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Abstract

Narrowing-driven partial evaluation is a powerful techrédor the
specialization of (first-order) functional and functioradjic pro-
grams. However, although it gives good results on smalljamog,
it does not scale up well to realistic problems (e.qg., intetgr spe-
cialization). In this work, we introduce a faster partiabmation
scheme by ensuring the termination of the proad#fie For this
purpose, we first characterize a class of programs whichuasi-
terminating i.e., the computations performed with needed narrow-
ing—the symbolic computation mechanism of narrowing-elniv
partial evaluation—only contain finitely many differentries (and,
thus, partial evaluation terminates). Since this classiiteqestric-
tive, we also introduce an annotation algorithm for a broatkess
of programs so that they behave like quasi-terminating narog
w.r.t. an extension of needed narrowing. Preliminary expents
are encouraging and demonstrate the usefulness of ouraagbpro

Categories and Subject Descriptors F.3.2 [Logics and Mean-
ings of Programp Semantics of Programming Languages—patrtial
evaluation, program analysis; .2 2fificial Intelligencd: Auto-
matic Programming—program transformation

General Terms algorithms, performance, theory

Keywords narrowing, quasi-termination, offline partial evaluation

1. Introduction

Given a program and an initial call (usually containing sdmewn
data), the aim of a partial evaluator is the construction otw,
residual program specialized for this call. The essentiaigonent
of many partial evaluators is a technique to compufieite repre-
sentation of the—generallgfinite—computation space for the ini-
tial call, so that a (hopefully more efficient) residual prang can
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be extracted from this representation. For instance, gavemo-
gram P and an initial function call f(¢, z), wheret is a known
input data andr is a free variable, a trivial partial evaluator may
simply return the residual progra® = P U {fi(z) = f(t,z)}
containing a specialized versighof function f. While the correct-
ness of this trivial partial evaluator is obvious, it is atdear that
no efficiency improvement can be achieved. A challenge itigdar
evaluation is the definition of techniques for constructiogtrivial
yet finite representations of the computation space of arprogo
that efficient residual programs can be extracted.

Narrowing-driven partial evaluation (NPE) is a powerfuksp
cialization technique for rewrite systems [2], i.e., foetfirst-
order component of many functional (logic) languages likeskell
[40] or Curry [21]. Higher-order features can still be mastel
by using an explicit application operator, i.e., by defimualiza-
tion [42]; this strategy is used in several implementatiohtazy
functional logic languages, like the Portland-AachentiQairry
System (PAKCS [27]) and the Munster Curry Compiler (MCC
[38]). Although NPE can be seen as a traditional partialiatidn
scheme for program specialization, it can also achieve powe
erful optimizations like deforestation [46], eliminatiarf higher-
order functions (represented in a first-order setting byiaetion-
alization), etc. A narrowing-driven partial evaluator igiently in-
tegrated into the PAKCS environment for Curry (an experitaen
evaluation can be found in [1]).

At the core of the NPE scheme we find a method to construct
a finite representation of a (usually) infinite computatipace. To
be precise, given a rewrite systé&fand a termt, NPE constructs
a finite representation of all possible reductionstefand any of
its instances if it contains variables—iR, and then extracts a
new, often simpler and more efficient, rewrite system. Sintgy
contain variables, some form sfmbolic computatiois required.
In NPE, arefinement afarrowing[43] is used to perform symbolic
computations, being needed narrowing [9] the strategypitestents
better properties (as shown in [5]). In general, the namgvgipace
of a term may be infinite. However, even in this case, NPE nifly st
terminate when the original programggasi-terminating19] w.r.t.
the considered narrowing strategy, i.e., when only finitelgny
different terms—modulo variable renaming—are computee T
reason is that the (partial) evaluation of multiple occoces of
the same term (modulo variable renaming) in a computatiorbea
avoided by inserting a call to some previously encounteeethmt
(a technigue known aspecialization-point insertiom the partial
evaluation literature).

Partial evaluators fall in two main categorieslineandoffline,
according to the time when termination issues are addre€yed
line partial evaluators are usually more precise since rivdoe-
mation is available. For instance, the original NPE schentedh
follows the online approach) considers a variant of the Kalis



tree condition called “homeomorphic embedding” [34] to wes
the termination of the process [4]: if a term embeds someiquev
term in the same narrowing computation, some form of geizeral
tion—usually themost specific generalizatiaperator—is applied
and partial evaluation is restarted with the generalizetdseHow-

ever, this extra precision comes at a cost: the homeomogphic
bedding tests, together with the associated generalimatinake
NPE very expensive and, thus, it does not scale up well téstial
problems like interpreter specialization [30] or compieneration
by self-application [22].

In this work, we propose a faster NPE scheme by ensuring ter-

mination offline Offline partial evaluators usually proceed in two
stages: the first stage returns a program that includes aion to
guide the partial computations (e.g., to identify thosecfion calls
that can be safely unfolded); then, the second stage—theepro
partial evaluation—only needs to obey the annotations tnd,

it is generally much faster than online partial evaluattet us
remark that, in the NPE framework, the so-called staticédyic
distinction is hardly present. Indeed, in a functional togetting,
one can require the (nondeterministic) evaluation of terargain-
ing free variables at runtime. Therefore, in contrast tditianal
binding-time analysis, the first stage of our offline paréahlua-
tion scheme ensures termination even if all arguments arardic
(i.e., unknown).

Contributions. The main contributions of this work are the fol-
lowing. First, we identify a class of quasi-terminating rée/ sys-
tems, callednonincreasing by providing a sufficient condition.
This is an interesting result on its own since no previougatia
terization appears in the literature. Unfortunately, tass is too
restrictive and, thus, we also introduce an algorithm tiet$ arin-

ductively sequentigbrogram—a much broader class—and returns
an annotatedprogram. Then, we define an extended needed nar-

rowing relation,generalizing needed narrowingn which anno-
tated subterms are generalized. We prove that computatitths
this relation are quasi-terminating for annotated incwtyi se-
quential programs and, thus, it forms an appropriate basieri-
suring termination of NPE offline. Finally, we explain howraew
developments can be integrated into the NPE scheme and ipsove
correctness and termination. Preliminary experimentk aitroto-
type implementation of the new partial evaluation methaosl ear-
couraging and demonstrate the usefulness of our approach.

Plan of the paper. This paper is structured as follows. Section 2
presents an informal overview of our approach to the paetial-
uation of functional (logic) programs. Then, after prowiglisome
preliminary definitions in Sect. 3, we introduce the chageza-
tion of nonincreasing programs in Sect. 4. Section 5 presant
algorithm for annotating inductively sequential programegether
with an extension of needed narrowing that exploits progaano-
tations to ensure quasi-termination. Section 6 descri®sdheme

of the complete offline NPE method and includes a summary of

the experimental evaluation. Finally, Sect. 7 includesragarison
with related work and concludes. Proofs of technical restdin be
found in [41].

2. Partial Evaluation

In this section, we present an informal overview of our apphoto
the partial evaluation of functional (logic) programs.

In our setting, the input for the partial evaluator are a r@wr
system—a typical first-order functional program—and ariahi
function call, which usually contains some known data (the s
called static data). Consider, for instance, the following rewrite

system:

inc(x) —
add(zero,y) —
add(succe(z),y) —

add(succ(zero), x)

succ(add(z,y))

where natural numbers are built froaero and suce. We can
partially evaluate this program w.r.t. the initial tegnx(z) in order
to obtain a direct definition for functioinc (i.e., by specializing
functionadd to have a fixed first argumeasticc(zero)).

Both online and offline partial evaluators should constsarhe
form of symbolic execution tredt is symbolicbecause terms may
contain free variables and, thus, a non-standard, symbgécu-
tion mechanism if often required. Furthermore, we geeastruc-
ture since the evaluation of function calls containing fragables
generally require nondeterministic evaluation steps.

The construction of such a symbolic execution tree is ekptic
some partial evaluation techniques (like, e.g., positiveescom-
pilation [44] or narrowing-driven partial evaluation [2]n some
other techniques, the construction of a symbolic executiea is
only implicit. For instance, many partial evaluators fonétional
programs (see, e.g., [32]) include an algorithm that iteeit (1)
takes a function call, (2) performs some symbolic evalumsti@nd
(3) extracts from the partially evaluated expression th@spend-
ing function calls—the so-callesuiccessorsf the initial function
call—to be processed in the next iteration of the algoritBinserve
that, if we add an arrow from each term to its set of success@s
would also obtain a sort of symbolic execution tree.

In order to perform symbolic computations in a functionat-co
text, an extension of the standard semantics is requireglvfduat-
ing terms with free variables. Here, the choicenafrowing[43] as
symbolic computation mechanism arise naturally sincentlnoes
functional reductions with the instantiation of free vales (see
the next section for a formal definition). Moreover, in th&isg of
functional logic programming, the same operational ppleican
be used for performing both standard and symbolic compmnsti
[2] (similarly to the partial evaluation of logic programshere
SLD-resolution is used for both standard and symbolic cdapu
tions [36]).

For instance, the symbolic execution tree for the initidl ca
inc(x) w.r.t. the program above is as follows (the selected functio
call is underlined):

Here, no instantiation of free variables was necessaryetbtiee,
we get a deterministic evaluation. The associated resjatogram
can easily be extracted from the root-to-leaf computatiothe
symbolic execution tree. In the example above, we get thglesin
rule

inc(x) — suce(x)

In practice, partial evaluators often include a sort meitinn
technique to avoid the repeated evaluation of the same tad-(
ulo variable renaming). Consider the following definition:

inc' (z) — add(z,succ(zero))



Although the symbolic execution tree fatc’ () is infinite:

inc (z)

J

add(x, succ(zero))

{w:y \{Qw(w}

succ(zero) succ(add(y, succ(zero)))

00

a partial evaluator would terminate in this example sinesftimc-
tion call add(y, succ(zero)) is a variant ofadd(zx, succ(zero)).
In the tree above, the arrows issuing fraad(x, succ(zero)) are
labeled with the computed substitution by narrowing, ieesub-
stitution such that, when applied t@ld(z, succ(zero)), allows a
reduction step with the standard semantics. Here, the iassdc
residual program is the following:

inc'(z) —
add(zero, succ(zero))
add(succ(y), succ(zero))

add(x, succ(zero))
succ(zero)
succ(add(y, succ(zero)))

—
—

In this case, we have a residual rule associated to the faktation
step and two residual rules associated to each nondetstimistep
(here, the associated bindings are applied to the left-kates of
the rules).

The finiteness of the symbolic execution tree can be guagdnte
when symbolic computations ageasi-terminatingi.e., when only
finitely many different terms—modulo variable renaming-e-ab-
tained. Note that, even if the considered program is tertimiga
w.r.t. the standard semantics, the symbolic execution am@sm
may give rise to both non-terminating and non-quasi-teatirig
computations. Consider the following function definition:

double(x)
prod(zero,y)
prod(succ(z),y)

—  prod(z, succ(succ(zero)))
zero

add(prod(z,y),y)

Given the initial calldouble(x), the associated symbolic tree is in-
finite (we usesucc?(zero) as a shorthand faruce(succ(zero))):

—
—

double(x)

!

prod(z, succ? (zero))

{z—zero} \‘QCC(M}
zero add(prod(y, succ?(zero)), succ?(zero))

{yHy

add(zero, succ®(zero))

/

succ®(zero)  add(add(prod(z, succ® (zero)), succ®(zero)))

{y—succ(z)}

00

In order to always ensure the finiteness of symbolic exeotut&es,

one should considergeneralizatioroperation on terms. The deci-
sion on which terms should be generalized can be taken in-a pre
processing stage (the case of offline partial evaluatiorjusing
partial evaluation itself (as in online partial evaluajio@nline par-

tial evaluators are usually more precise since more inftomas

available for deciding whether generalization is necgssamot.
In contrast, offline partial evaluators are less precisegeutrally
much faster since the partial evaluation stage should ailgw
the annotations given by a pre-processing analysis (theaked
binding-time analysis).

In the example above, termination can be guaranteed by -gener
alizing the second call to functigirod as follows:

double(z)

}

prod(z, succ? (zero))

{z+—>zero \Qucc(y)}
zero add(‘ prod(y, succ®(zero)) ‘, succ®(zero))

— N

add(w, succ®(zero)) prod(y, succ® (zero))

{w:y \{RSILCC(Z)}

succ? (zero) succ(add(z, succ®(zero)))

Now, the symbolic execution tree is kept finite since all #a&ves
are values (i.e., they do not contain function calls, like-o and
succ®(zero)) or contain a function call that is a variant of a previ-
ous function call in the tree (the casepofod(y, succ®(zero)) and
add(z, succ? (zero)), which are variants gbrod(x, succ?®(zero))
andadd(w, succ®(zero)), respectively).

From this symbolic execution tree, the following residugd-p
gram can be extracted:

double(x) — prod(z,succ®(zero))
prod(zero, succ®(zero)) —  zero
prod(succ(y), succ®(zero)) —  add(prod(y, succ®(zero)))
add(zero, succ®*(zero)) —  succ®(zero)
add(succ(z), succ®(zero)) —  succ(add(z, succ®(zero)))

In the remainder of this paper, we present a systematic apprio
theoffline partial evaluation of inductively sequential systems.

3. Foundations

Term rewriting [11] offers an appropriate framework to miode
the first-order component of many functional (logic) pragming
languages. Therefore, in the remainder of this paper we follow the
standard framework of term rewriting for developing ourules

3.1 The Source Language

A set of rewrite rules (or oriented equations)— r such that
[ is a nonvariable term and is a term whose variables appear
in [ is called aterm rewriting systen{TRS for short); termd
andr are called the left-hand side and the right-hand side of the
rule, respectively. Given a TRB over a signaturer, the defined
symbolsD are the root symbols of the left-hand sides of the rules
and theconstructorsareC = F \ D. We restrict ourselves to
finite signatures and TRSs. We denote the domain of terms and
constructor termby 7 (F,V) and7 (C, V), respectively, wher®
is a set of variables wittF N Y = &.

A TRSR is constructor-basedf the left-hand sides of its rules
have the formf(s1,...,s.) wheres; are constructor terms, i.e.,
s; € T(C,V), foralli =1,...,n. The set of variables appearing
in atermt is denoted byar(t). Atermt islinear if every variable
of V occurs at most once ih R is left-linear (resp. right-linear) if

1 Nevertheless, higher-order features can be modeled by asirexplicit
application operator, i.e., by defunctionalization [42].



I (resp.r) is linear for all ruled — r € R. Thedefinitionof f in
R is the set of rules iR whose root symbol in the left-hand side
is f. Afunction f € D is left-linear (resp. right-linear) if the rules
in its definition are left-linear (resp. right-linear).
The root symbol of a ternt is denoted byroot(t). A term
t is operation-rooted(resp. constructor-rootedl if root(t) € D
(resp.root(t) € C). As it is common practice, positionp in a
termt is represented by a sequence of natural numbers, where
denotes the root position. Positions are used to addressties of
a term viewed as a tree}, denotes thesubtermof ¢ at position
p and t[s], denotes the result afeplacing the subterni|, by
the terms. A term ¢ is ground if Var(t) = @. Atermt is a
variant of term¢’ if they are equal modulo variable renaming. A
substitutiono is a mapping from variables to terms such that its
domainDom(c) = {z € V | z # o(x)} is finite. The identity
substitution is denoted bid. A substitutiono is constructor if
o(z) is a constructor term for alt € Dom(c). Term¢’ is an
instanceof term¢ if there is a substitutiom with ¢’ = o(¢). A
unifier of two termss andt is a substitutiorr with o(s) = o(¢). In
the following, we writeo,, for thesequence of objects, .. ., on.
Inductively sequential TRSs [6] are a subclass of leftdine
constructor-based TRSs. Essentially, a TRBdsictively sequen-
tial when all its operations are defined by rewrite rules thayrec
sively, make on their arguments a case distinction anabgowa
data type (or structural) induction. Inductive sequeittias not a
limiting condition for programming. In fact, the first-ondeompo-
nent of many functional (logic) programs written in, e.gasHell,
ML or Curry, are inductively sequentialAlso, the class of induc-
tively sequential programs provides for optimal compuotagi both
in functional and functional logic programming [6, 9].

ExamPLE 1. Consider the following rules which define the less-
or-equal function on natural numbers (built fromaro and succ):

zero < Y — true
succ(z) < zero — false
suce(z) € suce(y) — = < y

This function is inductively sequential since its left-tiaides can
be hierarchically organized as follows:

zero<m
Sm:> succ($)<:>{

suce(z) < zero
suce(z) < suce(y)

where arguments in a box denote a case distinction (thigndai
to the notion of definitional tree in [6]).

3.2 Semantics

The evaluation of terms w.r.t. a TRS is formalized with th¢ioo
of rewriting. A rewrite stepis an application of a rewrite rule to
aterm, i.e.t —, r s if there exists a positiop in ¢, a rewrite
rule R = (I — r) and a substitutiowr with ¢|, = o(l) and
s = tlo(r)]p, (p and R will often be omitted in the notation of
a reduction step). The instantiated left-hand sidé) is called a
redex A termt is calledirreducibleor in normal formif there is no
terms with t — s. We denote by— the transitive closure of-
and by—™ its reflexive and transitive closure. Given a TRSand
a termt, we say that evaluatego s iff t —* s ands is in normal
form.

Functionallogic programs mainly differ from purely functional
programs in that function calls may contdiee variables. In or-
der to evaluate such terms containing variables, narroworgle-

2Curry also accepteverlappinginductively sequential systems. This class
extends inductively sequential systems with a disjunctiperator which
introduces additional don’t-know nondeterminism. Nelelgss, the nice
properties of inductive sequentiality carry over to ovepliag systems too.

terministically instantiates the variables such that aritevstep is
possible [25]. Formally; ~»,, r,» t’' is anarrowing stepff p is a
nonvariable position of ando(t) —, r t' (we sometimes omit
p, R and/oro when they are clear from the context).is very
often themost general unifiérof ¢|, and the left-hand side of (a
variant of) R, restricting its domain td’ar(t). As in proof pro-
cedures for logic programming, we assume that the rulesef th
TRS always contain fresh variables if they are used in a narro
ing step. We denote b, ~ ¢, a sequence of narrowing steps
to ~oy .- t, With o = 0, 0--- 001 (if n = 0 then
o = id).

Due to the presence of free variables, a term may be reduced
to different values after instantiating these variableslifterent
terms. Given a narrowing derivatidp ~; t,, we say that,, is a
computedvalueando is a computec@nswerfor ¢o.

Man

EXAMPLE 2. Consider the following definition of functiont”:
(Ra)
(R2)

Given the termz + succ(zero), narrowing nondeterministically
performs the following derivations:

zero +y — y
suce(z) +y — succ(z + y)

x + succ(zero)

~e Ry, {xzero} succ(zero)

x + succ(zero)

e, Ry {xosuce(y1)}

~71,Ry,{y1—zero}

suce(y1 + suce(zero))
succ(succ(zero))

x + succ(zero)
~e,Ra,{z—suce(y1)}
~1,Ry,{y1—suce(y2)}
~1.1,Ry,{ya+—zero}

suce(y1 + suce(zero))
succ(suce(yz + succ(zero)))
succ(succ(suce(zero)))

Thereforex + succ(zero) nondeterministically computes the fol-
lowing values (here, we usaicc” as a shorthand for. applica-
tions of functionsucc):

o succ(zero) with answer{z — zero},
o succ®(zero) with answer{z — succ(zero)},
o succ®(zero) with answer{x — succ?(zero)}, etc.

As in logic programming, narrowing derivations can be repréed
by a (possibly infinite) finitely branchingree Formally, given a
TRSR and an operation-rooted tertna narrowing treefor ¢ in
R is a tree satisfying the following conditions: (a) each notithe
tree is a term, (b) the root nodetisand (c) ifs is a node of the tree
then, for each narrowing step~, r,» s’, the node has a child
and the corresponding arc in the tree is labeled WitR, o).

In order to avoid unnecessary computations and to deal with
infinite data structures, a demand-driven generation ok#ach
space has been advocated by a numbdanf narrowing strate-
gies [23, 37, 39]. Due to its optimality properties w.r.te iength
of derivations and the number of computed solutioreeded nar-
rowing [9] is currently the best lazy narrowing strategy.

We say thats ~p r.. t is a needed narrowing stejiff
o(s) —p,r tis aneeded rewritestep in the sense of Huet and
Lévy [29], i.e., in every computation from(s) to a normal form,
eithero(s)|, or one of itsdescendantsust be reduced. Here, we
are interested in a particular needed narrowing strategypteéd
by X in [9, Def. 13], which is based on the notion ofiafinitional
tree[6] (a hierarchical structure containing the rules of a fiorc
definition, which is used to guide the needed narrowing ¥tdjbss

3Some narrowing strategies (e.g., needed narrowing) campaoifiers
which are not the most general, see below.



strategy is basically equivalent tazy narrowing[39] where nar-
rowing steps are applied to the outermost function, if gdesiand
inner functions are only narrowed if their evaluatiordesmanded
by a constructor symbol in the left-hand side of some rule.,(i.
a typical call-by-name evaluation strategy). The mainedéhce
is that needed narrowing does not computerttast general uni-

fier between the selected redex and the left-hand side of the rule

but only a unifier. The additional bindings are required tsug
that only “needed” computations are performed (see, @p.ahd,
thus, needed narrowing generally computes a smaller sepacte.

ExamMPLE 3. Consider again the rules defining functior<" of
Example 1. In a term liké; < t2, needed narrowing proceeds as
follows: First, t; should be evaluated to sonhead normal form
(i.e., a free variable or a constructor-rooted term) sindethree
rules defining “<” have a non-variable first argument. Then,

1. If t; evaluates taero then the first rule is applied.

2. If t; evaluates tosucc(t; ) thent. is evaluated to head normal
form:

(a) If t2 evaluates ta:ero then the second rule is applied.
(b) If > evaluates taucc(ts) then the third rule is applied.

(c) If t2 evaluates to a free variable, then it is instantiated
to a constructor-rooted term, heregero or succ(x) and,
depending on this instantiation, we proceed as in cases (a)
or (b) above.

3. Finally, if ¢; evaluates to a free variable, needed narrowing
instantiates it to a constructor-rooted termefo or succ(z)).
Depending on this instantiation, we proceed as in casesi(1) o
(2) above.

Let us note that needed narrowing is only defined on operation
rooted terms, i.e., a needed narrowing derivation stopsnatead
normal form (avalue in our context) is obtained. This is not a
restriction since the evaluation to normal form can be reduo

a sequence of head normal form computations (see [26]).

A precise definition of inductively sequential TRSs and rekd
narrowing is not necessary in this work (the interestedeeadn
find detailed definitions in [6, 9]). In the following, we useeded
narrowingto refer to the particular strategyin [9, Def. 13].

4. Ensuring Quasi-Termination w.r.t. Needed
Narrowing

In the NPE framework [2], narrowing is used as a symbolic comp
tation mechanism to perform partial computations. Rougplyak-
ing, given a prograr®k and an initial ternt, partial evaluation pro-
ceeds by constructing a narrowing tree fan R with the addi-
tional constraint of not evaluating terms that are variaftgre-
vious terms in the computation. Therefore, the terminatibthe
NPE process can be ensured when all narrowing computatiens a
quasi-terminating. Analogously to Holst [28], we say thatoan-
putation isquasi-terminatingwhen it only contains finitely many
different terms (modulo variable renaming).

an arrow from nodef to nodeg iff there is a call tog from the
right-hand side of some rule in the definition fof

DEFINITION 5 (cyclic, noncyclic function)Let R be a TRS. A
function f € D is cyclic if nodef belongs to a cycle ig(R) and
it is noncyclic otherwise.

EXAMPLE 6. Consider the following TRR:

f(s(z),y) — g(=z,v)

g(x,s(y)) — hl(z,y)
h(0,y) — y

h(S(w)_,(yg —  c(i(z), h(z,y))

wheref, g, h,i € D are defined functions arl s, ¢ € C are con-
structor. The associated graph of functional dependencié® ),

is as follows:
OEOGING
Thus, functiond, g, andi are noncyclic, whilé: is cyclic.

Clearly, noncyclic functions cannot introduce nonterrtiimg (nor

non-quasi-terminating) computations as long as the cyflc-

tions do not introduce them. Thus, we turn our attention ticy
functions. Following [13], thelepth of a variabler in a constructor
termt, in symbolsdv(t, ), is defined as follows:

dv(c(tn),z) = 1+ maz(dv(tn,x)) if z € Var(c(tn))

dv(c(tn),z) = -1 if z & Var(c(tn))
dv(y,z)= 0 if t=yandy €V
dv(y,z) = —1 if t £Ayandy € V

wherec € C is a constructor term with arity > 0.

The following definition introduces the notion nbnincreasing
function, i.e., a function that alwaysonsumeits parameters or
leave them unchanged:

DEFINITION 7 (nonincreasing functionl.et R be a left-linear,
constructor TRS. A functiofi € D is nonincreasing iff each rule
f(En) — rin the definition off fulfills the following conditions:

1. the right-hand side does not contain nested defined fumcti
symbols (i.e., defined function symbols that occur insitierot
defined function symbols), and

2. dv(s;,x) > dv(t;, z) for all operation-rooted subtermg(z.,,)
inr,wherei € {1,...,n},z € Var(s;),andj € {1,...,m}.

ExampLE 8. Afunction defined by the single ruféz, y, s(z)) —
c(g(z),h(2)), with s,c € C and f,g,h € D, is nonincreasing
since the following relations hold:

dv(z,z) =0 > 0 =dv(z,x)
dv(z,z) =0 2 —-1=dv(z,z)
dv(y,y) =0 > —1=dv(z,y)
dv(y,y) =0 > —1=dv(zvy)
dv(s(z),z) =1 > —1=dv(z,z)
dv(s(z),2) =1 > 0 =dv(z,2)

The most recent instance of the NPE scheme is based on needege” variablez is just copied, variable, vanishes, and (the depth

narrowing [5]. However, while the original NPE scheme guteas
that computations are quasi-terminatmngine (by applying appro-
priate termination tests and generalization operatanghis work
we introduce a sufficient condition for TRSs so that needed na
rowing computations are always quasi-terminating. Fiwstneed
the following preparatory definitions:

DEeFINITION 4 (graph of functional dependencie§iven a TRS
R, its graph of functional dependencies, in symh@(§R), con-
tains nodes labeled with the function symbolsfirand there is

of) variablez decreases.

Analogously to [19], we say that a TRS dgiasi-terminating for
a set of terms” w.r.t. needed narrowingf all needed narrowing
derivations issuing from the termsTinare quasi-terminating. Now,
we give a sufficient condition for quasi-termination:

DEFINITION 9 (nonincreasing TRS).etR be an inductively se-
quential TRSR is nonincreasing iff all functiong € D are right-
linear and either noncyclic or nonincreasing.



The restriction to inductively sequential TRSs is not reakces-
sary (i.e., left-linear, constructor TRSs would sufficej tme im-
pose this condition because needed narrowing is only defored
this class of TRSs. On the other hand, right-linearity is owly
necessary to guarantee quasi-termination (see below)ldufa
ensuring that no repeated computations are introducedrimyifun
unfolding.

THEOREM1O0. If R is a nonincreasing TRS, theR is quasi-
terminating for any linear term w.r.t. needed narrowing.

We note that there is no clear relation between quasi-textioim
w.r.t. needed narrowing and related conditions in term itevg:.
Consider, for instance, the following TRS:

£(0,9) f(s(z),y) —  f(=s(y)

which is not nonincreasing, whefes € C and f € D. This TRS

is trivially terminating w.r.t. rewriting since the first ganeter of
function f strictly decreases with each recursive call. However, it
is not quasi-terminating w.r.t. needed narrowing as wiadsby
the following (infinite) computation:

f(z,y)

- Y

f@',s(y))
f@@”,s(s(y)))

~ (o)}
Azl ss(x)}
~>

Related notions like size-change termination [33] (adapielRSs
in [45]) are equally not useful for ensuring (quasi-)teration

w.r.t. needed narrowing, since they only ensure sbateparameter
decreases (but not all of them), which is not useful in ourttexin
where all parameters may be unknown (i.e., free variablaght-

linearity is an essential requirement even for the simgilesttions.

Consider, for example, the following nonincreasing fuoics:

fOy) =y fls(@),y) = flzy)  g(x) = flz,2)

where0,s € C and f,g € D. This is not a nonincreasing TRS
since functiong is not right-linear. Thus, quasi-termination w.r.t.
needed narrowing is not ensured:

g(II)) ~id f(IE,IE) ~{z—s(z!)}
el (a)}
~s

f',s(x))
f@@", s(s(2")))

Clearly, the use oheedednarrowing is also crucial, i.e., quasi-
termination for other narrowing strategies (eignermostarrow-
ing) is not guaranteed. For instance, given the followingiu
terminating TRS:

fx) — g(h(z)) h(0) — 0

g(z) — =z h(s(x)) s(h(z))
needed narrowing is quasi-terminating whileianermoststrategy
would produce the following non-quasi-terminating detiiva:

f(@) ~ia g(h(z)) g(s(h(z)))
g(s(s(h(z"))))

—

~ {oa(a)
o (z s (z')}
>

The closest characterizations to ours have been presemted b
Wadler [46] and Chin and Khoo [13]. Wadler introduced thaamot

of treelesdunctions in order to ensure the terminatiordeforesta-
tion [46]. Treeless functions are a subclass of our nonincrgasin
functions where, additionally, all function calls in thei-hand
sides of the rules can only have variable arguments. Chikanod
[13] introduced the class afonincreasing consumeend proved
that any set of mutually recursive functions that are nawiasing
consumers can be transformed into an equivalent set oetzel
functions, so that deforestation can be applied. This cheriza-
tion differs from ours mainly in two points. Firstly, Chin dKhoo
only require linear function calls in the right-hand sidéthe rules

(rather than being linear the entire right-hand sides, asnpese).
This relaxed definition, however, is not safe in our cont&dn-
sider, e.g., the following nonincreasing consumers adagrtb
Chin and Khoo [13]:

f(@) = clg(z),z)  g(s(z)) = g(z)  hlc(s(2),y)) ==

wherec,s € C and f,g,h € D. Here, given the initial term
h(f(z)), needed narrowing has an infinite derivation which is not
quasi-terminating:

h(f(x)) ~»id h(c(g(z), z))
~tas@ny  he(gx’), s(z")))
o alss(x!)} (g(z"),s(s(z"))))

A

And, secondly, Chin and Khoo do not accept nested functitia ca
in the right-hand side of any program rule. In contrast, weeptar-
bitrary (linear) terms in the right-hand sides of noncy#linctions,
which allows us to cope with a wider range of functions.

5. From Online to Offline NPE

The current formulation of the NPE scheme ensures terroimati
online (see, e.g., [1, 2, 4]), i.e., appropriate termination tests
generalization operators are used during partial evalnat guar-
antee that only a finite number of distinct terms (modulo -vari
able renaming) are computed. As mentioned before, thisnsehe
achieves significant optimizations but it is also very exgden (in
terms of both time and space consumption) and, thus, it does n
scale up well to realistic problems. In order to remedy tltisas
tion, in this section we introduce a faster NPE method which e
sures terminationffline by including a pre-processing stage based
on the notion of nonincreasing TRS.

In principle, a naive NPE method could restrict the sourae pr
grams to nonincreasing TRSs and, then, apply neither tatiom
tests nor generalizations during partial evaluation siresled nar-
rowing computations would be quasi-terminating (cf. Tieeor10).
This would give rise to a very fast NPE tool—only equalitytses
modulo variable renaming would be required—but, unfortalya
the class of acceptable programs would be too restrictive.

Therefore, we now consider the class of programs for which
NPE is originally defined: inductively sequential prograres
much broader class of TRSs—and define an algorithmahao-
tatesthe expressions which may cause the non-quasi-termination
of needed narrowing computations. These annotations withter
used by an extended needed narrowing relation in ordgeter-
alize problematic subterms. We Igf, = F U {e}, wheree ¢ F
is a fresh symbol. Given a TRB, a termt¢ is annotated by replac-
ing ¢ by e(t). The following auxiliary functions will be useful to
manipulate annotated terms:

gen(z) = =« ifxeV
gen(h(t,)) = h(gen(tn)) HfheF,n=0
gen(e(t)) =y wherey € V is a fresh variable

i.e., given an annotated term € 7 (F,,V), the expression
gen(t) € T(F,V) returns a generalization oty replacing anno-
tated subterms by fresh variables.

aterms(z) = @ ifzeV
aterms(h(t,)) = Ui, aterms(t;) ifheF,nz0
aterms(e(t)) = {t} Uaterms(t)

Here, the expressionterms(t) C 7 (F.,V) returns the set
of annotated subterms (possibly containing annotatioms) E
T(F., V).



Let usillustrate the use of functioggn andaterms with some
simple examples:

gen(f(z,g(h(y)))) = [z, 9(h(y)))
gen(f(z,e(g(h(y))))) = [z, w)
gen(f(z,e(g(e(h(y)))))) = [flz,w)
aterms(f(z,g(h(y)))) = {3}
aterms(f(z, o(g(h(y))))) = h

{a(n(y))}
aterms(f(z,e(g(e(h(y)))))) {g(e(h(v))), h(y)}

The following definition introduces our transformation mmatate
inductively sequential programs. Intuitively speaking annotate
those arguments of the topmost operation-rooted subterrtisei
right-hand sides of the rules that either contain definedtfan

symbols or break the nonincreasing property; then, evangtated
subterm is treated similarly to the original right-handesighus,
nested annotations are possible); finally, all repeatedroecces
but one of the same variable are annotated. Formally,

DEFINITION 11 (@nn(R)). LetR = {l; — r; | i = 1,...,k}

be an inductively sequential TRS ovér The annotated TRS,

ann(R), over F, is given by the set of rule§l;, — 7} | i =
..k} wherer,i =1,...,k, is computed as follows:

1. Ifroot(l;) is a noncyclic function, therf is obtained fronr; by
annotating all occurrences of the same variable but one.(e.g
the leftmost one), so thaen(r}) is a linear term.

2. Ifroot(l;) is cyclic, thenr; is obtained fronys(l;, r;) by anno-
tating the least number of variables such tlyat(t) becomes
linear forall t € {gs(ls, )} Uaterms(gs(ls, r:)). The defini-
tion of auxiliary functiongs is shown in Fig. 1.

Intuitively speaking, auxiliary functions ignores constructor sym-
bols until an operation-rooted subterif{ti,...,t,) is found.
Then, for each argumet, it proceeds (by callings’) as follows:

e if ¢; is a constructor term and all variables fulfill the noninsrea
ing property, thert; remains unchanged;

e otherwise, the considered subterm, is annotated and the
process is restarted foy.

Trivially, for any nonincreasing TRR, we haveann(R) = R.
Furthermore, ifR is an inductively sequential TRS sodan(R),
since the left-hand sides of the rules are not modified.

Note that Definition 11 is nondeterministic since it does not
fix which variable occurrence should not be annotated whereth
are repeated occurrences of the same variable. In some taises
decision can dramatically affect the result of a partiallegon
(see Sect 6.2). This situation could be improved in somescage
allowing the programmer to choose the (static) variableshauld
not be annotated.

ExamPLE 12. Consider the following inductively sequential pro-
gramR:

f0,y) — y
f(s(z),y) —  g(z, f(x,5(y)))
g(z,y) — g(y,z)

wheref,g € D and0, s € C. The annotated TRSnn(R), is as
follows:

f0,y) —y
fls(x),y)  — gz, e(f(x,0(s(y)))))
g(z,y) —  gy,)

Observe that repeated occurrencesroih the second rule should
not be annotated since

aterms(g(z, o(f(z, 8(s(y)))))) = {/f(x, o(s(y))), s(y)}

and, hencegen(t) is linear for all

t € {g(z, o(f(z,e(s(y))))), f(x,e(s())),s(y)}

i.e.,g(z,w1), f(z,w2), ands(y) are linear terms, wherev; and
wo are fresh variables.

Since partial computations are computed in the NPE scheme by
means of needed narrowing, we now extend this relation ierord
to generalize annotated subterms (thus ensuring the tationof

the partial evaluation process).

DEFINITION 13 (generalizing needed narrowing)et R be an
annotated inductively sequential TRS ovEy. The generalizing
needed narrowing relation, in symbols, is defined as the least
relation satisfying

(needed narrowing)
Sophot if root(s) € D ands € T(F, V)
S ~rs t
(generalization)
t € {s} Uaterms(s)
5 ~>e gen(t)

if root(s) € Dands ¢ T(F,V)

ecomposition
d "
s=c(ti,....,tn) Ni€{1,...,n}

S ~e b

if root(s) € C

A generalizing needed narrowing derivatien~. t is thus com-
posed of proper needed narrowing steps (for operation-rooted
terms with no annotations), generalizations (for anndta¢ems),
and constructor decompositions (for constructor-roogechs with
no annotations), whereis the composition of the substitutions la-
beling the proper needed narrowing steps. Note that, sieeded
narrowing only computes head normal forni.e., a variable or
a constructor-rooted term), the decomposition rule is irequto
ensure that all inner functions (if any) are eventually ipdyt eval-
uated. Some examples of generalizing needed narrowinguamp
tions can be found in the next section.

We also note that our generalization step is somehow eguival
to the splitting operation afonjunctive partial deductio(CPD) of
logic programs [17]. While CPD considers conjunctions afnas,
we deal with terms possibly containing nested function sylisib
Therefore, flattening a nested function call is basicallyiesjent
to splitting a conjunction (in both cases some informat®lost).

The next result shows the correctness of the annotation algo
rithm.

THEOREM14. Let R be an inductively sequential TRS anag
linear term. Every generalizing needed narrowing derioatfor
tin ann(R) is quasi-terminating.

6. The Offline NPE Method in Practice

In this section, we first describe the complete offline NPEhoet
based on annotated programs and generalizing needed ragrow
Then, we illustrate the new scheme by means of some selected e
amples. Finally, we provide a summary of the experiments con
ducted with a prototype implementation of the method whiahws

the advantages of our approach in comparison with the prsvio
online NPE method.

6.1 Overview of the Offline NPE Method

In our offline approach to NPE, given an inductively sequen-
tial TRS R, the first stageconsists in computing the annotated
TRS:ann(R). Then, thesecond stage-the proper partial evalu-
ation—takes the annotated TRSin(R), together with an initial



t if £ € Vis a variable
c(gs(l,tn)) ift=c(tn),c€C,andn >0

f@t7)

qs(l,1)

qs'(f(pn),t) = { otherwise

*(qs(f(pn), 1))

if t = f(tn), f € D, andt; = qs'(I,¢;) foralli=1,...,n,n >0

t if t € 7(C,V) is a constructor term andb(p;, ) > dv(t,z) forallz € Var(ps), i =1,...,n

Figure 1. Auxiliary functionsgs andgs’

(linear) term,¢, constructs the (finite) generalizing needed nar-
rowing tree for¢ in ann(R), and extracts the residual—partially
evaluated—program.

Essentially, residual programs are extracted by produzisg-
calledresultant o(s) — rann(t), for each proper needed nar-
rowing steps ~, t in the considered generalizing needed nar-
rowing tree, where functionann simply removes the occurrences
of “e” in a term. In general, however, the left-hand sides of these
rules need not be of the forif(s1, . . ., s»), wheres; are construc-
tor terms, since they may contain nested defined functiorbsisn
Therefore, a renaming of terms is often mandatory. Theiotig
definitions from [5] formalize the notion of renaming:

DEFINITION 15 (independent renaming [S5JAn independent re-
namingp for a set of termsl” is a mapping from terms to terms
defined as follows: for all terme T,

e p(t) = tift = f(Tn), wheref € D andz, are different
variables, and

* p(t) = f:(Tn), otherwise, wher&;, are the distinct variables
of ¢ in the order of their first occurrence anf} ¢ D is a fresh
function symbol.

Observe that function calls whose arguments are differariables
are not renamed since it is hot necessary.

ExXAMPLE 16. Consider the set of terms

T ={f(z,y), g(h(z),y), s(c(x),x)}

where f, g, h, s € D are defined functions and € C is a con-
structor symbol. Then, the following mappipds an independent
renaming forT":

p=A{ flzy) —  f(z,y),
g(h(z),y) — g'(z,y),
s(e(z),z) = $'(x) }

Basically, given the annotated programn(R) and a linear term
t, the partial evaluation stage proceeds by constructing¢heral-
izing needed narrowing tree forin ann(R), where, additionally,
atestis included to check whether a variant of the current teas
already been computed and, if so, stop the derivation. Thsigu
termination of generalizing needed narrowing computatigrhe-
orem 14) guarantees that the tree thus constructed is fiDitee
the tree is built, we compute an independent renarpifay the set
of terms{s | s ~» t}, i.e., for the terms to which a proper needed
narrowing step is applied. While the mappipguffices to rename
the left-hand sides of resultants, the right-hand sidegire@ more
elaborated mappingen,, thatrecursivelyreplaces each call in the
term by a call to the corresponding renamed function. Fdgmal

DEFINITION 17 (renaming mapping [5]).et T be a finite set of
terms andp an independent renaming @f. Given a terms, the

(nondeterministic) mappingen, is defined as follows:

S ifseV
c(reny(tn)) ifs=c(tn), ceC,andn >0

o' (p(t)) if there exists aterme T
such thats = 0(¢) and§’ =
{z +— reny,(0(x)) | = € Dom(0)}

ren,(s) =

ExXAMPLE 18. Consider the set of ternif and the independent
renaming of Example 16. Given the tegth(z), f(a, s(c(b),b))),
wherea, b € C are constructor symbols, functioren,, returns the
renamed terny’ (z, f(a, s’ (b))).

Now, the offline NPE method can be formalized as follows:

DEFINITION 19 (offline NPE).LetR be an inductively sequential
TRS andf () a linear ternf with f € D. The offline NPE o
w.r.t. f(T~) is obtained as follows:

1. First, we compute the annotated TRS:(R).

2. Then, we construct a (finite) generalizing needed namgwi
tree, 7, for f(Z») in ann(R), where each derivation stops
whenever it reaches a constructor term or an operation-@dot
term that is a variable renaming of some previous term in the
same (or a previous) derivation.

3. Finally, the residual TRS contains a (renamed) rule
a(p(s)) — ren,(rann(s'))

for each proper needed narrowing step~, s’ in 7. Here, p
is an independent renaming §f | s ~, s’ € T}.

For simplicity, in the definition above, we extract a resoititom
each single needed narrowing step. Clearly, more refineg- alg
rithms for extracting resultants from a generalizing neleirrow-
ing tree are possible; e.g., in many cases, one can extraugla s
resultant associated tossaquencef narrowing steps rather than to
a single narrowing step. In fact, the implemented systethovsl
such a refined strategy.

Now we state the correctness and termination of this partial
evaluation method.

THEOREM20. LetR be an inductively sequential TRS afi(it-)

a linear term with f € D. The algorithm of Def. 19 always
terminates computing an inductively sequential TRSsuch that
needed narrowing computes the same resultsffar,) in R and
inR'.

6.2 Selected Examples

In this section, we illustrate the offline NPE method presdrgo
far by means of some selected examples.

4This is not a restriction since one can consider an arbittary ¢ by
simply adding a new function definitiofi(z,,) — t to R, wherez,, are
the different variables of.



main(x)

ol

pow(z, 5(s(0)))

id\L
z X o(pow(x, s(0)))
/ \
o pow(z, s(0))

{ﬁ'—‘o/ \*'—‘é(wz)} l/id

w1 + o(w2 X wr) x X o(pow(z,0))

7\ 7 X

w1 + ws wa X W1 T X Wws pow(zx,0)
{wl'_‘o/ \\{wl'_‘-5(w4)}
id
s(wa + ws) 5(0)
Lc
w4 + W3

Figure 2. Generalizing needed narrowing tree fanin(x)

Program specialization. Our first example illustrates the use of
the offline NPE method for program specialization. Consitier
following TRS which has been annotated according to Def. 11:

main(z) — pow(zx,s(s(0)))
pow(z,0) — (0
pow(z,s(n)) — z x e(pow(z,n))
Oxm — 0
s(n)xm — m+e(nxm)
0+m — m
s(n)+m — s(n+m)

Given the initial termmain(z), we construct the generalizing
needed narrowing tree depicted in Fig. 2. Then, the assakiat
residual TRS contains the following rules:

main(z) — powsa(z)
powz(z) — X pow:i(x)
powi(z) — X powo(x)
powo(z) —  s(0)

together with the original definitions ofX” and “+". The consid-
ered independent renaming is as follows:

p=A{ main(z) +— main(z),
pow(z,s(s(0)))  —  pows(z),
pow(z,s(0)) +—  pow:(z),
pow(z,0) — powo(x),
TXYy +— TXUY,
rty o oty }

Furthermore, these four rules can easily be simplified bgpgusi
standard post-unfoldinfgansition compressiof82] as follows:

main(z) — x X (z X s(0))

since function®ows, pows, andpowy are only intermediate func-
tions (i.e., there is only one call to any of them). This siengkam-
ple shows that, despite the annotation of some subtermspihe
cialization power of the original (online) NPE is not lost aur
offline approach.

Deforestation. Our second example is concerned with Wadler's
deforestatiorto eliminate intermediate data structures [46]. Here,

lenapp(x,y)

.

len(app(z,y))

{y w\z&'}

len(y len(z : app(zs,y))
{y— / \\y»—uu ws} \L iy

s(len(ws)) s(len(app(zs,y)))
I I
len(ws) len(app(zs,y))

Figure 3. Generalizing needed narrowing tree fenapp(x, y)

we consider the following TRR:

lenapp(z,y) — len(app(z,y))
len([) — O
len(z :zs) —  s(len(zs))
app([l,y) — vy
app(x : xs,y) — x:app(xs,y)

wherelenapp(z,y) computes the length of the concatenation of
lists z and y. This function is not efficient since an intermediate
data structure (the concatenationaofindy) is built. SinceR is
already nonincreasing, we have thain(R) = R. Given the ini-
tial termlenapp(z,y), we construct the generalizing needed nar-
rowing tree depicted in Fig. 3. By using the following indegent
renaming:

p=A{ lenapp(z,y) +— lenapp(z,y),
len(app(z,y)) —  la(z,y),
len(y) — len(y),
len(z : app(zs,y)) +— la2(z,zs,y) }

the associated residual TRS is as follows:

lenapp(z,y) — la(z,y)
la([l.y) — len(y)

la(z : zs,y) — la2(z,zs,y)

la2(z,zs,y) — s(la(zs,y))

together with the original definition of functioken. As in the
previous example, a simple post-unfolding transformatiauld
eliminate the intermediate functidn2. Note that the residual TRS
is completely deforested (i.e., no intermediate list idtpui

Higher-order removal. Our last example consist in the elimina-
tion of higher-order functions. In some programming largps
higher-order features amefunctionalized42, 47], i.e., they are
expressed by means of a first-order program with an explit a
plication operator. For instance, the following TRS, which has al-
ready been annotated according to Def. 11, includes theititafin
of the well-known higher-order functiomap:

minc(z) — map(inco, x)
map(f,[]) —
map(f,ovs) —  apply(s(f),) : map(f,ws)
inc(x) —  s(x)
apply(inco,z) — inc(x)

5As in the language Curry, we do not allow the evaluation ohbigorder
calls containing free variables as functions (i.e., sudis emesuspendetb
avoid the use of higher-order unification). A more flexibletggy can be
found in [10].



minc(x)

)

map(inco, x)

{z—[1} Ws}
[] apply(e mco ,Y) s map mco,ys)
apply (inco), map(inco, ys)
apply(w,y) inco

Figure 4. Generalizing needed narrowing tree fainc(x)

Here, we used the explicit application operatpply together with
the partial function applicatiotnco (a constructor symbol).

Observe that, in this example, we have annotated the leftmos
occurrence of variablg in the third program rule. This is essential
to obtain a first-order definition famap(inco, ). Indeed, by an-
notating the second occurrence of variaflehe original program
is basically returned by the partial evaluator.

Given the initial termminc(z), the generalizing needed nar-
rowing tree of Fig. 4 is built. Note thatpply(w,y) is not further
reduced because, as mentioned before, this higher-ortleoca
tains a free functional variable and, thus, its evaluatiospends
(which means that the original definition apply should also be
included in the residual program).

Given the following independent renaming:

p=A minc(z) — minc(x),
map(inco,ys) +— mapinc(ys),
inc(y) — inc(y),
apply(w,y) +— apply(w,y) }

the residual TRS computed by offline NPE is as follows:

minc(z) — mapinc(x)
mapine((]) —
mapinc(y : ys) —  apply(inco,y) : mapinc(ys)
inc(y) —  s(y)
apply(inco,y) — inc(y)

Finally, by using a simple post-unfolding simplification get the
following TRS:

minc(z)
mapinc([]) (]
mapinc(y : ys) s(y) : mapinc(ys)

where the explicit application operatepply is no longer needed.
We note that this transformation often achieves signifispaedups
in practice (see, e.g., [1]).

—  mapinc(x)
N

—

6.3 Experimental Evaluation

The offline NPE method outlined in Sect. 6.1 has been imple-
mented in the declarative multi-paradigm language Curij.[2
The sources of the partial evaluator and a detailed exptanat
of the benchmarks considered below are publicly availatdenf
http://wuw.dsic.upv.es/users/elp/german/offpeval/.

The offline NPE tool is purely declarative and accepts Curry
programs containing additional features like higher-orfienc-
tions, several built-in functions, etc.

Table 1 shows the results of some benchmarks:

ackermann: This is the well-known Ackermann’s function spe-
cialized for an input argument greater than or equal to 10.

allones: The aim of this benchmark is to automatically produce
a new function that transforms all elements of a list int
by first computing the length of the original list and, then,
constructing a new list of the same length whose elements are
1. This is a typical deforestation example [46].

fliptree: Another typical deforestation example. Here, the aim
is to flip a tree structure twice so that the original tree is ob
tained; no static values are provided.

foldr.allones: The goal of this benchmark is the specializa-
tion of a function that concatenates a number of lists areh,th
transforms all elements intb The original function is defined
by means of the higher-order combinafoidr. The specializa-
tion considers that one of the lists is known.

foldr.sum: Inthis benchmark, we produce a specialized function
to sum the elements of a list (with a given prefix) by using the
higher-order functiorfoldr.

fun_inter: This benchmark consists in the specialization of sim-
ple functional interpreter for a given program.

gauss: Our goal in this benchmark is the specialization of the
well-known Gauss’ function to consider natural numbersitge
than or equal to 5.

kmp matcher: A naive pattern matcher specialized for a given
pattern. This benchmark is known as the “KMP-test” [15].

power: The specialization shown in Section 6.2 for a fixed expo-
nent of 6.

For each benchmark, we show the size (in bytes) of each progra
(codesize), the time for executing the previousline NPE tool
(onlineNPE), the time for executing the newffline NPE tool de-
scribed so far ¢ff1ineNPE), where we show both the time for
analyzing and annotating the original programar) and for per-
forming partial computations and extracting the residuagpam
(mix), as well as the speedups achieved by the programs special-
ized with each techniquageedup1 andspeedup?2); speedups are
given byorig/spec whereorig andspecare the absolute run times
of the original and specialized programs, respectivelyneg are
expressed in milliseconds and are the average of 10 exasutio

a 2.4 GHz Linux-PC (Intel Pentium IV with 512 KB cache). Run-
time input goals were chosen to give a reasonably long dvared.
The programs were executed with the Curry to Prolog compfler
PAKCS [27].

As it can be seen in Table 1, we have reduced the partial eval-
uation time to approximately 25% of the original NPE tool,igh
means that our main goal has been achieved. As for the spgedup
we note that most of the benchmarks wepecializationprob-
lems (rather thaoptimizationproblems), which explains the good
results achieved by our offline NPE tool. Let us remark, how-
ever, that the new method is not able to pass the so-calledPKM
test” [15] (see benchmarkmp matcher). There are two main
requirements for passing the KMP test: a good propagation of
information and a powerful termination analysis that asoido
much generalization. While our offline scheme propagatés-in
mation as well as the previous online approach (which doss pa
the KMP test), our (implicit) termination analysis is mudmpler.

It would be interesting to check whether a mixed online/oli
approach could be useful here. Our partial evaluator deals w
with arithmetic functions (benchmamdckermann), with the sim-
plification of higher-order calls (benchmarksldr.allones and
foldr.sum), and with a simple functional interpreter (benchmark
fun_inter), where speedups are not shown since the execution
time of the specialized programs is zero (i.e., the inpugmm to

the interpreter has been fully evaluated).



Table 1. Benchmark results

benchmark codesize onlineNPE speedupl offlineNPE speedup?2
(bytes) (ms.) (online) ann (ms.) | mix (ms.) (offline)
ackermann 1496 20290 1.006 100 590 4,750
allones 1191 180 1.065 50 200 1.050
fliptree 1861 1940 0.985 100 240 0.977
foldr.allones 2910 3633 1.024 120 430 2.034
foldr.sum 3734 6797 1.311 170 3340 1.293
fun_inter 4266 28955 — 160 5190 —
gauss 1241 11090 1.040 100 757 1.013
kmp_matcher 3222 11670 5.346 157 9410 1.219
power 1693 160 3.087 110 280 1.012
Average 2402 9413 1.858 119 2271 1.668

7. Related Work and Discussion

Despite the relevance of narrowing as a symbolic compurtatio
mechanism, we find in the literature very few works devoted to
analyze its termination. For instance, Dershowitz and Ksinear
[20] defined a narrowing procedure that incorporates pgumin
some unsatisfiable goals. Similar approaches have beeenpeeds
by Chabin and Réty [12], where narrowing is directed by phra
of terms, and by Alpuente et al. [3], where the notionladp-
checkis introduced. Also, Antoy and Ariola [8] introduced a sort
of memoization technique for functional logic languageshsa, in
some cases, a finite representation of an infinite narrowagesis
achieved. All these techniques ameline since they use informa-
tion about the term being narrowed. On the other hand, Gdmmist
[14] introduced a characterization of TRSs for which nairmyv
terminates. Basically, it requires the left-hand sidesedlds, i.e.,

all arguments are either variables or ground terms. Nonéaexfet
works considereduasi-terminatiomor presented a method to an-
notate TRSs so that termination is enforced.

Other related works come from the extensive literature an pa
tial evaluation. Within the logic programming paradigm,doge
et al. [18] studied the quasi-termination tabled logic programs
in order to port specialization techniques from “standaiajic
programs to tabled ones. They introduced the charactienizaf
quasi-acceptabl@rograms and proved that this class of programs
guarantees quasi-termination. However, determining méret
program is quasi-acceptable is not easy to check (the author
sketched how standard termination analysis could be esthnd

Within the functional setting, Holst [28] introduced a scifint
condition for quasi-termination in order to ensure the ieation
of partial evaluation (which was then used by Glenstrup ames
[24] to define a BTA algorithm ensuring the termination of iofl
partial evaluation). Holst also presented a static amalyased on
abstract interpretation in order to check the sufficientétoon for
quasi-termination. Similarly to [18], the presented cdtiodis are
based on the semantics and, thus, are generally difficuitalyze.

In contrast, our approach relies on a simpyatacticcharacter-
ization which is generally less precise but very easy to ichkc
fact, the closest approaches to our work are the syntacti@cter-
izations given by Wadler [46] and Chin and Khoo [13], whiclvéa
been already discussed in Sect. 4.

In summary, we have introduced a novel characterization for
TRSs that ensures the quasi-termination of needed namgowin
computations. This is a difficult problem of independentiatt
that has not been tackled before. Since the considered ofass
TRSs is too restrictive, we then considered inductivelyusedjal

programs—a much broader class—and introduced an algorithm

annotations. Finally, we described how our new developsean

be used to define a correct and terminating NPE scheme that en-
sures termination offline. Preliminary experiments coneldoon

a wide variety of programs are encouraging and demonstnate t
usefulness of our approach.

Although we considered inductively sequential systemsras p
grams andheeded narrowing9] as operational semantics, our de-
velopments could easily be extendedaeerlappinginductively
sequential systems and inductively sequential narrowrigThe
main difference is that overlapping systems allow the usanagx-
plicit disjunction operator which introduces additionaind-know
nondeterminism. In this context, introducing a functiorthna dis-
junction in the right-hand side, e.gi(z) — t1 or t2, is basically
equivalent to writing the following single rules:

flz) =t f(@) — t2

Since our termination characterization mainly dependsam the
function parameters change from the left- to the right-hsidd of a
rule, the treatment of disjunctions in overlapping systgmsents
no additional problems; basically, a disjunction operatmuld be
considered as a constructor symbol.

Positive supercompilation [44] shares many similaritiegghw
NPE sincedriving, the symbolic computation mechanism of posi-
tive supercompilation, is equivalent to needed narrowingom-
parable programs. Therefore, our results could easilydresterred
to the setting of positive supercompilation.

Regarding future work, one of the most recent approaches to
ensure the (quasi-)termination of functional programsaiselol on
size-change graph83] (which have been already used in the con-
text of partial evaluation in [31]). An interesting topicrféuture
work is thus the use of size-change graphs for defining mare pr
cise—though computationally more expensive—annotatigo-a
rithms. On the other hand, our algorithm for annotating TR$s-
dependent of the term considered for partial evaluatiors Mieans
that a TRS only needs to be annotated once and, then, it caarbe p
tially evaluated w.r.t. different terms without computingw anno-
tations. However, it also means that we are not exploitiegktiown
structure of the term considered for partial evaluationnédég it
would be interesting to study the combination of our firsgsta
with traditional binding-time analysis. Here, our functéd logic
setting poses new demands for binding-time analysis duestoge
of logical variables and nondeterministic functions. Hus tpur-
pose, we plan to investigate techniques for the binding-&maly-
sis of logic programs within thpartial deductiontechnique (like,
e.g., [16, 35]).

that annotates those subterms which may cause the non-quasiacknowledgments

termination of needed narrowing. We also introduced a gagner
izing extension of needed narrowing which is guided by progr

We would like to thank the anonymous referees for many helpfu
comments and suggestions.
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