr)

tpr + c fpr + m̂(1 + c)
(23)

Clearly, gmc′,m̂′

p

(
fpr ′a, tpr ′a

)
≥ gmc,m̂

p (fpra, tpra) iff:

1− upr

P (1− upr) + N(1− unr)
≥ 1

P + N
(24)

This holds iff upr ≤ unr .

Case 2: m̂ is not changed after transformation
Substitution of Eq. 10 in Eq. 22 with fixed m̂ results
in the following right-hand side:

tpr + m̂(1− upr)
tpr + c fpr + m̂(1− upr + c(1− unr))

(25)

Straightforward computation results in
gmc′,m̂

p

(
fpr ′a, tpr ′a

)
≥ gmc,m̂

p (fpra, tpra) iff:

m̂(unr − upr) + (tpra unr − fpra upr) ≥ 0 (26)

This holds if upr ≤ unr and tpra ≥ fpra.�

Proof of Theorem 8
The proof is similar to that of Theorem 7. �


