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Abstract
Narrowing-driven partial evaluation is a powerful technique for the
specialization of (first-order) functional and functionallogic pro-
grams. However, although it gives good results on small programs,
it does not scale up well to realistic problems (e.g., interpreter spe-
cialization). In this work, we introduce a faster partial evaluation
scheme by ensuring the termination of the processoffline. For this
purpose, we first characterize a class of programs which arequasi-
terminating, i.e., the computations performed with needed narrow-
ing—the symbolic computation mechanism of narrowing-driven
partial evaluation—only contain finitely many different terms (and,
thus, partial evaluation terminates). Since this class is quite restric-
tive, we also introduce an annotation algorithm for a broader class
of programs so that they behave like quasi-terminating programs
w.r.t. an extension of needed narrowing. Preliminary experiments
are encouraging and demonstrate the usefulness of our approach.

Categories and Subject Descriptors F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—partial
evaluation, program analysis; I.2.2 [Artificial Intelligence]: Auto-
matic Programming—program transformation

General Terms algorithms, performance, theory

Keywords narrowing, quasi-termination, offline partial evaluation

1. Introduction
Given a program and an initial call (usually containing someknown
data), the aim of a partial evaluator is the construction of anew,
residual program specialized for this call. The essential component
of many partial evaluators is a technique to compute afinite repre-
sentation of the—generallyinfinite—computation space for the ini-
tial call, so that a (hopefully more efficient) residual program can
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be extracted from this representation. For instance, givena pro-
gramP and an initial function call,f(t, x), wheret is a known
input data andx is a free variable, a trivial partial evaluator may
simply return the residual programP ′ = P ∪ {ft(x) = f(t, x)}
containing a specialized versionft of functionf . While the correct-
ness of this trivial partial evaluator is obvious, it is alsoclear that
no efficiency improvement can be achieved. A challenge in partial
evaluation is the definition of techniques for constructingnontrivial
yet finite representations of the computation space of a program so
that efficient residual programs can be extracted.

Narrowing-driven partial evaluation (NPE) is a powerful spe-
cialization technique for rewrite systems [2], i.e., for the first-
order component of many functional (logic) languages like Haskell
[40] or Curry [21]. Higher-order features can still be modeled
by using an explicit application operator, i.e., by defunctionaliza-
tion [42]; this strategy is used in several implementationsof lazy
functional logic languages, like the Portland-Aachen-Kiel Curry
System (PAKCS [27]) and the Münster Curry Compiler (MCC
[38]). Although NPE can be seen as a traditional partial evaluation
scheme for program specialization, it can also achieve morepow-
erful optimizations like deforestation [46], eliminationof higher-
order functions (represented in a first-order setting by defunction-
alization), etc. A narrowing-driven partial evaluator is currently in-
tegrated into the PAKCS environment for Curry (an experimental
evaluation can be found in [1]).

At the core of the NPE scheme we find a method to construct
a finite representation of a (usually) infinite computation space. To
be precise, given a rewrite systemR and a termt, NPE constructs
a finite representation of all possible reductions oft—and any of
its instances if it contains variables—inR, and then extracts a
new, often simpler and more efficient, rewrite system. Sincet may
contain variables, some form ofsymbolic computationis required.
In NPE, a refinement ofnarrowing[43] is used to perform symbolic
computations, being needed narrowing [9] the strategy thatpresents
better properties (as shown in [5]). In general, the narrowing space
of a term may be infinite. However, even in this case, NPE may still
terminate when the original program isquasi-terminating[19] w.r.t.
the considered narrowing strategy, i.e., when only finitelymany
different terms—modulo variable renaming—are computed. The
reason is that the (partial) evaluation of multiple occurrences of
the same term (modulo variable renaming) in a computation can be
avoided by inserting a call to some previously encountered variant
(a technique known asspecialization-point insertionin the partial
evaluation literature).

Partial evaluators fall in two main categories,onlineandoffline,
according to the time when termination issues are addressed. On-
line partial evaluators are usually more precise since moreinfor-
mation is available. For instance, the original NPE scheme (which
follows the online approach) considers a variant of the Kruskal



tree condition called “homeomorphic embedding” [34] to ensure
the termination of the process [4]: if a term embeds some previous
term in the same narrowing computation, some form of generaliza-
tion—usually themost specific generalizationoperator—is applied
and partial evaluation is restarted with the generalized terms. How-
ever, this extra precision comes at a cost: the homeomorphicem-
bedding tests, together with the associated generalizations, make
NPE very expensive and, thus, it does not scale up well to realistic
problems like interpreter specialization [30] or compilergeneration
by self-application [22].

In this work, we propose a faster NPE scheme by ensuring ter-
minationoffline. Offline partial evaluators usually proceed in two
stages: the first stage returns a program that includes annotations to
guide the partial computations (e.g., to identify those function calls
that can be safely unfolded); then, the second stage—the proper
partial evaluation—only needs to obey the annotations and,thus,
it is generally much faster than online partial evaluators.Let us
remark that, in the NPE framework, the so-called static/dynamic
distinction is hardly present. Indeed, in a functional logic setting,
one can require the (nondeterministic) evaluation of termscontain-
ing free variables at runtime. Therefore, in contrast to traditional
binding-time analysis, the first stage of our offline partialevalua-
tion scheme ensures termination even if all arguments are dynamic
(i.e., unknown).

Contributions. The main contributions of this work are the fol-
lowing. First, we identify a class of quasi-terminating rewrite sys-
tems, callednonincreasing, by providing a sufficient condition.
This is an interesting result on its own since no previous charac-
terization appears in the literature. Unfortunately, thisclass is too
restrictive and, thus, we also introduce an algorithm that takes anin-
ductively sequentialprogram—a much broader class—and returns
an annotatedprogram. Then, we define an extended needed nar-
rowing relation,generalizing needed narrowing, in which anno-
tated subterms are generalized. We prove that computationswith
this relation are quasi-terminating for annotated inductively se-
quential programs and, thus, it forms an appropriate basis for en-
suring termination of NPE offline. Finally, we explain how our new
developments can be integrated into the NPE scheme and proveits
correctness and termination. Preliminary experiments with a proto-
type implementation of the new partial evaluation method are en-
couraging and demonstrate the usefulness of our approach.

Plan of the paper. This paper is structured as follows. Section 2
presents an informal overview of our approach to the partialeval-
uation of functional (logic) programs. Then, after providing some
preliminary definitions in Sect. 3, we introduce the characteriza-
tion of nonincreasing programs in Sect. 4. Section 5 presents an
algorithm for annotating inductively sequential programs, together
with an extension of needed narrowing that exploits programanno-
tations to ensure quasi-termination. Section 6 describes the scheme
of the complete offline NPE method and includes a summary of
the experimental evaluation. Finally, Sect. 7 includes a comparison
with related work and concludes. Proofs of technical results can be
found in [41].

2. Partial Evaluation
In this section, we present an informal overview of our approach to
the partial evaluation of functional (logic) programs.

In our setting, the input for the partial evaluator are a rewrite
system—a typical first-order functional program—and an initial
function call, which usually contains some known data (the so-
called static data). Consider, for instance, the following rewrite

system:

inc(x) → add(succ(zero), x)
add(zero, y) → y

add(succ(x), y) → succ(add(x, y))

where natural numbers are built fromzero and succ. We can
partially evaluate this program w.r.t. the initial terminc(x) in order
to obtain a direct definition for functioninc (i.e., by specializing
functionadd to have a fixed first argumentsucc(zero)).

Both online and offline partial evaluators should constructsome
form of symbolic execution tree. It is symbolicbecause terms may
contain free variables and, thus, a non-standard, symbolicexecu-
tion mechanism if often required. Furthermore, we get atreestruc-
ture since the evaluation of function calls containing freevariables
generally require nondeterministic evaluation steps.

The construction of such a symbolic execution tree is explicit in
some partial evaluation techniques (like, e.g., positive supercom-
pilation [44] or narrowing-driven partial evaluation [2]). In some
other techniques, the construction of a symbolic executiontree is
only implicit. For instance, many partial evaluators for functional
programs (see, e.g., [32]) include an algorithm that iteratively (1)
takes a function call, (2) performs some symbolic evaluations, and
(3) extracts from the partially evaluated expression the set of pend-
ing function calls—the so-calledsuccessorsof the initial function
call—to be processed in the next iteration of the algorithm.Observe
that, if we add an arrow from each term to its set of successors, we
would also obtain a sort of symbolic execution tree.

In order to perform symbolic computations in a functional con-
text, an extension of the standard semantics is required forevaluat-
ing terms with free variables. Here, the choice ofnarrowing[43] as
symbolic computation mechanism arise naturally since it combines
functional reductions with the instantiation of free variables (see
the next section for a formal definition). Moreover, in the setting of
functional logic programming, the same operational principle can
be used for performing both standard and symbolic computations
[2] (similarly to the partial evaluation of logic programs,where
SLD-resolution is used for both standard and symbolic computa-
tions [36]).

For instance, the symbolic execution tree for the initial call
inc(x) w.r.t. the program above is as follows (the selected function
call is underlined):

inc(x)

��

add(succ(zero), x)

��

succ(add(zero, x))

��

succ(x)

Here, no instantiation of free variables was necessary; therefore,
we get a deterministic evaluation. The associated residualprogram
can easily be extracted from the root-to-leaf computationsof the
symbolic execution tree. In the example above, we get the single
rule

inc(x) → succ(x)

In practice, partial evaluators often include a sort memoization
technique to avoid the repeated evaluation of the same term (mod-
ulo variable renaming). Consider the following definition:

inc
′(x) → add(x, succ(zero))



Although the symbolic execution tree forinc′(x) is infinite:

inc′(x)

��

add(x, succ(zero))
{x 7→zero}

wwoooooooo {x 7→succ(y)}

''OOOOOOO

succ(zero) succ(add(y, succ(zero)))

∞

a partial evaluator would terminate in this example since the func-
tion call add(y, succ(zero)) is a variant ofadd(x, succ(zero)).
In the tree above, the arrows issuing fromadd(x, succ(zero)) are
labeled with the computed substitution by narrowing, i.e.,a sub-
stitution such that, when applied toadd(x, succ(zero)), allows a
reduction step with the standard semantics. Here, the associated
residual program is the following:

inc′(x) → add(x, succ(zero))
add(zero, succ(zero)) → succ(zero)

add(succ(y), succ(zero)) → succ(add(y, succ(zero)))

In this case, we have a residual rule associated to the first evaluation
step and two residual rules associated to each nondeterministic step
(here, the associated bindings are applied to the left-handsides of
the rules).

The finiteness of the symbolic execution tree can be guaranteed
when symbolic computations arequasi-terminating, i.e., when only
finitely many different terms—modulo variable renaming—are ob-
tained. Note that, even if the considered program is terminating
w.r.t. the standard semantics, the symbolic execution mechanism
may give rise to both non-terminating and non-quasi-terminating
computations. Consider the following function definition:

double(x) → prod(x, succ(succ(zero)))
prod(zero, y) → zero

prod(succ(x), y) → add(prod(x,y), y)

Given the initial calldouble(x), the associated symbolic tree is in-
finite (we usesucc2(zero) as a shorthand forsucc(succ(zero))):

double(x)

��

prod(x, succ2(zero))
{x 7→zero}

wwooooooooo {x 7→succ(y)}

''OOOOOOO

zero add(prod(y,succ2(zero)), succ2(zero))
{y 7→zero}

wwooooooo

{y 7→succ(z)}

��

add(zero, succ2(zero))

wwooooooo

succ2(zero) add(add(prod(z, succ2(zero)), succ2(zero)))

∞

In order to always ensure the finiteness of symbolic execution trees,
one should consider ageneralizationoperation on terms. The deci-
sion on which terms should be generalized can be taken in a pre-
processing stage (the case of offline partial evaluation) orduring
partial evaluation itself (as in online partial evaluation). Online par-
tial evaluators are usually more precise since more information is

available for deciding whether generalization is necessary or not.
In contrast, offline partial evaluators are less precise butgenerally
much faster since the partial evaluation stage should only follow
the annotations given by a pre-processing analysis (the so-called
binding-time analysis).

In the example above, termination can be guaranteed by gener-
alizing the second call to functionprod as follows:

double(x)

��

prod(x, succ2(zero))
{x 7→zero}

wwooooooooo {x 7→succ(y)}

''OOO
OO

O

zero add( prod(y, succ2(zero)) , succ2(zero))

wwooo
oo

o

��?
??

?

add(w, succ2(zero))
{w 7→zero}

wwooooooo {w 7→succ(z)}

''OOOOOOO
prod(y, succ2(zero))

succ2(zero) succ(add(z, succ2(zero)))

Now, the symbolic execution tree is kept finite since all the leaves
are values (i.e., they do not contain function calls, likezero and
succ2(zero)) or contain a function call that is a variant of a previ-
ous function call in the tree (the case ofprod(y, succ2(zero)) and
add(z, succ2(zero)), which are variants ofprod(x, succ2(zero))
andadd(w, succ2(zero)), respectively).

From this symbolic execution tree, the following residual pro-
gram can be extracted:

double(x) → prod(x, succ2(zero))
prod(zero, succ2(zero)) → zero

prod(succ(y), succ2(zero)) → add(prod(y, succ2(zero)))
add(zero, succ2(zero)) → succ2(zero)

add(succ(z), succ2(zero)) → succ(add(z, succ2(zero)))

In the remainder of this paper, we present a systematic approach to
theofflinepartial evaluation of inductively sequential systems.

3. Foundations
Term rewriting [11] offers an appropriate framework to model
the first-order component of many functional (logic) programming
languages.1 Therefore, in the remainder of this paper we follow the
standard framework of term rewriting for developing our results.

3.1 The Source Language

A set of rewrite rules (or oriented equations)l → r such that
l is a nonvariable term andr is a term whose variables appear
in l is called aterm rewriting system(TRS for short); termsl
andr are called the left-hand side and the right-hand side of the
rule, respectively. Given a TRSR over a signatureF , thedefined
symbolsD are the root symbols of the left-hand sides of the rules
and theconstructorsare C = F \ D. We restrict ourselves to
finite signatures and TRSs. We denote the domain of terms and
constructor termsby T (F ,V) andT (C,V), respectively, whereV
is a set of variables withF ∩ V = ?.

A TRSR is constructor-basedif the left-hand sides of its rules
have the formf(s1, . . . , sn) wheresi are constructor terms, i.e.,
si ∈ T (C,V), for all i = 1, . . . , n. The set of variables appearing
in a termt is denoted byVar(t). A termt is linear if every variable
of V occurs at most once int. R is left-linear (resp. right-linear) if

1 Nevertheless, higher-order features can be modeled by using an explicit
application operator, i.e., by defunctionalization [42].



l (resp.r) is linear for all rulesl → r ∈ R. Thedefinitionof f in
R is the set of rules inR whose root symbol in the left-hand side
is f . A functionf ∈ D is left-linear (resp. right-linear) if the rules
in its definition are left-linear (resp. right-linear).

The root symbol of a termt is denoted byroot(t). A term
t is operation-rooted(resp.constructor-rooted) if root(t) ∈ D
(resp.root(t) ∈ C). As it is common practice, apositionp in a
term t is represented by a sequence of natural numbers, whereǫ
denotes the root position. Positions are used to address thenodes of
a term viewed as a tree:t|p denotes thesubtermof t at position
p and t[s]p denotes the result ofreplacing the subtermt|p by
the terms. A term t is ground if Var(t) = ?. A term t is a
variant of term t′ if they are equal modulo variable renaming. A
substitutionσ is a mapping from variables to terms such that its
domainDom(σ) = {x ∈ V | x 6= σ(x)} is finite. The identity
substitution is denoted byid. A substitutionσ is constructor, if
σ(x) is a constructor term for allx ∈ Dom(σ). Term t′ is an
instanceof term t if there is a substitutionσ with t′ = σ(t). A
unifier of two termss andt is a substitutionσ with σ(s) = σ(t). In
the following, we writeon for thesequence of objectso1, . . . , on.

Inductively sequential TRSs [6] are a subclass of left-linear
constructor-based TRSs. Essentially, a TRS isinductively sequen-
tial when all its operations are defined by rewrite rules that, recur-
sively, make on their arguments a case distinction analogous to a
data type (or structural) induction. Inductive sequentiality is not a
limiting condition for programming. In fact, the first-order compo-
nent of many functional (logic) programs written in, e.g., Haskell,
ML or Curry, are inductively sequential.2 Also, the class of induc-
tively sequential programs provides for optimal computations both
in functional and functional logic programming [6, 9].

EXAMPLE 1. Consider the following rules which define the less-
or-equal function on natural numbers (built fromzero andsucc):

zero 6 y → true
succ(x) 6 zero → false
succ(x) 6 succ(y) → x 6 y

This function is inductively sequential since its left-hand sides can
be hierarchically organized as follows:

n 6 m =⇒

8<: zero 6 m

succ(x) 6 m =⇒

�
succ(x) 6 zero
succ(x) 6 succ(y)

where arguments in a box denote a case distinction (this is similar
to the notion of definitional tree in [6]).

3.2 Semantics

The evaluation of terms w.r.t. a TRS is formalized with the notion
of rewriting. A rewrite stepis an application of a rewrite rule to
a term, i.e.,t →p,R s if there exists a positionp in t, a rewrite
rule R = (l → r) and a substitutionσ with t|p = σ(l) and
s = t[σ(r)]p (p and R will often be omitted in the notation of
a reduction step). The instantiated left-hand sideσ(l) is called a
redex. A termt is calledirreducibleor in normal formif there is no
terms with t → s. We denote by→+ the transitive closure of→
and by→∗ its reflexive and transitive closure. Given a TRSR and
a termt, we say thatt evaluatesto s iff t →∗ s ands is in normal
form.

Functionallogic programs mainly differ from purely functional
programs in that function calls may containfree variables. In or-
der to evaluate such terms containing variables, narrowingnonde-

2 Curry also acceptsoverlappinginductively sequential systems. This class
extends inductively sequential systems with a disjunctionoperator which
introduces additional don’t-know nondeterminism. Nevertheless, the nice
properties of inductive sequentiality carry over to overlapping systems too.

terministically instantiates the variables such that a rewrite step is
possible [25]. Formally,t ;p,R,σ t′ is anarrowing stepiff p is a
nonvariable position oft andσ(t) →p,R t′ (we sometimes omit
p, R and/orσ when they are clear from the context).σ is very
often themost general unifier3 of t|p and the left-hand side of (a
variant of)R, restricting its domain toVar(t). As in proof pro-
cedures for logic programming, we assume that the rules of the
TRS always contain fresh variables if they are used in a narrow-
ing step. We denote byt0 ;

∗
σ tn a sequence of narrowing steps

t0 ;σ1
. . . ;σn

tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then
σ = id).

Due to the presence of free variables, a term may be reduced
to different values after instantiating these variables todifferent
terms. Given a narrowing derivationt0 ;

∗
σ tn, we say thattn is a

computedvalueandσ is a computedanswerfor t0.

EXAMPLE 2. Consider the following definition of function “+”:

zero + y → y (R1)
succ(x) + y → succ(x + y) (R2)

Given the termx + succ(zero), narrowing nondeterministically
performs the following derivations:

x + succ(zero)
;ǫ,R1,{x 7→zero} succ(zero)

x + succ(zero)
;ǫ,R2,{x 7→succ(y1)} succ(y1 + succ(zero))
;1,R1,{y1 7→zero} succ(succ(zero))

x + succ(zero)
;ǫ,R2,{x 7→succ(y1)} succ(y1 + succ(zero))
;1,R2,{y1 7→succ(y2)} succ(succ(y2 + succ(zero)))
;1.1,R1,{y2 7→zero} succ(succ(succ(zero)))

. . .

Therefore,x + succ(zero) nondeterministically computes the fol-
lowing values (here, we usesuccn as a shorthand forn applica-
tions of functionsucc):

• succ(zero) with answer{x 7→ zero},
• succ2(zero) with answer{x 7→ succ(zero)},
• succ3(zero) with answer{x 7→ succ2(zero)}, etc.

As in logic programming, narrowing derivations can be represented
by a (possibly infinite) finitely branchingtree. Formally, given a
TRSR and an operation-rooted termt, a narrowing treefor t in
R is a tree satisfying the following conditions: (a) each nodeof the
tree is a term, (b) the root node ist, and (c) ifs is a node of the tree
then, for each narrowing steps ;p,R,σ s′, the node has a childs′

and the corresponding arc in the tree is labeled with(p, R, σ).
In order to avoid unnecessary computations and to deal with

infinite data structures, a demand-driven generation of thesearch
space has been advocated by a number oflazy narrowing strate-
gies [23, 37, 39]. Due to its optimality properties w.r.t. the length
of derivations and the number of computed solutions,needed nar-
rowing [9] is currently the best lazy narrowing strategy.

We say thats ;p,R,σ t is a needed narrowing stepiff
σ(s) →p,R t is a needed rewritestep in the sense of Huet and
Lévy [29], i.e., in every computation fromσ(s) to a normal form,
eitherσ(s)|p or one of itsdescendantsmust be reduced. Here, we
are interested in a particular needed narrowing strategy, denoted
by λ in [9, Def. 13], which is based on the notion of adefinitional
tree [6] (a hierarchical structure containing the rules of a function
definition, which is used to guide the needed narrowing steps). This

3 Some narrowing strategies (e.g., needed narrowing) compute unifiers
which are not the most general, see below.



strategy is basically equivalent tolazy narrowing[39] where nar-
rowing steps are applied to the outermost function, if possible, and
inner functions are only narrowed if their evaluation isdemanded
by a constructor symbol in the left-hand side of some rule (i.e.,
a typical call-by-name evaluation strategy). The main difference
is that needed narrowing does not compute themost general uni-
fier between the selected redex and the left-hand side of the rule
but only a unifier. The additional bindings are required to ensure
that only “needed” computations are performed (see, e.g., [9]) and,
thus, needed narrowing generally computes a smaller searchspace.

EXAMPLE 3. Consider again the rules defining function “6” of
Example 1. In a term liket1 6 t2, needed narrowing proceeds as
follows: First, t1 should be evaluated to somehead normal form
(i.e., a free variable or a constructor-rooted term) since all three
rules defining “6” have a non-variable first argument. Then,

1. If t1 evaluates tozero then the first rule is applied.
2. If t1 evaluates tosucc(t′1) thent2 is evaluated to head normal

form:

(a) If t2 evaluates tozero then the second rule is applied.
(b) If t2 evaluates tosucc(t′2) then the third rule is applied.
(c) If t2 evaluates to a free variable, then it is instantiated

to a constructor-rooted term, herezero or succ(x) and,
depending on this instantiation, we proceed as in cases (a)
or (b) above.

3. Finally, if t1 evaluates to a free variable, needed narrowing
instantiates it to a constructor-rooted term (zero or succ(x)).
Depending on this instantiation, we proceed as in cases (1) or
(2) above.

Let us note that needed narrowing is only defined on operation-
rooted terms, i.e., a needed narrowing derivation stops when a head
normal form (avalue in our context) is obtained. This is not a
restriction since the evaluation to normal form can be reduced to
a sequence of head normal form computations (see [26]).

A precise definition of inductively sequential TRSs and needed
narrowing is not necessary in this work (the interested reader can
find detailed definitions in [6, 9]). In the following, we useneeded
narrowing to refer to the particular strategyλ in [9, Def. 13].

4. Ensuring Quasi-Termination w.r.t. Needed
Narrowing

In the NPE framework [2], narrowing is used as a symbolic compu-
tation mechanism to perform partial computations. Roughlyspeak-
ing, given a programR and an initial termt, partial evaluation pro-
ceeds by constructing a narrowing tree fort in R with the addi-
tional constraint of not evaluating terms that are variantsof pre-
vious terms in the computation. Therefore, the terminationof the
NPE process can be ensured when all narrowing computations are
quasi-terminating. Analogously to Holst [28], we say that acom-
putation isquasi-terminatingwhen it only contains finitely many
different terms (modulo variable renaming).

The most recent instance of the NPE scheme is based on needed
narrowing [5]. However, while the original NPE scheme guarantees
that computations are quasi-terminatingonline(by applying appro-
priate termination tests and generalization operators), in this work
we introduce a sufficient condition for TRSs so that needed nar-
rowing computations are always quasi-terminating. First,we need
the following preparatory definitions:

DEFINITION 4 (graph of functional dependencies).Given a TRS
R, its graph of functional dependencies, in symbolsG(R), con-
tains nodes labeled with the function symbols inD and there is

an arrow from nodef to nodeg iff there is a call tog from the
right-hand side of some rule in the definition off .

DEFINITION 5 (cyclic, noncyclic function).Let R be a TRS. A
functionf ∈ D is cyclic if nodef belongs to a cycle inG(R) and
it is noncyclic otherwise.

EXAMPLE 6. Consider the following TRSR:

f(s(x), y) → g(x, y)
g(x, s(y)) → h(x, y)

h(0, y) → y
h(s(x), y) → c(i(x), h(x, y))

i(x) → x

wheref, g, h, i ∈ D are defined functions and0, s, c ∈ C are con-
structor. The associated graph of functional dependencies, G(R),
is as follows:

?>=<89:;f // ?>=<89:;g // ?>=<89:;h

��

// ?>=<89:;i

Thus, functionsf , g, andi are noncyclic, whileh is cyclic.

Clearly, noncyclic functions cannot introduce nonterminating (nor
non-quasi-terminating) computations as long as the cyclicfunc-
tions do not introduce them. Thus, we turn our attention to cyclic
functions. Following [13], thedepth of a variablex in a constructor
termt, in symbolsdv(t, x), is defined as follows:

dv(c(tn), x) = 1 + max(dv(tn, x)) if x ∈ Var(c(tn))
dv(c(tn), x) = −1 if x 6∈ Var(c(tn))

dv(y, x) = 0 if x = y andy ∈ V
dv(y, x) = −1 if x 6= y andy ∈ V

wherec ∈ C is a constructor term with arityn > 0.
The following definition introduces the notion ofnonincreasing

function, i.e., a function that alwaysconsumeits parameters or
leave them unchanged:

DEFINITION 7 (nonincreasing function).Let R be a left-linear,
constructor TRS. A functionf ∈ D is nonincreasing iff each rule
f(sn) → r in the definition off fulfills the following conditions:

1. the right-hand side does not contain nested defined function
symbols (i.e., defined function symbols that occur inside other
defined function symbols), and

2. dv(si, x) > dv(tj , x) for all operation-rooted subtermsg(tm)
in r, wherei ∈ {1, . . . , n}, x ∈ Var(si), andj ∈ {1, . . . , m}.

EXAMPLE 8. A function defined by the single rulef(x, y, s(z)) →
c(g(x), h(z)), with s, c ∈ C and f, g, h ∈ D, is nonincreasing
since the following relations hold:

dv(x, x) = 0 > 0 = dv(x, x)
dv(x, x) = 0 > −1 = dv(z, x)
dv(y, y) = 0 > −1 = dv(x, y)
dv(y, y) = 0 > −1 = dv(z, y)

dv(s(z), z) = 1 > −1 = dv(x, z)
dv(s(z), z) = 1 > 0 = dv(z, z)

i.e., variablex is just copied, variabley vanishes, and (the depth
of) variablez decreases.

Analogously to [19], we say that a TRS isquasi-terminating for
a set of termsT w.r.t. needed narrowingiff all needed narrowing
derivations issuing from the terms inT are quasi-terminating. Now,
we give a sufficient condition for quasi-termination:

DEFINITION 9 (nonincreasing TRS).Let R be an inductively se-
quential TRS.R is nonincreasing iff all functionsf ∈ D are right-
linear and either noncyclic or nonincreasing.



The restriction to inductively sequential TRSs is not really neces-
sary (i.e., left-linear, constructor TRSs would suffice) but we im-
pose this condition because needed narrowing is only definedfor
this class of TRSs. On the other hand, right-linearity is notonly
necessary to guarantee quasi-termination (see below) but also for
ensuring that no repeated computations are introduced by function
unfolding.

THEOREM 10. If R is a nonincreasing TRS, thenR is quasi-
terminating for any linear term w.r.t. needed narrowing.

We note that there is no clear relation between quasi-termination
w.r.t. needed narrowing and related conditions in term rewriting.
Consider, for instance, the following TRS:

f(0, y) → y f(s(x), y) → f(x, s(y))

which is not nonincreasing, where0, s ∈ C andf ∈ D. This TRS
is trivially terminating w.r.t. rewriting since the first parameter of
functionf strictly decreases with each recursive call. However, it
is not quasi-terminating w.r.t. needed narrowing as witnessed by
the following (infinite) computation:

f(x, y) ;{x 7→s(x′)} f(x′, s(y))
;{x′ 7→s(x′′)} f(x′′, s(s(y)))
; . . .

Related notions like size-change termination [33] (adapted to TRSs
in [45]) are equally not useful for ensuring (quasi-)termination
w.r.t. needed narrowing, since they only ensure thatsomeparameter
decreases (but not all of them), which is not useful in our context
where all parameters may be unknown (i.e., free variables).Right-
linearity is an essential requirement even for the simplestfunctions.
Consider, for example, the following nonincreasing functions:

f(0, y) → y f(s(x), y) → f(x, y) g(x) → f(x, x)

where0, s ∈ C andf, g ∈ D. This is not a nonincreasing TRS
since functiong is not right-linear. Thus, quasi-termination w.r.t.
needed narrowing is not ensured:

g(x) ;id f(x, x) ;{x 7→s(x′)} f(x′, s(x′))
;{x′ 7→s(x′′)} f(x′′, s(s(x′′)))
; . . .

Clearly, the use ofneedednarrowing is also crucial, i.e., quasi-
termination for other narrowing strategies (e.g.,innermostnarrow-
ing) is not guaranteed. For instance, given the following quasi-
terminating TRS:

f(x) → g(h(x)) h(0) → 0
g(x) → x h(s(x)) → s(h(x))

needed narrowing is quasi-terminating while aninnermoststrategy
would produce the following non-quasi-terminating derivation:

f(x) ;id g(h(x)) ;{x 7→s(x′)} g(s(h(x′)))
;{x′ 7→s(x′′)} g(s(s(h(x′′))))
; . . .

The closest characterizations to ours have been presented by
Wadler [46] and Chin and Khoo [13]. Wadler introduced the notion
of treelessfunctions in order to ensure the termination ofdeforesta-
tion [46]. Treeless functions are a subclass of our nonincreasing
functions where, additionally, all function calls in the right-hand
sides of the rules can only have variable arguments. Chin andKhoo
[13] introduced the class ofnonincreasing consumersand proved
that any set of mutually recursive functions that are nonincreasing
consumers can be transformed into an equivalent set of treeless
functions, so that deforestation can be applied. This characteriza-
tion differs from ours mainly in two points. Firstly, Chin and Khoo
only require linear function calls in the right-hand sides of the rules

(rather than being linear the entire right-hand sides, as weimpose).
This relaxed definition, however, is not safe in our context.Con-
sider, e.g., the following nonincreasing consumers according to
Chin and Khoo [13]:

f(x) → c(g(x), x) g(s(x)) → g(x) h(c(s(x), y)) → x

where c, s ∈ C and f, g, h ∈ D. Here, given the initial term
h(f(x)), needed narrowing has an infinite derivation which is not
quasi-terminating:

h(f(x)) ;id h(c(g(x), x))
;{x 7→s(x′)} h(c(g(x′), s(x′)))
;{x′ 7→s(x′′)} h(c(g(x′′), s(s(x′′))))
; . . .

And, secondly, Chin and Khoo do not accept nested function calls
in the right-hand side of any program rule. In contrast, we accept ar-
bitrary (linear) terms in the right-hand sides of noncyclicfunctions,
which allows us to cope with a wider range of functions.

5. From Online to Offline NPE
The current formulation of the NPE scheme ensures termination
online (see, e.g., [1, 2, 4]), i.e., appropriate termination testsand
generalization operators are used during partial evaluation to guar-
antee that only a finite number of distinct terms (modulo vari-
able renaming) are computed. As mentioned before, this scheme
achieves significant optimizations but it is also very expensive (in
terms of both time and space consumption) and, thus, it does not
scale up well to realistic problems. In order to remedy this situa-
tion, in this section we introduce a faster NPE method which en-
sures terminationofflineby including a pre-processing stage based
on the notion of nonincreasing TRS.

In principle, a naive NPE method could restrict the source pro-
grams to nonincreasing TRSs and, then, apply neither termination
tests nor generalizations during partial evaluation sinceneeded nar-
rowing computations would be quasi-terminating (cf. Theorem 10).
This would give rise to a very fast NPE tool—only equality tests
modulo variable renaming would be required—but, unfortunately,
the class of acceptable programs would be too restrictive.

Therefore, we now consider the class of programs for which
NPE is originally defined: inductively sequential programs—a
much broader class of TRSs—and define an algorithm thatanno-
tatesthe expressions which may cause the non-quasi-termination
of needed narrowing computations. These annotations will be later
used by an extended needed narrowing relation in order togener-
alizeproblematic subterms. We letF• = F ∪ {•}, where• 6∈ F
is a fresh symbol. Given a TRSR, a termt is annotated by replac-
ing t by •(t). The following auxiliary functions will be useful to
manipulate annotated terms:

gen(x) = x if x ∈ V

gen(h(tn)) = h(gen(tn)) if h ∈ F , n > 0
gen(•(t)) = y wherey ∈ V is a fresh variable

i.e., given an annotated termt ∈ T (F•,V), the expression
gen(t) ∈ T (F ,V) returns a generalization oft by replacing anno-
tated subterms by fresh variables.

aterms(x) = ? if x ∈ V

aterms(h(tn)) =
Sn

i=1 aterms(ti) if h ∈ F , n > 0

aterms(•(t)) = {t} ∪ aterms(t)

Here, the expressionaterms(t) ⊆ T (F•,V) returns the set
of annotated subterms (possibly containing annotations) in t ∈
T (F•,V).



Let us illustrate the use of functionsgen andaterms with some
simple examples:

gen(f(x, g(h(y)))) = f(x, g(h(y)))
gen(f(x, •(g(h(y))))) = f(x, w)
gen(f(x, •(g(•(h(y)))))) = f(x, w)

aterms(f(x, g(h(y)))) = { }
aterms(f(x,•(g(h(y))))) = {g(h(y))}
aterms(f(x,•(g(•(h(y)))))) = {g(•(h(y))), h(y)}

The following definition introduces our transformation to annotate
inductively sequential programs. Intuitively speaking, we annotate
those arguments of the topmost operation-rooted subterms in the
right-hand sides of the rules that either contain defined function
symbols or break the nonincreasing property; then, every annotated
subterm is treated similarly to the original right-hand side (thus,
nested annotations are possible); finally, all repeated occurrences
but one of the same variable are annotated. Formally,

DEFINITION 11 (ann(R)). Let R = {li → ri | i = 1, . . . , k}
be an inductively sequential TRS overF . The annotated TRS,
ann(R), over F• is given by the set of rules{li → r′i | i =
1, . . . , k} wherer′i, i = 1, . . . , k, is computed as follows:

1. If root(li) is a noncyclic function, thenr′i is obtained fromri by
annotating all occurrences of the same variable but one (e.g.,
the leftmost one), so thatgen(r′i) is a linear term.

2. If root(li) is cyclic, thenr′i is obtained fromqs(li, ri) by anno-
tating the least number of variables such thatgen(t) becomes
linear for all t ∈ {qs(li, ri)}∪aterms(qs(li, ri)). The defini-
tion of auxiliary functionqs is shown in Fig. 1.

Intuitively speaking, auxiliary functionqs ignores constructor sym-
bols until an operation-rooted subtermf(t1, . . . , tn) is found.
Then, for each argumentti, it proceeds (by callingqs′) as follows:

• if ti is a constructor term and all variables fulfill the nonincreas-
ing property, thenti remains unchanged;

• otherwise, the considered subterm,ti, is annotated and the
process is restarted forti.

Trivially, for any nonincreasing TRSR, we haveann(R) = R.
Furthermore, ifR is an inductively sequential TRS so isann(R),
since the left-hand sides of the rules are not modified.

Note that Definition 11 is nondeterministic since it does not
fix which variable occurrence should not be annotated when there
are repeated occurrences of the same variable. In some cases, this
decision can dramatically affect the result of a partial evaluation
(see Sect 6.2). This situation could be improved in some cases by
allowing the programmer to choose the (static) variable that should
not be annotated.

EXAMPLE 12. Consider the following inductively sequential pro-
gramR:

f(0, y) → y
f(s(x), y) → g(x, f(x, s(y)))

g(x, y) → g(y, x)

wheref, g ∈ D and0, s ∈ C. The annotated TRS,ann(R), is as
follows:

f(0, y) → y
f(s(x), y) → g(x, •(f(x, •(s(y)))))

g(x, y) → g(y, x)

Observe that repeated occurrences ofx in the second rule should
not be annotated since

aterms(g(x,•(f(x, •(s(y)))))) = {f(x, •(s(y))), s(y)}

and, hence,gen(t) is linear for all

t ∈ {g(x, •(f(x, •(s(y))))), f(x, •(s(y))), s(y)}

i.e.,g(x,w1), f(x, w2), ands(y) are linear terms, wherew1 and
w2 are fresh variables.

Since partial computations are computed in the NPE scheme by
means of needed narrowing, we now extend this relation in order
to generalize annotated subterms (thus ensuring the termination of
the partial evaluation process).

DEFINITION 13 (generalizing needed narrowing).Let R be an
annotated inductively sequential TRS overF•. The generalizing
needed narrowing relation, in symbols , is defined as the least
relation satisfying

(needed narrowing)
s ;p,R,σ t

s σ t
if root(s) ∈ D ands ∈ T (F ,V)

(generalization)

t ∈ {s} ∪ aterms(s)

s • gen(t)
if root(s) ∈ D ands 6∈ T (F ,V)

(decomposition)

s = c(t1, . . . , tn) ∧ i ∈ {1, . . . , n}

s C ti

if root(s) ∈ C

A generalizing needed narrowing derivations  ∗
σ t is thus com-

posed of proper needed narrowing steps (for operation-rooted
terms with no annotations), generalizations (for annotated terms),
and constructor decompositions (for constructor-rooted terms with
no annotations), whereσ is the composition of the substitutions la-
beling the proper needed narrowing steps. Note that, since needed
narrowing only computes ahead normal form(i.e., a variable or
a constructor-rooted term), the decomposition rule is required to
ensure that all inner functions (if any) are eventually partially eval-
uated. Some examples of generalizing needed narrowing computa-
tions can be found in the next section.

We also note that our generalization step is somehow equivalent
to the splitting operation ofconjunctive partial deduction(CPD) of
logic programs [17]. While CPD considers conjunctions of atoms,
we deal with terms possibly containing nested function symbols.
Therefore, flattening a nested function call is basically equivalent
to splitting a conjunction (in both cases some information is lost).

The next result shows the correctness of the annotation algo-
rithm.

THEOREM14. Let R be an inductively sequential TRS andt a
linear term. Every generalizing needed narrowing derivation for
t in ann(R) is quasi-terminating.

6. The Offline NPE Method in Practice
In this section, we first describe the complete offline NPE method
based on annotated programs and generalizing needed narrowing.
Then, we illustrate the new scheme by means of some selected ex-
amples. Finally, we provide a summary of the experiments con-
ducted with a prototype implementation of the method which show
the advantages of our approach in comparison with the previous
online NPE method.

6.1 Overview of the Offline NPE Method

In our offline approach to NPE, given an inductively sequen-
tial TRS R, the first stageconsists in computing the annotated
TRS:ann(R). Then, thesecond stage—the proper partial evalu-
ation—takes the annotated TRS,ann(R), together with an initial



qs(l, t) =

8<: t if t ∈ V is a variable
c(qs(l, tn)) if t = c(tn), c ∈ C, andn > 0
f(t′n) if t = f(tn), f ∈ D, andt′i = qs′(l, ti) for all i = 1, . . . , n, n > 0

qs′(f(pn), t) =

�
t if t ∈ T (C,V) is a constructor term anddv(pi, x) > dv(t, x) for all x ∈ Var(pi), i = 1, . . . , n
•(qs(f(pn), t)) otherwise

Figure 1. Auxiliary functionsqs andqs′

(linear) term,t, constructs the (finite) generalizing needed nar-
rowing tree fort in ann(R), and extracts the residual—partially
evaluated—program.

Essentially, residual programs are extracted by producinga so-
called resultant, σ(s) → rann(t), for each proper needed nar-
rowing steps  σ t in the considered generalizing needed nar-
rowing tree, where functionrann simply removes the occurrences
of “•” in a term. In general, however, the left-hand sides of these
rules need not be of the formf(s1, . . . , sn), wheresi are construc-
tor terms, since they may contain nested defined function symbols.
Therefore, a renaming of terms is often mandatory. The following
definitions from [5] formalize the notion of renaming:

DEFINITION 15 (independent renaming [5]).An independent re-
namingρ for a set of termsT is a mapping from terms to terms
defined as follows: for all termt ∈ T ,

• ρ(t) = t if t = f(xn), wheref ∈ D and xn are different
variables, and

• ρ(t) = ft(xn), otherwise, wherexn are the distinct variables
of t in the order of their first occurrence andft 6∈ D is a fresh
function symbol.

Observe that function calls whose arguments are different variables
are not renamed since it is not necessary.

EXAMPLE 16. Consider the set of terms

T = {f(x, y), g(h(x), y), s(c(x), x)}

wheref, g, h, s ∈ D are defined functions andc ∈ C is a con-
structor symbol. Then, the following mappingρ is an independent
renaming forT :

ρ = { f(x, y) 7→ f(x, y),
g(h(x), y) 7→ g′(x, y),
s(c(x), x) 7→ s′(x) }

Basically, given the annotated programann(R) and a linear term
t, the partial evaluation stage proceeds by constructing thegeneral-
izing needed narrowing tree fort in ann(R), where, additionally,
a test is included to check whether a variant of the current term has
already been computed and, if so, stop the derivation. The quasi-
termination of generalizing needed narrowing computations (The-
orem 14) guarantees that the tree thus constructed is finite.Once
the tree is built, we compute an independent renamingρ for the set
of terms{s | s σ t}, i.e., for the terms to which a proper needed
narrowing step is applied. While the mappingρ suffices to rename
the left-hand sides of resultants, the right-hand sides require a more
elaborated mapping,renρ, thatrecursivelyreplaces each call in the
term by a call to the corresponding renamed function. Formally,

DEFINITION 17 (renaming mapping [5]).Let T be a finite set of
terms andρ an independent renaming ofT . Given a terms, the

(nondeterministic) mappingrenρ is defined as follows:

renρ(s) =

8>>>><>>>>: s if s ∈ V

c(renρ(tn)) if s = c(tn), c ∈ C, and n > 0

θ′(ρ(t)) if there exists a termt ∈ T
such thats = θ(t) andθ′ =
{x 7→ renρ(θ(x)) | x ∈ Dom(θ)}

EXAMPLE 18. Consider the set of termsT and the independent
renaming of Example 16. Given the termg(h(x), f(a, s(c(b), b))),
wherea, b ∈ C are constructor symbols, functionrenρ returns the
renamed termg′(x, f(a, s′(b))).

Now, the offline NPE method can be formalized as follows:

DEFINITION 19 (offline NPE).LetR be an inductively sequential
TRS andf(xn) a linear term4 with f ∈ D. The offline NPE ofR
w.r.t.f(xn) is obtained as follows:

1. First, we compute the annotated TRSann(R).
2. Then, we construct a (finite) generalizing needed narrowing

tree, τ , for f(xn) in ann(R), where each derivation stops
whenever it reaches a constructor term or an operation-rooted
term that is a variable renaming of some previous term in the
same (or a previous) derivation.

3. Finally, the residual TRS contains a (renamed) rule

σ(ρ(s)) → renρ(rann(s′))

for each proper needed narrowing steps  σ s′ in τ . Here,ρ
is an independent renaming of{s | s σ s′ ∈ τ}.

For simplicity, in the definition above, we extract a resultant from
each single needed narrowing step. Clearly, more refined algo-
rithms for extracting resultants from a generalizing needed narrow-
ing tree are possible; e.g., in many cases, one can extract a single
resultant associated to asequenceof narrowing steps rather than to
a single narrowing step. In fact, the implemented system follows
such a refined strategy.

Now we state the correctness and termination of this partial
evaluation method.

THEOREM20. LetR be an inductively sequential TRS andf(xn)
a linear term withf ∈ D. The algorithm of Def. 19 always
terminates computing an inductively sequential TRSR′ such that
needed narrowing computes the same results forf(xn) in R and
in R′.

6.2 Selected Examples

In this section, we illustrate the offline NPE method presented so
far by means of some selected examples.

4 This is not a restriction since one can consider an arbitraryterm t by
simply adding a new function definitionf(xn) → t to R, wherexn are
the different variables oft.
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Figure 2. Generalizing needed narrowing tree formain(x)

Program specialization. Our first example illustrates the use of
the offline NPE method for program specialization. Considerthe
following TRS which has been annotated according to Def. 11:

main(x) → pow(x, s(s(0)))
pow(x, 0) → s(0)

pow(x, s(n)) → x × •(pow(x,n))
0 × m → 0

s(n) × m → m + •(n × m)
0 + m → m

s(n) + m → s(n + m)

Given the initial termmain(x), we construct the generalizing
needed narrowing tree depicted in Fig. 2. Then, the associated
residual TRS contains the following rules:

main(x) → pow2(x)
pow2(x) → x × pow1(x)
pow1(x) → x × pow0(x)
pow0(x) → s(0)

together with the original definitions of “×” and “+”. The consid-
ered independent renaming is as follows:

ρ = { main(x) 7→ main(x),
pow(x, s(s(0))) 7→ pow2(x),

pow(x, s(0)) 7→ pow1(x),
pow(x, 0) 7→ pow0(x),

x × y 7→ x × y,
x + y 7→ x + y }

Furthermore, these four rules can easily be simplified by using a
standard post-unfoldingtransition compression[32] as follows:

main(x) → x × (x × s(0))

since functionspow2, pow1, andpow0 are only intermediate func-
tions (i.e., there is only one call to any of them). This simple exam-
ple shows that, despite the annotation of some subterms, thespe-
cialization power of the original (online) NPE is not lost inour
offline approach.

Deforestation. Our second example is concerned with Wadler’s
deforestationto eliminate intermediate data structures [46]. Here,

lenapp(x, y)

id
��

len(app(x, y))
{x 7→[ ]}

wwoooooooo {x 7→z:zs}

''OOOOOOOO

len(y)
{y 7→[ ]}

����
��

�� {y 7→w:ws}

��?
??

??
len(z : app(zs, y))

id
��

0 s(len(ws))

C
��

s(len(app(zs, y)))

C
��

len(ws) len(app(zs, y))

Figure 3. Generalizing needed narrowing tree forlenapp(x, y)

we consider the following TRSR:

lenapp(x, y) → len(app(x, y))
len([ ]) → 0

len(x : xs) → s(len(xs))
app([ ], y) → y

app(x : xs, y) → x : app(xs, y)

wherelenapp(x, y) computes the length of the concatenation of
lists x andy. This function is not efficient since an intermediate
data structure (the concatenation ofx andy) is built. SinceR is
already nonincreasing, we have thatann(R) = R. Given the ini-
tial term lenapp(x, y), we construct the generalizing needed nar-
rowing tree depicted in Fig. 3. By using the following independent
renaming:

ρ = { lenapp(x, y) 7→ lenapp(x, y),
len(app(x, y)) 7→ la(x, y),

len(y) 7→ len(y),
len(z : app(zs, y)) 7→ la2(z, zs, y) }

the associated residual TRS is as follows:

lenapp(x, y) → la(x, y)
la([ ], y) → len(y)

la(z : zs, y) → la2(z, zs, y)
la2(z, zs, y) → s(la(zs, y))

together with the original definition of functionlen. As in the
previous example, a simple post-unfolding transformationwould
eliminate the intermediate functionla2. Note that the residual TRS
is completely deforested (i.e., no intermediate list is built).

Higher-order removal. Our last example consist in the elimina-
tion of higher-order functions. In some programming languages,
higher-order features aredefunctionalized[42, 47], i.e., they are
expressed by means of a first-order program with an explicit ap-
plication operator.5 For instance, the following TRS, which has al-
ready been annotated according to Def. 11, includes the definition
of the well-known higher-order functionmap:

minc(x) → map(inc0, x)
map(f, [ ]) → [ ]

map(f, x : xs) → apply(•(f), x) : map(f, xs)
inc(x) → s(x)

apply(inc0, x) → inc(x)

5 As in the language Curry, we do not allow the evaluation of higher-order
calls containing free variables as functions (i.e., such calls aresuspendedto
avoid the use of higher-order unification). A more flexible strategy can be
found in [10].
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Figure 4. Generalizing needed narrowing tree forminc(x)

Here, we used the explicit application operatorapply together with
the partial function applicationinc0 (a constructor symbol).

Observe that, in this example, we have annotated the leftmost
occurrence of variablef in the third program rule. This is essential
to obtain a first-order definition formap(inc0, x). Indeed, by an-
notating the second occurrence of variablef , the original program
is basically returned by the partial evaluator.

Given the initial termminc(x), the generalizing needed nar-
rowing tree of Fig. 4 is built. Note thatapply(w,y) is not further
reduced because, as mentioned before, this higher-order call con-
tains a free functional variable and, thus, its evaluation suspends
(which means that the original definition ofapply should also be
included in the residual program).

Given the following independent renaming:

ρ = { minc(x) 7→ minc(x),
map(inc0, ys) 7→ mapinc(ys),

inc(y) 7→ inc(y),
apply(w,y) 7→ apply(w, y) }

the residual TRS computed by offline NPE is as follows:

minc(x) → mapinc(x)
mapinc([ ]) → [ ]

mapinc(y : ys) → apply(inc0, y) : mapinc(ys)
inc(y) → s(y)

apply(inc0, y) → inc(y)

Finally, by using a simple post-unfolding simplification weget the
following TRS:

minc(x) → mapinc(x)
mapinc([ ]) → [ ]

mapinc(y : ys) → s(y) : mapinc(ys)

where the explicit application operatorapply is no longer needed.
We note that this transformation often achieves significantspeedups
in practice (see, e.g., [1]).

6.3 Experimental Evaluation

The offline NPE method outlined in Sect. 6.1 has been imple-
mented in the declarative multi-paradigm language Curry [21].
The sources of the partial evaluator and a detailed explanation
of the benchmarks considered below are publicly available from
http://www.dsic.upv.es/users/elp/german/offpeval/.

The offline NPE tool is purely declarative and accepts Curry
programs containing additional features like higher-order func-
tions, several built-in functions, etc.

Table 1 shows the results of some benchmarks:

ackermann: This is the well-known Ackermann’s function spe-
cialized for an input argument greater than or equal to 10.

allones: The aim of this benchmark is to automatically produce
a new function that transforms all elements of a list into “1”
by first computing the length of the original list and, then,
constructing a new list of the same length whose elements are
1. This is a typical deforestation example [46].

fliptree: Another typical deforestation example. Here, the aim
is to flip a tree structure twice so that the original tree is ob-
tained; no static values are provided.

foldr.allones: The goal of this benchmark is the specializa-
tion of a function that concatenates a number of lists and, then,
transforms all elements into1. The original function is defined
by means of the higher-order combinatorfoldr . The specializa-
tion considers that one of the lists is known.

foldr.sum: In this benchmark, we produce a specialized function
to sum the elements of a list (with a given prefix) by using the
higher-order functionfoldr .

fun inter: This benchmark consists in the specialization of sim-
ple functional interpreter for a given program.

gauss: Our goal in this benchmark is the specialization of the
well-known Gauss’ function to consider natural numbers greater
than or equal to 5.

kmp matcher: A naive pattern matcher specialized for a given
pattern. This benchmark is known as the “KMP-test” [15].

power: The specialization shown in Section 6.2 for a fixed expo-
nent of 6.

For each benchmark, we show the size (in bytes) of each program
(codesize), the time for executing the previousonline NPE tool
(onlineNPE), the time for executing the newofflineNPE tool de-
scribed so far (offlineNPE), where we show both the time for
analyzing and annotating the original program (ann) and for per-
forming partial computations and extracting the residual program
(mix), as well as the speedups achieved by the programs special-
ized with each technique (speedup1 andspeedup2); speedups are
given byorig/spec, whereorig andspecare the absolute run times
of the original and specialized programs, respectively. Times are
expressed in milliseconds and are the average of 10 executions on
a 2.4 GHz Linux-PC (Intel Pentium IV with 512 KB cache). Run-
time input goals were chosen to give a reasonably long overall time.
The programs were executed with the Curry to Prolog compilerof
PAKCS [27].

As it can be seen in Table 1, we have reduced the partial eval-
uation time to approximately 25% of the original NPE tool, which
means that our main goal has been achieved. As for the speedups,
we note that most of the benchmarks werespecializationprob-
lems (rather thanoptimizationproblems), which explains the good
results achieved by our offline NPE tool. Let us remark, how-
ever, that the new method is not able to pass the so-called “KMP-
test” [15] (see benchmarkkmp matcher). There are two main
requirements for passing the KMP test: a good propagation of
information and a powerful termination analysis that avoids too
much generalization. While our offline scheme propagates infor-
mation as well as the previous online approach (which does pass
the KMP test), our (implicit) termination analysis is much simpler.
It would be interesting to check whether a mixed online/offline
approach could be useful here. Our partial evaluator deals well
with arithmetic functions (benchmarkackermann), with the sim-
plification of higher-order calls (benchmarksfoldr.allones and
foldr.sum), and with a simple functional interpreter (benchmark
fun inter), where speedups are not shown since the execution
time of the specialized programs is zero (i.e., the input program to
the interpreter has been fully evaluated).



Table 1. Benchmark results
benchmark codesize onlineNPE speedup1 offlineNPE speedup2

(bytes) (ms.) (online) ann (ms.) mix (ms.) (offline)

ackermann 1496 20290 1.006 100 590 4.750
allones 1191 180 1.065 50 200 1.050
fliptree 1861 1940 0.985 100 240 0.977
foldr.allones 2910 3633 1.024 120 430 2.034
foldr.sum 3734 6797 1.311 170 3340 1.293
fun inter 4266 28955 — 160 5190 —
gauss 1241 11090 1.040 100 757 1.013
kmp matcher 3222 11670 5.346 157 9410 1.219
power 1693 160 3.087 110 280 1.012
Average 2402 9413 1.858 119 2271 1.668

7. Related Work and Discussion
Despite the relevance of narrowing as a symbolic computation
mechanism, we find in the literature very few works devoted to
analyze its termination. For instance, Dershowitz and Sivakumar
[20] defined a narrowing procedure that incorporates pruning of
some unsatisfiable goals. Similar approaches have been presented
by Chabin and Réty [12], where narrowing is directed by a graph
of terms, and by Alpuente et al. [3], where the notion ofloop-
checkis introduced. Also, Antoy and Ariola [8] introduced a sort
of memoization technique for functional logic languages sothat, in
some cases, a finite representation of an infinite narrowing space is
achieved. All these techniques areonline, since they use informa-
tion about the term being narrowed. On the other hand, Christian
[14] introduced a characterization of TRSs for which narrowing
terminates. Basically, it requires the left-hand sides to be flat, i.e.,
all arguments are either variables or ground terms. None of these
works consideredquasi-terminationnor presented a method to an-
notate TRSs so that termination is enforced.

Other related works come from the extensive literature on par-
tial evaluation. Within the logic programming paradigm, Decorte
et al. [18] studied the quasi-termination oftabled logic programs
in order to port specialization techniques from “standard”logic
programs to tabled ones. They introduced the characterization of
quasi-acceptableprograms and proved that this class of programs
guarantees quasi-termination. However, determining whether a
program is quasi-acceptable is not easy to check (the authors
sketched how standard termination analysis could be extended).

Within the functional setting, Holst [28] introduced a sufficient
condition for quasi-termination in order to ensure the termination
of partial evaluation (which was then used by Glenstrup and Jones
[24] to define a BTA algorithm ensuring the termination of offline
partial evaluation). Holst also presented a static analysis based on
abstract interpretation in order to check the sufficient condition for
quasi-termination. Similarly to [18], the presented conditions are
based on the semantics and, thus, are generally difficult to analyze.

In contrast, our approach relies on a simplesyntacticcharacter-
ization which is generally less precise but very easy to check. In
fact, the closest approaches to our work are the syntactic character-
izations given by Wadler [46] and Chin and Khoo [13], which have
been already discussed in Sect. 4.

In summary, we have introduced a novel characterization for
TRSs that ensures the quasi-termination of needed narrowing
computations. This is a difficult problem of independent interest
that has not been tackled before. Since the considered classof
TRSs is too restrictive, we then considered inductively sequential
programs—a much broader class—and introduced an algorithm
that annotates those subterms which may cause the non-quasi-
termination of needed narrowing. We also introduced a general-
izing extension of needed narrowing which is guided by program

annotations. Finally, we described how our new developments can
be used to define a correct and terminating NPE scheme that en-
sures termination offline. Preliminary experiments conducted on
a wide variety of programs are encouraging and demonstrate the
usefulness of our approach.

Although we considered inductively sequential systems as pro-
grams andneeded narrowing[9] as operational semantics, our de-
velopments could easily be extended tooverlapping inductively
sequential systems and inductively sequential narrowing [7]. The
main difference is that overlapping systems allow the use ofan ex-
plicit disjunction operator which introduces additional don’t-know
nondeterminism. In this context, introducing a function with a dis-
junction in the right-hand side, e.g.,f(x) → t1 or t2, is basically
equivalent to writing the following single rules:

f(x) → t1 f(x) → t2

Since our termination characterization mainly depends on how the
function parameters change from the left- to the right-handside of a
rule, the treatment of disjunctions in overlapping systemspresents
no additional problems; basically, a disjunction operatorcould be
considered as a constructor symbol.

Positive supercompilation [44] shares many similarities with
NPE sincedriving, the symbolic computation mechanism of posi-
tive supercompilation, is equivalent to needed narrowing on com-
parable programs. Therefore, our results could easily be transferred
to the setting of positive supercompilation.

Regarding future work, one of the most recent approaches to
ensure the (quasi-)termination of functional programs is based on
size-change graphs[33] (which have been already used in the con-
text of partial evaluation in [31]). An interesting topic for future
work is thus the use of size-change graphs for defining more pre-
cise—though computationally more expensive—annotation algo-
rithms. On the other hand, our algorithm for annotating TRSsis in-
dependent of the term considered for partial evaluation. This means
that a TRS only needs to be annotated once and, then, it can be par-
tially evaluated w.r.t. different terms without computingnew anno-
tations. However, it also means that we are not exploiting the known
structure of the term considered for partial evaluation. Hence, it
would be interesting to study the combination of our first stage
with traditional binding-time analysis. Here, our functional logic
setting poses new demands for binding-time analysis due to the use
of logical variables and nondeterministic functions. For this pur-
pose, we plan to investigate techniques for the binding-time analy-
sis of logic programs within thepartial deductiontechnique (like,
e.g., [16, 35]).
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