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Abstract

Area under an ROC curve plays an impor-
tant role in estimating discrimination per-
formance — a well-known theorem by Green
(1964) states that ROC area equals the per-
centage of correct in two-alternative forced-
choice setting. When only single data point is
available, the upper and lower bound of dis-
crimination performance can be constructed
based on the maximum and minimum area
of legitimate ROC curves constrained to pass
through that data point. This position paper,
after reviewing a property of ROC curves pa-
rameterized by the likelihood-ratio, presents
our recently derived formula of estimating

such bounds (Zhang & Mueller, 2005).

1. Introduction

Signal detection theory (Green & Swets, 1966) is com-
monly used to interpret data from tasks in which stim-
uli (e.g., tones, medical images, emails) are presented
to an operator (experimenter, medical examiner, clas-
sification algorithm), who must determine which one
of two categories (high or low, malignant or benign,
junk or real) the stimulus belongs in. These tasks
yield a pair of measures of behavioral performance:
the Hit Rate (H), also called “true positive” rate, and
the False Alarm Rate (F), also called “false positive”
rate. (The other two rates, those of Miss or “false
negative” and of Correct Rejection or “true negative”,
are simply one minus H and F, respectively.) H and
F' are typically transformed into indices of sensitivity
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and bias based on assumptions about an underlying
statistical model. A curve ¢ — (F(c),H(c)) in the
ROC (Receiver-Operating Characteristic) space is a
collection of hit and false-alarm rates while the opera-
tor /receiver modifies the cutoff criterion ¢ of accepting
the input stimulus as belonging to one category versus
another; often c is the likelihood ratio of the evidence
favoring the two corresponding hypotheses, or a mono-
tonic transformation thereof. In the machine learning
context, we map the “operator/receiver” in the SDT
sense to a “classification algorithm” or simply an “al-
gorithm”, the “stimulus” as an “input instance” or
simply “instance” which carries one of the two class
labels, and view ¢ as a parameter of the algorithm
which biases the output of the algorithm to favor one
category or the other; the optimal setting of c is related
to the cost structure, i.e., individual payoffs related to
correct and incorrect classifications.

A well-known result in SDT is Green’s Theorem, which
relates the discrimination accuracy performance of an
operator to the area under the operator’s (i.e., the clas-
sification algorithm’s) ROC curve. This so-called ROC
area is thus a compact measure of how discriminable a
classification algorithm is between binary-class inputs.
Consequently, the performance of different algorithms
can be compared by comparing their respective ROC
areas.

Often, algorithms reported in the literature may not
contain a tradeoff analysis of the Hit and False Alarm
rates produced by varying parameters corresponding
to the algorithm’s bias. In these cases, the entire ROC
curve of an algorithm may not be available — in some
cases, only a few or even a single point (called “data
point”) in the ROC space is available. In this case, per-
formance comparison across different algorithms be-
comes a question of comparing areas of possible ROC
curves constrained to pass through these limited data



points.

In the mathematical psychology community, the prob-
lem of estimating area of ROC curves constrained to
pass through a single data point is particularly well
studied (Norman, 1964; Pollack & Norman, 1964; Pol-
lack & Hsieh, 1969; Grier, 1971; Smith, 1995; Zhang
& Mueller, 2005). These estimates of the ROC area
do not assume the ROC curves to arise from any spe-
cific class of parametric models, and so these estimates
are often referred to as a “non-parametric” indices
of an operator’s discriminability (sensitivity).! Typ-
ically, the upper and lower bounds of discriminabil-
ity were obtained by considering the maximal and
minimum ROC areas among the class of “admissible”
ROC curves satisfying the data constraint. Interest-
ingly, though the basic idea was very simple and ad-
vanced over 40 years ago (Pollack & Norman, 1964),
the popular formula to calculate this index (Grier,
1971), dubbed A’ in psychometrics and cognitive psy-
chology literature, turned out to be erroneous, at least
insofar as its commonly understood meaning is con-
cerned; moreover, its purported correction (Smith,
1995), dubbed A", also contained an error. These for-
mulae incorrectly calculated the upper bound of ad-
missible ROC curves, using either an ROC curve that
was not admissible (Pollack & Norman, 1964), or one
that was not the maximum for some points (Smith,
1995). Zhang and Mueller (2005) rectified the error
and gave the definite answer to the question of non-
parametric index of discriminability based on ROC ar-
eas.

In this note, we first review the mnotion of
“proper” (or “admissible”) ROC curves and prove
a lemma basically stating that all ROC curves are
proper /admissible when the likelihood functions (for
the two hypotheses) used to construct the ROC curve
are parameterized by the likelihood ratio (of those hy-
potheses). We then review Green’s Theorem, which
related area under an ROC curve to percentage cor-
rect in a two-alternative discrimination task. Finally,
we present the upper and lower bounds on a 1-point
constrained ROC area and reproduce some of the basic
arguments underlying their derivation. All technical
contents were taken from Zhang and Mueller (2005).

!Though no parametric assumption is invoked in the
derivation of these indices, the solution itself may cor-
respond to certain models of underlying likelihood pro-
cess, see MacMillan and Creelman, 1996. In other words,
parameter-free here does not imply model-free.

2. Slope of ROC curve and likelihood

ratio

Recall that, in the traditional signal detection frame-
work, an ROC curve u, — (F(u.), H(u.)) is parame-
terized by the cutoff criteria value u,. along the mea-
surement (evidence) axis based on which categoriza-
tion decision is made. Given underlying signal distri-
bution fs(u) and noise distribution f,,(u) of measure-
ment value u2, a criterion-based decision rule, which
dictates a “Yes” decision if u > u. and a “No” decision
if u < u,, will give rise to

- fs(u)du,

F(u.) = Pr(Nols) = Pr(u > uc|n) = /00 fn(u)du.
(1)

As u, varies, so do H and F’; they trace out the ROC
curve. Its slope is

H(u.) = Pr(Yes|s) = Pr(u > uc|s) =

d7H _ H/(uc) _ fS(U'C) — l(u )
AF | pepuy mmpy  Fe)  falue) — F
With an abuse of notation, we simply write
dH (u)
aFw) ~ W @)

Note that in the basic setup, the likelihood ratio I(u)
as a function of decision criterion u (whose optimal
setting depends on the prior odds and the payoff struc-
ture) need not be monotonic. Hence, the ROC curve
u +— (F(u), H(u)) need not be concave. We now in-
troduce the notion of “proper (or admissible) ROC
curves”.

DEFINITION 2.1. A proper (or admissible) ROC curve
is a piece-wise continuous curve defined on the unit
square [0,1] x [0,1] connecting the end points (0,0)
and (1,1) with non-increasing slope.

The shape of a proper ROC curve is necessarily con-
cave (downward-bending) connecting (0,0) and (1,1).
It necessarily lies above the line H = F. Next we pro-
vide a sufficient and necessary condition for an ROC
curve to be proper/admissible, that is, a concave func-
tion bending downward.

LEMMA 2.2. An ROC curve is proper if and only if
the likelihood ratio I(u) is a non-decreasing function
of decision criterion u.

2In machine learning applications, “signal” and “noise”
simply refer the two category classes of inputs, and “signal
distribution” and “noise distribution” are likelihood func-
tions of the two classes.



Proof. Differentiate both sides of (2) with respect to u
dfr - d (dHN _dl
du dF \dF ) du’

Since, according to (1)

ar _
du

ﬂ>0<:>i ﬂ <0
du — dF \dF | —

indicating that the slope of ROC curve is non-
increasing, i.e., the ROC curve is proper. ¢

—fn(u) <0,

therefore

Now it is well known (see Green & Swets, 1966) that
a monotone transformation of measurement axis u +—
v = g(u) does not change the shape of the ROC curve
(since it is just a re-parameterization of the curve),
so a proper ROC curve will remain proper after any
monotone transformation. On the other hand, when
I(u) is not monotonic, one wonders whether there al-
ways exists a parameterization of any ROC curve to
turn it into a proper one. Proposition 1 below shows
that the answer is positive — the parameterization of
the two likelihood functions is to use the likelihood
ratio itself!

PROPOSITION 2.3.  (Slope monotonicity of ROC
curves parameterized by likelihood-ratio). The slope
of an ROC curve generated from a pair of likelihood
functions (F'(l.), H(l.)), when parameterized by the
likelihood-ratio [. as the decision criterion, equals the
likelihood-ratio value at each criterion point .

dH(lc) _
ar) 3)

Proof. When likelihood-ratio [, is used the decision
cutoff criterion, the corresponding hit rate (H) and
false-alarm rate (F) are

/ fs(u)du,
{w:l(u)>1.}

/ frn(u)du.
{ul(u)>lc}

Note that here u is to be understood as (in general)
a multi-dimensional vector, and du should be under-
stood accordingly. Writing out H(l. + 1) — H(l.) =
0H(l.) explicitly,

st - | ftwydu— | £y (w)du
{w:l(u)>l.+6l} {u:l(u)>1c}

= —/ fs(u)du ~ —/ fs(u) du
{ulc<l(u)<lo+61} {w:l(u)=lc}

where the last integral [ du is carried out on the set
0 = {u: l(u) = l.}, i.e., across all u’s that satisfy
l(u) = l. with given [.. Similarly,

0F(l,) ~ —/ fn(u) ou.
{w:l(u)=l.}

Now, for all u € 0

fs(u)
fn(u)

is constant, from an elementary theorem on ra-
tios, which says that if a;/b; = cfori € I
(where ¢ is a constant and [ is an index set), then

(Zie[ ai)/(zz‘el bi) =c,

0H(le) _ Jp fs(w)du _ fi(u)du
OF(le) [y fa(w)du  falu)dul,cy

Taking the limit 6/ — 0 yields (3). o.

=l(u) =1,

=l..

Proposition 2.3 shows that the slope of ROC curve is
always equal the likelihood-ratio value regardless how
it is parameterized, i.e., whether the likelihood-ratio
is monotonically or non-monotonically related to the
evidence u and whether u is uni- or multi-dimensional.
The ROC curve is a signature of a criterion-based de-
cision rule, as captured succinctly by the expression

Since H(l) and F(I) give the proportion of hits and
false alarms when a decision-maker says “Yes” when-
ever the likelihood-ratio (of the data) exceeds I, then
0H = H(l+6l) — H(l), 6F = F(l 4 0l) — F(l) are
the amount of hits and false-alarms if he says “Yes”
only when the likelihood-ratio falls within the interval
(I,1461). Their ratio is of course simply the likelihood-
ratio.

Under the likelihood-ratio parameterization, the signal
distribution fs(l) = —dH/dl and the noise distribution
fn(l) = =dF/dl can be shown to satisfy

E{l} = /llzoo Lu()dl > 1= /lzoo (Dl = En{1}.

=0 =0

The shape of the ROC curve is determined by H(l) or
F(1). In fact, its curvature is

“:Z(ﬁ)/<l+<$]>2> :1i12‘




3. Green’s Theorem and area under
ROC curves

The above sections studies the likelihood-ratio classi-
fier in a single-instance paradigm — upon receiving an
input instance, the likelihood functions in favor of each
hypothesis are evaluated and compared with a pre-set
criterion to yield a decision of class label. Both prior
odds and payoff structure can affect the optimal set-
ting of likelihood ratio criterion [, by which class la-
bel is assigned. On the other hand, in two-alternative
force choice paradigms with two two instances, each
instance is drawn from one category, and the opera-
tor must match them to their proper categories. For
example, an auditory signal may be present in one
of two temporal intervals, and the operator must de-
termine which interval contains the signal and which
contains noise. In this case, the likelihood-ratio clas-
sifier, after computing the likelihood-ratios for each of
the instances, simply compares the two likelihood-ratio
values I, and [, and matches them to the two class la-
bels based on whether [, < I or I, > l. It turns
out that the performance of the likelihood-ratio clas-
sifier under the single-instance paradigm (“detection
paradigm”) and under the two-instance forced-choice
paradigm (“identification paradigm”) are related by a
theorem first proven by Green (1964).

ProOPOSITION 3.1.  (Green, 1964). Under the
likelihood-ratio classifier, the area under an ROC curve
in a single-observation classification paradigm is equal
to the overall probability correct in the two-alternative
force choice paradigm.

Proof. Following the decision rule of the likelihood-
ratio classifier, the percentage of correctly (“PC”)
matching the two input instances to the two categories
is

e / / Fs(la) fu(ly) dla dly
0<lp<lg <0

- /0 <z;o fs(la)dla) Fuly) i

/l " ) Ay - / " ar

»=0 F=0

which is the area under the ROC curve I, —
(F(le),H(l.)). ©

Green’s Theorem (Proposition 3.1) motivates one to
use the area under an ROC curve to as a mea-
sure of discriminability performance of the operator.
When multiple pairs of hit and false alarm rates
(FiaHi)i:LQ,--- (Wlth Fi < Fy < "',Hl < Hy < )
are available, all from the same operator but under ma-
nipulation of prior odds and/or payoff structure and

Figure 1. Proper ROC curves through point p must lie
within or on the boundaries of the light shaded regions A;
and Az. The minimum-area proper ROC curve through p
lies on the boundary of region I.
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with the constraints

0<...cHszH Hy H < 0,
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then it is possible to construct proper ROC curves
passing through these points, and the bounds for their
area can be constructed. The question of finding the
areal bounds of ROC curves passing through a single
data point has received special attention in the past
(since Norman, 1964), because as more data points
are added, the uncertain in ROC area (difference be-
tween the upper and lower bounds of area measure) de-
creases. We discuss the bounds of 1-point constrained
ROC area in the next sections.

4. ROC curves constrained to pass
through a data point

When the data point p = (F, H) is fixed, the non-
increasing property of the slope (Corollary 1) imme-
diately leads to the conclusion that all proper ROC
curves must fall within or on the bounds of light
shaded regions A; and Ay (shown in Figure 1). This
observation was first made in Norman (1964). The
proper ROC curve with the smallest area lies on the
boundary between I and A; (to the right of p) and As
(to the left of p), whereas the proper ROC curve with
the largest area lies within or on the boundaries of Ay
and AQ.

Pollack and Norman (1964) proposed to use the aver-
age of the areas A; + I and A + I as an index of dis-
criminability (so-called A’), which turns out to equal



Figure 2. Example of a proper ROC curve through p. The
ROC curve C, a piecewise linear curve denoted by the dark
outline, is formed by following a path from (0, 0) to (0, 1—y)
to (z,1) (along a straight line that passes through p =
(F,H)) and on to (1,1).
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1/24+(H—-F)(1+ H-F)/(4H(1—F)) (Grier, 1971).
However, the A’ index was later mistakenly believed to
represent the average of the maximal and minimum ar-

eas of proper ROC curves constrained to pass through
p = (F, H). Rewriting

ST+ D)+ (A + D) = (T + (A + Ar + 1)),

the mis-conceptualization probably arose from (incor-
rectly) taking the area A; + Az + I to be the maximal
area of 1-point constrained proper ROC curves while
(correcting) taking the are I to be the minimal area of
such ROC curves, see Figure 1. It was Smith (1995)
who first pointed out this long, but mistakenly-held
belief, and proceeded to derive the true upper bound
(maximal area) of proper ROC curves, to be denoted
A, . Smith claimed that, depending on whether p is to
the left or right of the negative diagonal H + F = 1,
Ay is the larger of I + A; and I 4+ A,. This conclu-
sion, unfortunately, is still erroneous when p is in the
upper left quadrant of ROC space (i.e., F < .5 and
H > .5) — in this region, neither I + Ay nor I + Ay
represents the upper bound of all proper ROC curves
passing through p.

5. Lower and upper bound of area of
1-point constrained proper ROC
curves

The lower bound A_ of the area of all proper ROC
curves constrained to pass through a given point p =

(F, H) can be derived easily (the area labelled as I in
Figure 1):

A_:%(H—H—F).

In Zhang and Mueller (2005), the expression was de-
rived for the upper bound A, of such ROC area.

PROPOSITION 5.1. (Upper Bound of ROC Area). The
areal upper bound A, of proper ROC curves con-
strained to pass through one data point p = (F, H)
is

1-2H(1-F) if F<05<H,
Al = T if F<H<O0.5,
-ty if 05<F<H.

Proof. See Zhang and Mueller (2005). ¢

The ROC curve achieving the maximal area generally
consists of three segments (as depicted in Figure 2),
with the data point p bisecting the middle segment —
in other words, t; = to in Figure 2. When p falls in
the FF < H < 0.5 (0.5 < F < H, resp) region, then the
vertical (horizontal, resp) segment of the maximal-area
ROC curve degenerates to the end point (0,0) ((1,1),
resp), corresponding toy = 1 (xz = 1, resp) in Figure 2.

With the upper and lower bounds on ROC area de-
rived, Figure 3 plots the difference between these
bounds — that is, the uncertainty in the area of proper
ROC curves that can pass through each point. The fig-
ure shows that the smallest differences occur along the
positive and negative diagonals of ROC space, espe-
cially for points close to (0,1) and (.5,.5). The points
where there is the greatest difference between the lower
and upper bounds of ROC area are near the lines
H = 0 and F = 1. Thus, data observed near these
edges of ROC space can be passed through by proper
ROC curves with a large variability of underlying ar-
eas. Consequently, care should be taken when trying
to infer the ROC curve of the observer/algorithm when
the only known data point regarding its performance
(under a single parameter setting) falls within this re-
gion.

By averaging the upper and lower bound A = (A4 +
A_)/2, we can derive the (non-parametric) index of
discriminability performance

R

if F<05<H,;

A=¢ 34 8L L if F<H<O05;

4H
3 H-F 1-H :

One way to examine A is to plot the “iso-
discriminability” curve, i.e, the combinations of F' and



Figure 3. Difference between the lower and upper bounds
of area of proper ROC curves through every point in ROC
space. Lighter regions indicate smaller differences.
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Figure 4. Iso-discriminability contours in ROC space.

Each line corresponds to combinations of F' and H that
produce equal values of A, in increments of 0.05.
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H will produce a given value of A. The topography of
A in ROC space can be mapped by drawing isopleths
for its different constant values. Figure 4 shows these
topographic maps for A.

Finally, since the slope of any proper ROC curve is
related to the likelihood ratio of the underlying dis-
tributions, we can construct an index of decision bias
(Zhang & Mueller, 2005), denoted b, as being orthog-
onal to the slope of the constant-A curve (called b):

b if F<05<H;
b={ Lt if F<H<05;
(1-F)*4+1-H

A=F)2F1-F if 0.5<F<H.

6. Conclusion

We showed that the relationship of ROC slope to
likelihood-ratio is a fundamental relation in ROC anal-
ysis, as it is invariant with respect to any contin-
uous reparameterization of the stimulus, including
non-monotonic mapping of uni-dimensional and multi-
dimensional evidence in general. We provided an up-
per bound for the area of proper ROC curves passing
through a data point and, together with the known
lower bound, a non-parametric estimate of discrim-
inability as defined by the average of maximal and
minimum ROC areas.
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