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Abstract

Solving equations in equational theories is a relevant programming paradigm which

integrates logic and equational programming into one unified framework. Efficient meth-

ods based on narrowing strategies to solve systems of equations have been devised. In

this paper, we formulate a narrowing-based equation solving calculus which makes use of

a top-down abstract interpretation strategy to control the branching of the search tree.

We define a refined, but still complete, equation solving procedure which allows us to

reduce the branching factor. Our main idea consists of building an abstract narrower for

equational theories and executing the set of equations to be solved in the approximated

narrower. We prove that the set of answers computed by the abstract narrower has the

property that each concrete solution of the set of equations is an instance of one of the

substitutions in the answer set. Thus we define a strategy which computes such a set

and uses the substitutions in it for cutting down the search space of the program without

losing completeness. We also report on experimental results which demonstrate that our

optimization can result in significant speed-ups in program execution.

Keywords: Abstract interpretation, equational logic programming, term rewriting sys-

tems, universal unification.

1 Introduction

The recent interest in logic programming with equations [12, 15, 17] has promoted much work
on equational unification [15, 25] and narrowing [15, 21]. Equational unification (E-unification)
characterizes the problem of solving equations modulo an equational theory E . The narrow-
ing mechanism is a powerful tool for constructing complete E-unification algorithms for useful
classes of equational theories. In this context, completeness means that for every solution to
a given set of equations, a more general solution can be found by narrowing. Since unre-
stricted narrowing has quite a large search space, several strategies to control the selection of
redexes have been devised to improve the efficiency of narrowing by getting rid of some useless
derivations [7, 15, 16, 21]. Narrowing at only basic positions has been proven to be a com-
plete method for solving equations in the theory defined by a level-canonical conditional term
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rewriting system [14, 15, 16, 21, 22]. In [7, 14], a further refinement is considered which derives
from simulating SLD-resolution on flattened equations and in which the search reduces to an
innermost selection strategy.

The ability to detect the unsatisfiability of a set of equations is also very important to
prune useless paths from the search tree and to save a lot of unnecessary computations. This
problem is, in general, undecidable. [5] defines a scheme based on abstract interpretation for
the (static) analysis of the unsatisfiability of equation sets, and show how various analyses such
as [2, 4, 12, 13] can be seen as instances of the scheme.

In this work, we are concerned with equation solving or E-unification with respect to a given
set E of equations. We define an optimization of (basic) conditional narrowing for the purpose
of generating complete sets of E-unifiers in equational theories that can be described by a
(level-canonical) conditional term rewriting system. The optimization is based on the idea that
narrowing derivations can be approximated by means of an abstract calculus whose derivations
cover all concrete computations. [4, 5] define an abstract narrower which approximates the
decision problem of the unsatisfiability of an equation set E with respect to an equational
theory E . The abstract narrower always terminates and, if it terminates computing a “finitely
failed tree”, it states that the set of equations has no E-unifier. In this paper we show that this
abstract narrower yields useful information also when it is unable to state that an equation set
is unsatisfiable. In this case a finite description of the set of E-unifiers of E can be collected. We
show that this description can be used to filter those derivations that give rise to substitutions
which are ‘incompatible’ with the description. Thus we present a calculus which on one side
it is able to detect unsatisfiability of equation sets, and if it fails to do so then it collects a
finite description which allows the pruning of the (concrete) narrowing search tree. We prove
that the completeness result of basic conditional narrowing is preserved in the optimization. In
practice the branches of the narrowing search tree whose root contains a substitution which is
‘incompatible’ with the set of collected abstract substitutions can be safely pruned. We show
that this ‘consistency check’ can be performed compositionally. We define a composition of
abstract substitutions which would allow a parallel implementation of the test. In the paper
we show some experimental results for the case of a sequential implementation, we have not
tried with a parallel interpreter yet.

The paper is organized as follows. After introducing some preliminary notions in Section
2, in Section 3 we review an abstract algorithm to analyze the unsatisfiability of equation
sets. Section 4 defines a strategy that exploits the abstractions computed by this algorithm
to reduce the alternatives that the solution procedure has to explore. Section 5 presents some
experimental results for our method and concludes. More details and missing proofs can be
found in [6].

2 Preliminaries

Let us first summarize some known results about equations, conditional rewrite systems and
equational unification. For full definitions refer to [11, 18]. Throughout this paper, V will
denote a countably infinite set of variables and Σ denotes a set of function symbols, each with
a fixed associated arity. τ(Σ∪V) and τ(Σ) denote the sets of terms and ground terms built on
Σ and V, respectively. A Σ-equation s = t is a pair of terms s, t ∈ τ(Σ∪V). Terms are viewed
as labelled trees in the usual way. Occurrences are represented by sequences, possibly empty,
of naturals. Ō(t) denotes the set of nonvariable occurrences of a term t. t|u is the subterm
at the occurrence u of t. t[r]u is the term t with the subterm at the occurrence u replaced



with r. t[u] denotes the label in t at occurrence u ∈ Ō(t). These notions extend to equations
in a natural way. Identity of syntactic objects is denoted by ≡. Var(s) is the set of distinct
variables occurring in the syntactic object s. A free variable is a variable that appears nowhere
else. The symbol ˜ denotes a finite sequence of symbols.

We describe the lattice of equation sets following [10]. We let Eqn denote the set of possibly
existentially quantified finite sets of equations over terms. We let fail denote the unsatisfiable
equation set, which (logically) implies all other equation sets. Likewise, the empty equation
set, denoted true, is implied by all elements of Eqn. We write E ≤ E′ if E′ logically implies
E. Thus Eqn is a lattice ordered by ≤ with bottom element true and top element fail. An
equation set is solved if it is either fail or it has the form ∃y1 . . . ∃ym . {x1 = t1, . . . ,xn = tn}
where each xi is a distinct variable not occurring in any of the terms ti and each yi occurs in
some tj. Any set of equations E can be transformed into an equivalent one solve(E) which is
solved. We restrict our interest to the set of idempotent substitutions over τ(Σ ∪ V), which
is denoted by Sub. There is a natural isomorphism between substitutions and unquantified
equation sets.

We use the same notation for a substitution {x1/t1, . . . ,xn/tn}, the corresponding set of
equations {x1 = t1, . . . ,xn = tn} and the corresponding conjunction of equations x1 = t1 ∧
. . .∧xn = tn. For example we may write θ∧xθ, where the first occurrence of θ is a conjunction
of equations and the second occurrence is the application of a substitution.

We consider the usual preorder on substitutions ≤: θ ≤ σ iff ∃γ. σ ≡ θγ. Note that
θ ≤ σ iff σ ⇒ θ [23]. A substitution {x1/t1, . . . ,xn/tn} is a unifier of an equation set E iff
{x1 = t1, . . . ,xn = tn} ⇒ E. We denote the set of unifiers of E by unif(E) and mgu(E)
denotes the most general unifier of the unquantified equation set E. While every unquantified
equation set has a most general unifier [19], this is not true in general for equation sets with

existentially quantified variables. We write s
?
= t when we want to point out the fact that two

terms s and t do unify.
We note that quantifiers will not be used when dealing with the concrete operational se-

mantics. It is only when arguing the relation between the concrete and abstract operational
semantics that we need to consider quantified equation sets, since our abstract algorithm re-
places some of the terms in the term rewriting system by occurrences of a special symbol which
from the logical viewpoint stands for a quantified variable.

A Horn equational Σ-theory E consists of a finite set of equational Horn clauses of the form
e ⇐ e1, . . . , en, n ≥ 0, where e, ei, i = 1, . . . ,n, are Σ-equations. Σ-equations and Σ-theories
will often be called equations and theories, respectively. An equational goal is an equational
Horn clause with no head.

A Term Rewriting System (TRS for short) is a pair (Σ,R) where R is a finite set of
reduction (or rewrite) rule schemes of the form (λ → ρ ⇐ ẽ), λ, ρ ∈ τ(Σ ∪ V), λ 6∈ V

and Var(ρ) ⊆ Var(λ). The condition ẽ is a possibly empty conjunction e1, . . . , en, n ≥ 0, of
equations. We will often write just R instead of (Σ,R).

A Horn equational theory E which satisfies the above assumptions can be viewed as a term
rewriting system R where the rules are the heads (implicitely oriented from left to right) and
the conditions are the respective bodies. We assume that these assumptions hold for all theories
we consider in this paper. The equational theory E is said to be canonical if the binary one-step
rewriting relation →R defined by R is noetherian and confluent [18].

A function symbol f ∈ Σ is irreducible iff there is no rule (λ → ρ ⇐ e1, e2, . . . , en) ∈ R such
that f occurs as the outermost function symbol in λ, otherwise it is a defined function symbol.
In theories where the above distinction is made, the signature Σ is partitioned as Σ = C

⊎
F,

where C is the set of irreducible function symbols and F is the set of defined function symbols.



For TRS R, r << R denotes that r is a new variant of a rule in R such that r contains
no variable previously met during computation (standardised apart). Given a conditional TRS
R, an equational goal clause G conditionally narrows into a goal clause G′ if there exists an
equation e ∈ G, u ∈ Ō(e), a standardised apart variant (λ → ρ ⇐ ẽ) << R and a substitution
σ such that σ = mgu({e|u = λ}) and G′ = ((G ∼ {e})∪{e[ρ]u}∪ ẽ)σ. s is called a (narrowing)
redex (reducible expression) iff there exists a new variant (λ → ρ ⇐ ẽ) of a reduction rule in R
and a substitution σ such that sσ ≡ λσ.

Given a set of equations E, we say that E is E-unifiable iff there exists a substitution σ
such that E |= Eσ [20]. The substitution σ is called an E-unifier of E. The set of all E-unifiers

of E is recursively enumerable [15, 25]. Conditional narrowing has been shown to be a complete
E-unification algorithm for theories satisfying different restrictions [15, 21].

3 Abstract Basic Conditional Narrowing

Basic (conditional) narrowing is a restricted form of (conditional) narrowing where only terms
at basic occurrences are considered to be narrowed [16, 21]. Informally, a basic occurrence
is a nonvariable occurrence of the original goal or one that was introduced into the goal by
the nonvariable part of the right-hand side or the condition of a rule applied in a preceeding
narrowing step. The idea behind the concept of basic is to avoid narrowing steps on subterms
that are introduced by instantiation. Basic Conditional Narrowing is a complete E-unification

algorithm for level-canonical Horn equational theories [21].

Let R be a level-canonical TRS. We formulate a Basic Conditional Narrowing calculus ac-
cording to the partition of equational goals into a skeleton and an environment part, as in
[15]. The skeleton part is a set of equations g and the environment part is a substitution θ.
Substitutions are composed in the environment part, but are not applied to the terms in the
skeleton part. Due to this representation, the basic occurrences in gθ are all in g, whereas
the non-basic occurrences are all in the codomain of θ. We let State denote the set of goals
(states). The calculus is defined as a transition system, which is a directed graph that has
states as nodes. The initial state is a ‘source’ node and edges correspond to reductions between
the states. Thus reduction sequences correspond to paths in the graph starting from the source.
To solve the equation set g, the algorithm starts with the initial state 〈g, ǫ〉 and tries to derive
new goals until a terminal goal 〈true, σ〉 is reached. Each substitution σ in a terminal goal is
an E-unifier of g. By abuse of notation, it is often called solution. A successful derivation is
a reduction sequence which ends in a terminal goal. A basic Conditional Narrowing calculus
(bCN ) is defined by the two following rules:

unification rule:
σ = mgu(gθ)

〈g, θ〉 ;bCN 〈true, θσ〉

narrowing rule:

e ∈ g ∧ u ∈ Ō(e) ∧ (λ → ρ ⇐ ẽ) << R ∧ σ = mgu({(e|u)θ = λ})

〈g, θ〉 ;bCN 〈(g ∼ {e}) ∪ {e[ρ]u} ∪ ẽ, θσ〉

Abstract interpretation is a theory of semantic approximations which is used to provide
statically sound answers to some questions about the run-time behaviour of programs. In what
follows, we formulate in terms of abstract interpretation an algorithm that approximates the
problem of the E-unification of a given set of equations. The main idea behind our method is



to abstract the transition system semantics bCN we introduced above. For this purpose, we
follow the top-down approach to abstract interpretation which is based on constructing and
examining abstract transition systems as defined in [10].

Some of the following definitions are already in [4, 5] and are reported for completeness. A
difference with respect to [4] is in the definition of abstract most general unifier (Definition 3.5)
which has been revised and simplified. Another difference is that we present Definition 3.10 as
parametric with respect to a functional dependency graph (or loop-check). The corresponding
definition in [5] is an instance for the specific dependency graph considered there.

A description is the association of an abstract domain (D,≤) (a poset) with a concrete
domain (E,≤) (a poset). When E = Eqn, E = Sub or E = State, the description is called an
equation description, a substitution description or a state description, respectively. The corre-
spondence between the abstract and concrete domain is established through a ‘concretization’
function γ : D → ℘E. We say that d approximates e, written d ∝ e, iff e ∈ γ(d). The
approximation relation can be lifted to relations and cross products as usual [5].

In the following, we approximate the behaviour of a TRS and initial state by an abstract
transition system which can be viewed as a finite transition graph with nodes labeled by state
descriptions, where transitions are proved by (abstract) narrowing reduction [4, 5]. State de-
scriptions consist of a set of equations with substitution descriptions. The descriptions for
equations, substitutions and term rewriting systems are defined as follows:

Definition 3.1. By T = (τ(Σ∪V),≤) we denote the standard domain of (equivalence classes
of) terms ordered by the standard partial order ≤ induced by the preorder on terms given by
the relation of being “more general”. Let ⊥ be an irreducible symbol, where ⊥ 6∈ Σ. Let
T ⊥ = (τ(Σ∪V∪{⊥}),�) be the domain of terms over the signature augmented by ⊥, where
the partial order � is defined as follows:

(a) ∀t ∈ T ⊥.⊥ � t and t � t and
(b) ∀s1, . . . , sn, s′1, . . . , s

′
n ∈ T ⊥,∀f/n ∈ Σ. s′1 � s1 ∧ . . . ∧ s′n � sn ⇒ f(s′1, . . . , s

′
n) �

f(s1, . . . , sn).
This order can be extended to equations: s′ = t′ � s = t iff s′ � s and t′ � t and to sets of
equations S,S′:

1) S′ � S iff ∀e′ ∈ S′.∃e ∈ S such that e′ � e. Note that S′ � true ⇒ S′ ≡ true.
2) S′ ⊑ S iff (S′ � S) and (S � S′ implies S′ ⊆ S).

The behaviour of the symbol ⊥ from a programming viewpoint resembles that of an “anony-
mous” variable in Prolog. From a logical viewpoint, ⊥ stands for a generic existentially quan-
tified variable [5, 20]. Define [[S]] = S′, where the n-tuple of occurrences of ⊥ in S is replaced
by an n-tuple of existentially quantified free variables in S′. We note that S′ � S implies
[[S]] ⇒ [[S′]] [5].

Definition 3.2. An abstract substitution is a set of the form {x1/t1, . . . ,xn/tn} where, for
each i = 1, . . . ,n, xi is a distinct variable in V not occurring in any of the terms t1, . . . , tn and
ti ∈ τ(Σ ∪ V ∪ {⊥}).

We can now characterize the ordering on abstract substitutions as logical implication of the
corresponding logical expressions: let θ, κ ∈ Sub⊥, κ � θ iff [[θ]] ⇒ [[κ]].

We can now introduce the abstract domains which we will use in our analysis.

Definition 3.3. Let (X,≤) be a poset and let Y ⊆ X. Define upw(Y) = {x ∈ X | ∃y ∈
Y . y ≤ x}.



Definition 3.4. Let T = (τ(Σ∪V),≤) and T ⊥ = (τ(Σ∪V∪{⊥}),�). The term description
is 〈T ⊥, γ, T 〉 where γ : T ⊥ → ℘ T is defined by: γ(t′) = {t ∈ T | t ∈ upw({t′})}.

Let Eqn be the set of finite sets of equations over τ(Σ∪V) and Eqn⊥ be the set of finite sets
of equations over τ(Σ∪V∪{⊥}). The equation description is 〈(Eqn⊥,⊑), γ, (Eqn,≤)〉, where
γ : Eqn⊥ → ℘Eqn is defined by: γ(g′) = {g ∈ Eqn | g ∈ upw({g′}) and g is unquantified }.

Let Sub be the set of substitutions over τ(Σ∪V) and Sub⊥ be the set of substitutions over
τ(Σ ∪ V ∪ {⊥}). The substitution description is 〈(Sub⊥,�), γ, (Sub,≤)〉, where γ : Sub⊥ →
℘Sub is defined by: γ(κ) = {θ ∈ Sub | θ ∈ upw({κ})}.

Define the abstract state domain State⊥ induced by Eqn⊥ and Sub⊥ to be State⊥ =
{〈g, κ〉 | g ∈ Eqn⊥, κ ∈ Sub⊥}.

Abstract states are intended to describe states which are equivalent modulo variable renaming.
To ensure finiteness of the analysis, we collapse states which are variable renamings of each
other into a single ‘equivalent’ state, as in [10].

In the following, we formalize the idea that abstract narrowing reduction approximates nar-
rowing reduction with abstract states, abstract unification and abstract term rewriting systems
replacing concrete states, unification and term rewriting systems. The abstract most general
unifier for our method is very simple and roughly speaking it boils down to computing a solved
form of an equation set with (possibly) existentially quantified variables.

We define the abstract most general unifier for an equation set E′ ∈ Eqn⊥ as follows. First
replace all occurrences of ⊥ in E′ by existentially quantified free variables. Then take a solved
form of the resulting quantified equation set and finally replace the existentially quantified
variables again by ⊥. Formally:

Definition 3.5. Abstract most general unifier
Let ∃y1 . . .yn. E = solve([[E′]]) and κ = {y1/⊥, . . . ,yn/⊥}. Then mguA(E′) = Eκ .

Example 1. Let E = {f(g(⊥),h(z, z)) = f(x,h(x,g(a))), y = g(⊥)}. Then mguA(E) =
{x/g(a),y/g(⊥), z/g(a)}.

The following proposition justifies our use of ‘most general’.

Proposition 3.6. [5] ∀θ ∈ unif([[E]]). mguA(E) � θ.

The safety of the abstract unification algorithm has been proven in [5] as stated by the following
proposition.

Proposition 3.7. [5] Let g, g′ be (quantifier free) finite sets of equations over τ(Σ ∪ V)
and τ(Σ ∪ V ∪ {⊥}), respectively. If g′ ∝ g and there exists mgu(g) = σ, then there exists
mguA(g′) = σA where σA ∝ σ.

Generally, the use of narrowing results in a semidecision procedure for testing the solvability of
equation sets. A few approaches to improve the termination of narrowing have been reported
[1, 8, 9, 16, 24]. For example, [8, 24] consider a graph of terms which allows the detection of some
loops in the search tree which do not lead to any solution. The improved algorithms described
in [8, 24] are still complete but termination is only guaranteed for theories which satisfy some
rather strong conditions. The graphs are built using information about the equations being
narrowed as well as the reduction rules being used for narrowing. In the following we propose a
generic technique of loop detection which is used to obtain a form of ‘compiled’ program which
always satisfies a simple termination condition.

Our notion of abstract term rewriting system is parametric with respect to a loop-check.



Definition 3.8. loop-check
We define a loop-check as a graph GR, i.e. a decidable relation consisting of a set of pairs of
terms, such that if there is an infinite sequence 〈g0, θ0〉 ;bCN 〈g1, θ1〉 ;bCN . . ., then there is
a cycle in GR associated to it. Formally, we let t̂ = t′ define a generic function which assigns
to any term t some node t′ in GR. Then, for the transitive closure G+

R of GR it holds that:

∃i ≥ 0. 〈t̂i, t̂i〉 ∈ G+
R, where ti = e|uθi, e ∈ gi and u ∈ Ō(e).

Any node of the graph represents one or more variable renamings of itself, to avoid variable
names clash. We refer to GR as “the graph of functional dependencies”. The graph can be
useful to prove the termination of basic narrowing derivations for simple cases as stated by the
following proposition.

Proposition 3.9. Let R be a term rewriting system and GR be the corresponding graph
of functional dependencies. If there is no cycle in GR, then every basic narrowing derivation
terminates.

A TRS is abstracted by simplifying the right-hand side and the body of each rule. This definition
is given inductively on the structure of terms and equations. Terms whose main functor f is
a defined symbol are drastically simplified by replacing them by ⊥. Notice that we do not
perform this approximation when there is no cycle in GR for the term which we consider. In
this case, we can be more accurate and retain the subterm originating in f .

Definition 3.10. Abstract term rewriting system
Let R be a TRS. Let GR be the corresponding graph of functional dependencies. We define the
abstraction of R as follows:

RA = {λ → sh(ρ) ⇐ sh(ẽ) | λ → ρ ⇐ ẽ ∈ R}, where the shell sh(x) of an expression x is
defined inductively

sh(x) =





x if x ∈ V

f(sh(t1), . . . , sh(tk)) if x = f(t1, . . . , tk) and 〈x̂, x̂〉 6∈ G+
R

sh(l) = sh(r) if x = (l = r)
sh(e1), . . . , sh(en) if x = e1, . . . , en

⊥ otherwise

Note that a corresponding concretization function for abstract term rewriting systems can be
easily defined. We can now define abstract basic narrowing:

Definition 3.11. Let RA be an abstract TRS. Abstract (basic) narrowing is a relation
BRA ⊆ State⊥ × State⊥, defined as follows.

Let t, t′ ∈ State⊥. 〈t, t′〉 ∈ BRA (we also say that there is an abstract (basic) narrowing
reduction from t to t′) iff:

1) ∃λ → ρ ⇐ ẽ << RA such that t = 〈g, κ〉 and t′ = 〈g′, κ′〉 where g′ = (g ∼ {e})∪{e[ρ]u}∪
ẽ, e ∈ g, u ∈ Ō(e), σ = mguA({(e|u)κ = λ}) and κ′ = κσ; or,

2) t = 〈g, κ〉, σ = mguA(gκ) and t′ = 〈true, κσ〉; or,

3) t = t′.



The following lemma is proven in [5] and basically states that abstract (basic) narrowing re-
duction approximates (basic) narrowing reduction.

Lemma 3.12. [5] Let s′ ∝ s. If there is a (basic) narrowing reduction from s to t, then there
is an abstract (basic) narrowing reduction from s′ to some t′ such that t′ ∝ t.

The following proposition shows that our analysis terminates.

Proposition 3.13. [5] Let RA be an abstract TRS. The (abstract) transition system for
BRA , state s and State⊥ has a finite number of (distinct) nodes.

The following auxiliary notions will be used below.

Definition 3.14. An abstract (basic) narrowing derivation for RA, s and State⊥ is relevant
if the last node in the derivation is labeled by 〈true, κ〉.

Definition 3.15. Let RA be an abstract TRS. Define ∆(RA, s) to be the set of abstract
substitutions κ in the terminal states 〈true, κ〉 of the abstract (basic) narrowing derivations
which are relevant for RA, s and State⊥.

We give an example which can help to understand these definitions and motivates the remain-
der of the section. Let us introduce the auxiliary function ⌊x⌋, which inductively replaces by a
free variable any term whose outermost symbol is not an irreducible function symbol, i.e.

⌊x⌋ =

{
c(⌊t1⌋, . . . , ⌊tk⌋) if x = c(t1, . . . , tk) and c ∈ C

y otherwise, where y is a new free variable

The following definition introduces a particular case of graph that satisfies the condition of
loop-check of Definition 3.8. Another different instance can be found in [4, 5].

Definition 3.16. Let R be a TRS. The following transformation defines a directed graph
GR of functional dependencies induced by R. Define t̂ = f(⌊t1⌋, . . . , ⌊tn⌋) if t = f(t1, . . . , tn).
To build GR, the algorithm starts with 〈R, ∅〉 and applies the inference rules as long as they
add new arrows. The symbol ∪ stands for set union.

(1)
r = (λ → ρ ⇐ ẽ) << R

〈R,GR〉 7−→ 〈R ∼ {r},GR ∪ {λ
R
→ t̂ |

(t = ρ|u ∧ u ∈ Ō(ρ)) or (t = e|u ∧ e ∈ ẽ ∧ u ∈ (Ō(e) ∼ {Λ}))}〉

(2)
(λ

R
→ r) ∈ GR ∧ (λ′ R

→ r′) ∈ GR ∧ r
?
= λ′

〈R,GR〉 7−→ 〈R,GR ∪ {r
u
→ λ′}〉

Termination of this calculus is ensured since the number of terms occurring in the rules in R
is finite. Roughly speaking, in Definition 3.16, for each rule (λ → ρ ⇐ ẽ) in R and for each

term f(t1, . . . , tn) occurring in ρ or in ẽ, rule (1) adds an arrow λ
R
→ f(⌊t1⌋, . . . , ⌊tn⌋) to GR.

Rule (2) adds an arrow r
u
→ λ′ between the right-hand-side r of an arrow λ

R
→ r in GR and the

left-hand-side λ′ of each arrow λ′ R
→ r′ with which r unifies. We note that GR associates a path

with every basic narrowing derivation issued from a given goal and that it does not require the
inspection of the equation set to be solved, as opposed to [8]. We also note that GR consists of



the graph of top symbols in [4, 5] when t̂ is defined as the function t̂ = f if t = f(t1, . . . , tn).

In the following, →∗ denotes a path in the graph that may contain arrows
R
→ and arrows

u
→.

Proposition 3.17. Let R be a TRS and GR be the graph built from R according to Definition
3.16. Then GR satisfies the condition of loop-check as established in Definition 3.8.

Example 2. Let us consider the following level-canonical TRS R and its abstraction RA.
Note that RA yields no infinite abstract basic narrowing sequences.

R = { RA = {
r1) h(0) → 0. r1A) h(0) → 0.
r2) f(0) → 0. r2A) f(0) → 0.
r3) f(c(X)) → c(f(X)) ⇐ g(X) = X. r3A) f(c(X)) → c(⊥) ⇐ g(X) = X.
r4) g(c(X)) → c(X). } r4A) g(c(X)) → c(X). }

We depict in Figure 1 the dependency graph built from R. There is a cycle:
f(X) →∗ f(X) →∗ . . . in the graph.
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Figure 1: Graph of functional dependencies

From Lemma 3.12, there is an abstract narrowing reduction that approximates each basic
narrowing reduction from a given goal. The correspondence is most clearly seen in a diagram.
We give here an example.

Example 3. Consider again the TRS R from Example 2. Figures 2 and 3 depict the search
space of basic narrowing and abstract basic narrowing with initial state s = 〈h(f(Z)) = 0, ǫ〉.
The leftmost derivation in Figure 3 is relevant. ∆(RA, s) = {Z/0}.

We now establish a preliminary result that clarifies our interest in abstract reduction.

Theorem 3.18. Let R be a TRS, s = 〈g, ǫ〉 and s′ ∝ s. Let ∆′ = ∆(RA, s′). Then, for every
solution θ computed in any successful basic narrowing derivation for R with s, there exists
κ ∈ ∆′ such that κ ∝ θ.

Definition 3.19. Let φ, κ ∈ Sub⊥. We define the relation φ ♦ κ by:
φ ♦ κ iff ∃θ ∈ Sub⊥ such that φ � θ and κ � θ.

Roughly speaking, two abstract substitutions are in the relation ♦ if and only if they have a
common instance. This definition does not provide much intuition about how the test ♦ on
abstract substitutions can be performed. At the end of Section 4 we formulate an algorithm
which decides this relation.

From Theorem 3.18 we derive a stronger characterization of successful narrowing derivations.
Actually, successful derivations are distinguishable by the following property:
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〈{h(c(f(X)))=0,g(X)=X},{Z/c(X)}〉

〈{h(f(Z))=0},ǫ〉

〈{h(0)=0},{Z/0}〉
hhhhhhhh

((((((((

〈{0=0},{Z/0}〉

〈true,{Z/0}〉 ×
. . . . . .
∞ ∞

〈{h(c(0))=0,g(X)=X},

{Z/c(0),X/0}〉

〈{h(c(c(f(X′))))=0,g(X)=X,g(X′)=X′},

{Z/c(c(X′)),X/c(X′)}〉

〈{h(c(f(X)))=0,c(X′)=X},

{Z/c(c(X′)),X/c(X′)}〉

Figure 2: Basic narrowing
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Figure 3: Abstract basic narrowing

Theorem 3.20. Let R be a TRS, s = 〈g, ǫ〉 and s′ ∝ s. Let ∆′ = ∆(RA, s′). Then, for every
substitution θ in any successful basic narrowing derivation for R with s, there exists κ ∈ ∆′

such that κ ♦ θ.

The following result follows immediately from Theorem 3.20 and represents the basis for our
optimization:

Corollary 3.21. Let R be a TRS and s an initial state. Let 〈g, θ〉 be any state of the
(basic) conditional narrowing tree for R with s. If there is no κ ∈ ∆(RA, s) such that κ ♦ θ,
then there is no successful basic narrowing derivation for s.

Since the subtree originating in any node which satisfies the requirements of Corollary 3.21 does
not contain any solution, it is useless to explore it. This remark suggests a method to reduce
the size of the search tree while still retaining completeness as we formalize in the following
section.

4 Using Abstract Narrowing to optimize Narrowing

Let us first introduce a collecting narrowing calculus which explores with a depth-first strategy
the nodes of the abstract transition system for a given set of equations and picks up every
abstract substitution in the terminal state of any relevant abstract basic narrowing derivation.
Since the number of nodes to be visited is finite, any search strategy which visits the whole
graph is complete. We use a depth-first strategy since it results in a ‘programmed’ search which
is easy to be tackled formally and easy to implement.



Definition 4.1. collecting Conditional N arrowing calculus (cCN )
Let (Σ,RA) be an abstract term rewriting system. A cCN -state is a pair 〈L, ∆〉. The first
component L is a list of pairs (s,S), where s = 〈g, κ〉 ∈ State⊥ and S is a set. The elements of
the set are triples 〈e,u, r〉, where e is a Σ-equation, u is an occurrence of e and r is (a variant
of) a reduction rule in RA. 〈〉 is a distinguished element of the sets. The second component ∆
of a cCN -state is a set of (abstract) substitutions. The cCN transition relation is defined as
follows:

Unification Rule:

(1)
〈〉 6∈ S ∧ σ = mguA(gκ)

〈(〈g, κ〉,S) • L, ∆〉 →cCN 〈(〈g, κ〉,S ∪ {〈〉}) • L, ∆ ∪ κσ〉

Narrowing Rule:

(2)

e ∈ g ∧ u ∈ Ō(e) ∧ r = (λ → ρ ⇐ ẽ) << RA ∧
〈e,u, r〉 6∈ S ∧ σ = mguA({(e|u)κ = λ})

〈(〈g, κ〉,S) • L, ∆〉 →cCN

〈(〈(g ∼ {e}) ∪ {e[ρ]u} ∪ ẽ, κσ〉, Ø) • (〈g, κ〉,S ∪ { 〈e,u, r〉}) • L, ∆〉

Removal Rule:

(3)
(1) and (2) do not apply

〈(〈g, κ〉,S) • L, ∆〉 →cCN 〈L, ∆〉

Roughly speaking, the abstract state in the left part of a pair (s,S) represents a node of the
abstract transition system. The right part of the pair records the redexes of the equation in the
abstract state which are reduced together with the corresponding applied rule. 〈〉 represents
the fact that an abstract mgu of the equations in the state has been found. List constructors
are denoted by [ ] and •. The list representing an execution state of the above calculus is
treated as a stack to emulate a depth-first strategy. The derivations can be represented as a
finite tree. Leaves which have already been visited are simply removed. The calculus can be
slightly improved if failed nodes are recognized and removed from the list. A failed node is any
node 〈g, κ〉 such that one equation e ∈ g is not (abstractly) unifiable and no abstract narrowing
step can be applied to any of the occurrences in e.

Definition 4.2. Behaviour of the cCN calculus
Let L = [ ( s, Ø ) ], s ∈ State. Define the function cN (s) as follows:

cN (s) = ∆ if 〈 L, Ø 〉 →∗
cCN

〈 [ ], ∆ 〉.

We notice that in the case when cN (s) = Ø, the set of equations in s is unsatisfiable.
The following theorem can easily be proved for the collecting narrowing algorithm given in

Definitions 4.1 and 4.2.

Theorem 4.3. completeness of collecting Conditional N arrowing
Let RA be an abstract TRS. For every substitution κ in the terminal state of any relevant
abstract basic narrowing derivation for RA with s, κ ∈ cN (s).

We can now refine the basic Conditional Narrowing calculus in Section 3 by considering the
abstract substitutions which are gathered by collecting Conditional N arrowing.

We define a refined Conditional Narrowing calculus (rCN ) by means of a two-rule transition
system. To solve the equation set g0, the algorithm starts with the initial state s = 〈g0, ǫ〉 and
tries to derive new goals until a terminal state 〈true, σ〉 is reached. In the rules below, we
assume ∆ = cN (s).
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Figure 4: Refined basic narrowing

Unification rule:
σ = mgu(gθ)

〈g, θ〉 ;rCN 〈true, θσ〉

Narrowing rule:

e ∈ g ∧ u ∈ Ō(e) ∧ (λ → ρ ⇐ ẽ) << R ∧
σ = mgu({(e|u)θ = λ}) ∧ ∃ρ ∈ ∆. ρ ♦ θσ

〈g, θ〉 ;rCN 〈(g ∼ {e}) ∪ {e[ρ]u} ∪ ẽ, θσ〉

We give an example which illustrates how the optimization works.

Example 4. Consider the TRS R from Example 3. Applying rCN for R with initial state
〈h(f(Z)) = 0, ǫ〉 results in the tree which is depicted in Figure 4. Let us notice that the
subtree originating from the right-hand descendant of the root of the tree in Figure 2 has been
eliminated. We note also that the removed subtree could not have been dropped using either
of the standard simplifying strategies of narrowing which rest on the use of loop-checking [8],
unification rules [13], operator joinability [12] or eager normalization [2, 12] techniques.

The following theorem proves that our approach is sound and complete.

Theorem 4.4. correctness and completeness of refined Conditional N arrowing
Let E be a level-canonical Horn equational theory with associated TRS R. The set:
{σ |̀Var(g) | 〈g, ǫ〉 ;

∗
rCN

〈true, σ〉} is a complete set of E-unifiers of g.

Finally we show how the test ♦ of ‘compatibility’ on abstract substitutions can be effectively
checked by providing an algorithm to decide it. First we need to extend the notion of parallel
composition [23] from substitutions to abstract substitutions.

Parallel composition was proposed in [23] in order to provide a compositional characteriza-
tion of the semantics of Horn Clause Logic. The formalization was also extended to a parallel
execution model of logic programs. When two atoms (in the same goal) are run in parallel, the
associated computed answer substitutions have to be combined afterwards in order to get the
final result.

Roughly speaking, parallel composition is the operation of unification generalized to sub-
stitutions. It can be performed in the following way [23]. Given two idempotent substitutions
ϑ1 and ϑ2, consider the set of all pairs corresponding to the bindings of both ϑ1 and ϑ2. Then,
compute the most general unifier of such a set. Note that the consistency check can be thought
of as a simple verification that such a set is unifiable.



first solution found termination achieved

Goal basic refined basic refined cT

g(h(s(0))) = X. 0.14 0.18 0.94 1.12 1.30

h(f(Z))=0. 8.22 1.48 ∞ 0.00 0.74

h(f(g(Z)))=0. 8.38 1.64 ∞ 0.00 1.02

f(g(X)) = Z, h(Z)=0. 111.56 13.44 ∞ 0.00 8.84

Table 1: Basic vs. refined narrowing times (secs, using BIM-Prolog, SUN 3/80)

We extend the notion of parallel composition from substitutions to abstract substitutions
by replacing unification by abstract unification. In the following definition we introduce the
notion of abstract parallel composition, denoted by ⇑.

Definition 4.5. Let φ, κ ∈ Sub⊥. We define the abstract parallel composition φ ⇑ κ by:
φ ⇑ κ = mguA(φ ∪ κ).

Now the compatibility φ ♦ κ of two abstract substitutions exactly corresponds to check that
φ ⇑ κ is not fail.

Proposition 4.6. Let φ, κ ∈ Sub⊥. Then φ ♦ κ iff (φ ⇑ κ) 6≡ fail.

5 Conclusions

We have formalized an optimization of basic conditional narrowing which makes use of an
abstract interpretation algorithm to identify the narrowing derivations possibly leading to so-
lutions. Thus the other derivations are not computed. The notions of relevant abstract basic
narrowing derivation and abstract parallel composition have been introduced for this purpose.
We have proved that the completeness result of the basic procedure is preserved in the re-
finement. An example illustrates the fact that this optimization can increase the efficiency of
narrowing in addition to improving its termination. We note that the refinement applies also
to full conditional narrowing, although the search tree exhibits, in this case, a much larger
branching factor.

A prototype system based on the ideas described in this work has been implemented. In
spite of the fact that it does not have the simplicity of simple basic narrowing, we have chosen
to implement an innermost selection basic conditional narrowing procedure [3, 14, 15] since it
further reduces the size of the search space.

It is difficult to state a general result for the efficiency improvement of the optimization.
Table 1 gives an impression of some achievable speed-ups. We report the timings relative to
some simple benchmarks for the program:
h(s(X)) → h(X) ⇐ g(s(X))=s(X), g(X)=X., f(c(X)) → c(f(X)) ⇐ g(X)=X.,

g(c(X)) → c(X)., g(s(X)) → s(X)., h(0) → 0., f(0) → s(s(0))., g(0) → 0.

In these tests we are able to avoid up to 70% of unnecessary narrowing attempts, with no pro-
hibitive time overhead due to collecting Conditional N arrowing (column cT ). Our experiments
indicate that the strategy can be a useful tool in the optimization of equational logic programs.

Since our method can be seen as parametric with respect to the loop check, any improvement
on the loop-checking technique would correspondingly yield to an improvement of the accuracy
of our description. An interesting topic for further research is the question of how it is possible
to improve our method by strengthening the construction of the dependency graph in order
to get more accurate approximations. This seems dificult to do while retaining the ability to



check the rewrite rules without inspecting the goal. Another topic of further research concerns
the parallel implementation of the consistency check.
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May 1992. submitted for publication.

[11] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B: Formal Models and Semantics, pages 243–320.
Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.

[12] N. Dershowitz and G. Sivakumar. Solving Goals in Equational Languages. In S. Kaplan
and J. Joaunnaud, editors, Proc. First Int’l Workshop on Conditional Term Rewriting,
volume 308 of Lecture Notes in Computer Science, pages 45–55. Springer-Verlag, Berlin,
1987.



[13] L. Fribourg. Slog: a logic programming language interpreter based on clausal superposition
and rewriting. In Proc. Second IEEE Int’l Symp. on Logic Programming, pages 172–185.
IEEE, 1985.

[14] E. Giovannetti and C. Moiso. A completeness result for E-unification algorithms based
on Conditional Narrowing. In M. Boscarol, L. Carlucci, and G. Levi, editors, Foundations
of Logic and Functional Programming, volume 306 of Lecture Notes in Computer Science,
pages 157–167. Springer-Verlag, Berlin, 1986.

[15] S. Hölldobler. Foundations of Equational Logic Programming, volume 353 of Lecture Notes
in Artificial Intelligence. Springer-Verlag, Berlin, 1989.

[16] J.M. Hullot. Canonical Forms and Unification. In 5th Int’l Conf. on Automated Deduction,
volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer-Verlag, Berlin,
1980.

[17] J. Jaffar, J.-L. Lassez, and M.J. Maher. A logic programming language scheme. In
D. de Groot and G. Lindstrom, editors, Logic Programming, Functions, Relations and
Equations, pages 441–468. Prentice Hall, Englewood Cliffs, NJ, 1986.

[18] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, volume I. Oxford University Press, 1991.

[19] J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited. In J. Minker, edi-
tor, Foundations of Deductive Databases and Logic Programming, pages 587–625. Morgan
Kaufmann, Los Altos, Ca., 1988.

[20] M. J. Maher. On parameterized substitutions. Technical Report RC 16042, IBM - T.J.
Watson Research Center, Yorktown Heights, NY, 1990.

[21] A. Middeldorp and E. Hamoen. Counterexamples to completeness results for basic nar-
rowing. In H. Kirchner and G. Levi, editors, Proc. Third Int’l Conf. on Algebraic and
Logic Programming, volume 632 of Lecture Notes in Computer Science, pages 244–258.
Springer-Verlag, Berlin, 1992.
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