On the specificity of distance-based generalisation operators

V. Estruch, C. Ferri, J. Hernández-Orallo & M.J. Ramírez-Quintana

Universitat Politècnica de València
Departament de Sistemes Informàtics i Computació
(Spain)

The 16th International Conference on Inductive Logic Programming
ILP’06
Index of contents

- Introduction
- Preliminaries
- Aim of this work: minimal distance-based generalisation operators (mg)
- Trivial attempt: mg via the inclusion operator
- mg via a distance-based cost function: $k(E,p)$
- An illustrative example
- Conclusions and future work
Introduction

- In some learning problems, data is not only described by nominal or numerical features but also by other sorts of data (sets, lists, etc).
 - E.g.: Text and web mining, molecular classification, etc.
- Methods dealing with structured information are needed.
- Distance-based methods are widely used in structured learning:
 - They have been successfully tested in several real-world domains: E.g.: image recognition.
 - They can be easily upgraded: distance functions can be found for several data types.
Introduction

- Distance-based methods transform the similar traits between two objects into a numerical value

\[d(\text{Once upon a time, in a faraway kingdom...}, \text{Once the time interval is selected...}) = n \]

- As a consequence,
 - The information of the matches is lost.
 - Sometimes, a pattern/model informing about the similarities among several objects could be useful → Some issues arise...
Let \((X,d)\) and \(L\) be a metric space and a pattern language respectively. The mapping
\[
\Delta : E \subset 2^X \rightarrow p \in L
\]
is a \textbf{distance-based generalisation operator} if for every \(E, p\) "explains" the distances among the elements in \(E\).

\(X=\text{space of finite lists} \quad \& \quad d=\text{edit distance}\) permitting insertions and deletions only. Given \(w_1=abb\) and \(w_2=bba:\)
\[
d(w_1, w_2) = \begin{array}{c}
\text{abb} \\
\text{bba}
\end{array} = 2
\]

\(\Delta_1(\{w_1, w_2\}) = *a^* \ (\text{no distance-based}) \quad \Delta_2(\{w_1, w_2\}) = *bb^* \ (\text{distance-based})\)
Aim of this work

How general an admissible pattern is?

- Minimal generalisations are important if we want a pattern/model to fit a set of examples as much as possible.

- We focus on defining minimal distance-based generalisation operators.
Trivial attempt: mg via the inclusion operator

- Every pattern p represents a set denoted by $\text{Set}(p)$.
- Let E be a set of elements in (X,d), $\Delta_1(E)=p_1$ and $\Delta_2(E)=p_2$, then we could have:

$$\text{Set}(p_1) \subseteq \text{Set}(p_2)$$

p_1 is less general than p_2 iff $\text{Set}(p_1) \subseteq \text{Set}(p_2)$

Some drawbacks appear
Trivial attempt: mg via the inclusion operator

- The inclusion operator ignores the underlying distance

1. The patterns p_1 and p_2 cannot be compared.
2. Intuitively, p_1 seems less general than p_2
Trivial attempt: mg via the inclusion operator

- The minimal generalisation might not exist
 - E.g.: The space \mathbb{R}^2 with the Euclidean distance and $L = \{\text{rectangles in } \mathbb{R}^2 \text{ along with their finite unions}\}$
mg via a distance-based cost function: \(k(E,p) \)

- The level of “complexity” of a pattern is reasonable only if a sufficient number of examples justifies it (MDL/MML).
- A distance-based cost function \(k(E,p) \) is introduced for this purpose:

\[
K(\cdot, \cdot): E \subset 2^X \times p \in L \rightarrow \mathbb{R}
\]

Goal: Given \(\Delta(E)=p \), then \(k(E,p) \) measures the complexity of the pattern \(p \) and how good \(\text{Set}(p) \) fits \(E \).

Property: Given \(\Delta_1(E)=p_1 \) and \(\Delta_2(E)=p_2 \) such that \(\text{Set}(p_1) \subseteq \text{Set}(p_2) \) and both patterns are equally complex, then \(k(E,p_1) \leq k(E,p_2) \).

Definition: \(\Delta \) is a mg operator if \(k(E,\Delta(E)) \leq k(E,\Delta'(E)) \) for all \(E \) and \(\Delta' \).
The function $k(E, p)$ can be expressed as:

$$K(E, p) = c(p) + c(E \mid p)$$

Complexity of the pattern

<table>
<thead>
<tr>
<th>Sort of data</th>
<th>L</th>
<th>$c(p)$</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical</td>
<td>Closed intervals</td>
<td>Length of the interval</td>
<td>$c([a, b]) = b-a$</td>
</tr>
<tr>
<td>First order atoms</td>
<td>Herbrand base with variables</td>
<td>Number of symbols</td>
<td>$c(q(a,X,X)) = 4$</td>
</tr>
<tr>
<td>Any</td>
<td>Any</td>
<td>Constant function</td>
<td>$c(p) = \text{cte.}$</td>
</tr>
</tbody>
</table>
The function $k(E,p)$ can be expressed as:

$$K(E,p) = c(p) + c(E|p)$$

| Sort of data | L | $C(E|p)$ |
|--------------|-----|----------|
| Any | Any | $c(E,p) = \sum_{e \in E} \min_{e' \in \partial \text{Set}(p)} d(e,e')^*$ |
| Any | Any | $c(E,p) = \sum_{e \in E} \min_{e' \in \partial \text{Set}(p)} d(e,e')$ $+ \max_{e'' \in \partial \text{Set}(p)} d(e,e'')^{**}$ |

(*) Note that the concept of border can be expressed in any metric space

(**) Only for bounded sets
An illustrative example

- \((\mathbb{R}^2, d=\text{Euclidean dist.}) \& L=\{\text{rectangles in } \mathbb{R}^2 \text{ with their finite unions}\}\)
- \(k(E,p) = c(p) + c(E|p)\)
 - \(c(p) = \text{(number of squares) } \times \alpha(E,d) \rightarrow (\alpha(\cdot,\cdot) = \text{scale factor})\)
 - \(c(E|p) = \sum d(e_i, \text{nearest element in } \partial p)\)

\[\Delta_1(A,B)=p_1 \quad \Delta_3(A,B)=p_3 \quad B(3,4)\]

- \(p_1\) is the mg for \(E=\{A,B\}\)
- \(c(p_1)=\alpha(E,d)\)
- \(c(E|p_1)=0,\) since \(A\) and \(B\) are in \(\partial\text{Set}(p_1)\)
- \(c(p_3)=4\cdot\alpha(E,d)\)
- \(c(E|p_3)=0,\) since \(A\) and \(B\) are in \(\partial\text{Set}(p_3)\)
Conclusions and future work

- *Mg* operators are important if we want a generalisation to fit a set of examples as much as possible.
 - E.g. Conceptual clustering
- This work introduces the notion of minimal distance-based generalisation operator via a distance-based cost function $k(\cdot, \cdot)$ for data embedded in a metric space.
 - *mg* operators can be defined for several sorts of data (sets, lists, graphs, etc.)
- It can be easily shown that the *Plotkin’s lgg* is a particular case of the *mg* operator.
 - Different *mg* operators can be obtained by defining other cost functions $k(\cdot, \cdot)$
Appendix (I): Plotkin’s lgg is a mg operator

- (X= first-order atoms, d= J. Ramon et al. distance) & L={Herbrand base with variables}
- \(k(E,p) = c(p) + c(E|p) \)
 - \(c(p) = \) constant function \(x \) \(a(E,d) \)
 - \(c(E|p) = \sum d(e_i, \text{nearest element in } \partial p) \)
- Given a set of atoms \(E=\{e_1,\ldots, e_n\} \)
 - \(\Delta(E)=lgg(E) \) is a distance-based operator
 - Let \(p \) be an atom such that for all \(i=1,\ldots,n \), there exists a substitution \(\theta_i \) satisfying \(p\theta_i=e_i \)
- (sketch of proof) By definition, \(p \) is more general than \(lgg(E) \). Then for all \(E \), \(Set(lgg(E)) \) is included in \(Set(p) \) and \(k(E,lgg(E)) \leq k(E,p) \).
Appendix (II): working with lists

(X=space of finite lists, d= edit distance) & \(L = \{ X_1aa, X_1X_2, bX_1X_2, \ldots \} \)

\[k(E, p) = c(p) + c(E|p) \]

- \(c(p) \) = number of symbols of \(p \) x D(E) (diameter)
- \(c(E|p) = \sum d(e_i, \text{nearest element not belonging to } Set(p)) \)

Given the set \(E = \{ abb, bba \} \rightarrow D(E)=2 \)

- \(p_1 = X_1bbX_2 \) and \(p_2 = X_1bX_2 \) are distance-based patterns
- \(k(E, p_2) \leq K(E, p_1). \) That is,

<table>
<thead>
<tr>
<th>(p_1 = X_1bbX_2)</th>
<th>(p_2 = X_1bX_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c(p_1) = 4 \cdot D(E) = 8)</td>
<td>(c(p_2) = 3 \cdot D(E) = 6)</td>
</tr>
<tr>
<td>(c(E</td>
<td>p_1) = d(abb, babb) + d(bba, bbab) = 2)</td>
</tr>
</tbody>
</table>
Appendix (III): Distance for terms & atoms (*J. Ramon et al.*)

Bidimensional distance (lex. order)

\[\text{lgg}(a_1, a_2) = p(X) \]
\[S(p(X)) = (1, 1) \]

\[S(a_1) = (F, V) \]
\[d(a_1, a_2) = \Delta S |^{a_1}_{\text{lgg}(a_1, a_2)} + \Delta S |^{a_2}_{\text{lgg}(a_1, a_2)} \]
\[d(a_1, a_2) = [(2, 0) - (1, 1)] + [(2, 0) - (1, 1)] \]
\[= (2, -2) \]

\[a_1 = p(a) \]
\[S(a1) = (2, 0) \]

\[a_2 = p(b) \]
\[S(a2) = (2, 0) \]