
Improving Offline Narrowing-Driven Partial
Evaluation using Size-Change Graphs?

Gustavo Arroyo, J.Guadalupe Ramos, Josep Silva, and Germán Vidal

Technical University of Valencia,
Camino de Vera s/n, 46022 Valencia, Spain.

{garroyo,guadalupe,jsilva,gvidal}@dsic.upv.es

Abstract. An offline approach to narrowing-driven partial evaluation
(a partial evaluation scheme for first-order functional and functional
logic programs) has recently been introduced. In this approach, program
annotations (i.e., the expressions that should be generalised at partial
evaluation time to ensure termination) are based on a simple syntac-
tic characterisation of quasi-terminating programs. This work extends
the previous offline scheme by introducing a new annotation strategy
which is based on a combination of size-change graphs and binding-time
analysis. Preliminary experiments point out that the number of program
annotations is significantly reduced compared to the previous approach,
which means that faster residual programs are often produced.

1 Introduction

Narrowing [30] extends the reduction principle of functional languages by re-
placing matching with unification (as in logic programming). Narrowing-driven
partial evaluation (NPE) [1] is a powerful specialisation technique for the first-
order component of many functional and functional logic languages like Haskell
[28] or Curry [18]. In NPE, some refinement of narrowing is used to perform
symbolic computations. Currently, needed narrowing [4], a narrowing strategy
that only selects a function call if its reduction is necessary to compute a value,
is the strategy that presents better properties. In general, the narrowing space
(i.e., the counterpart of the SLD search space in logic programming) of a term
may be infinite. However, even in this case, NPE may still terminate when the
original program is quasi-terminating w.r.t. the considered narrowing strategy,
i.e., when only finitely many different terms—modulo variable renaming—are
computed. The reason is that the (partial) evaluation of multiple occurrences of
the same term (modulo variable renaming) in a computation can be avoided by
inserting a call to some previously encountered variant (a technique known as
specialisation-point insertion in the partial evaluation literature).

? This work has been partially supported by the EU (FEDER) and the Spanish MEC
under grant TIN2005-09207-C03-02, by the Mexican SEIT-ANUIES and DGEST
beca-comisión and by the ICT for EU-India Cross-Cultural Dissemination Project
ALA/95/23/2003/077-054.

Recently, [29] identified a class of quasi-terminating rewrite systems (w.r.t.
needed narrowing) that are called non-increasing. This characterisation is purely
syntactic and very easy to check, though too restrictive to be useful in practice.
Therefore, [29] introduces an offline scheme for NPE by

– annotating the program expressions that violate the non-increasingness prop-
erty and

– considering a slight extension of needed narrowing to perform partial com-
putations so that annotated subterms are generalised at specialisation time
(which ensures the termination of the process).

In this work, we improve on the simpler characterisation of non-increasing rewrite
systems by using size-change graphs [24] to approximate the changes in parame-
ter sizes from one function call to another. In particular, we use the information
in the size-change graphs to identify a particular form of quasi-termination,
called PE-termination, which implies that only finitely many different function
calls (modulo variable renaming) can be produced in a computation. For this
purpose, the output of a standard binding-time analysis is also used in order
to have information on which function arguments are static (and thus ground)
and which are dynamic. When the information gathered from the combined use
of size-change graphs and binding-time analysis does not allow us to infer that
the rewrite system quasi-terminates, we proceed as in [29] and annotate the
problematic subterms to be generalised at partial evaluation time.

Related Work

Regarding quasi-termination, we find relatively few works devoted to quasi-
termination analysis of functional or logic programs (and no previous work on
quasi-termination of functional logic programs). The notion of quasi-termination
was originally introduced in term rewriting by Dershowitz [12], where a rewrite
derivation is called quasi-terminating when it only contains finitely many differ-
ent terms. Within logic programming, one of the first approaches is [11], where
the authors introduce the notion of quasi-acceptability, a sufficient and necessary
condition for quasi-termination. This work has been extended in [32].

As for size-change analysis, this approach was originally introduced in [24] in
the context of functional programming. The scheme was later adapted to term
rewriting in [31].

Finally, regarding the use of quasi-termination analysis for ensuring the ter-
mination of offline partial evaluation, there are a few related approaches. Quasi-
termination was soon recognised as an essential property to guarantee the ter-
mination of partial evaluation (see, e.g., the pioneering work of Holst [20]). In
particular, we share many similarities with the approach introduced by Glen-
strup and Jones [16], where a quasi-termination analysis based on size-change
graphs is used to ensure the termination of an offline partial evaluator for first-
order functional programs. However, transferring Glenstrup and Jones’ scheme
to function logic programming is not straightforward because narrowing compu-
tations propagate bindings forward in the computations (as logic programming

does). As a consequence, several additional conditions should be introduced in
order to preserve the termination of partial evaluation. Furthermore, we consider
simpler size-change graphs (i.e., the “may-increase” relation of [16] is not used
in this work). This may somewhat weaken the power of our size-change analysis,
but it could be straightforwardly extended along the lines of [16].

Plan of the Paper

This paper is structured as follows. After providing some preliminary definitions
in Sect. 2, we recall the original approach to offline narrowing-driven partial eval-
uation in Sect. 3. Then, Sect. 4 introduces a quasi-termination analysis based on
size-change graphs and states the main result of the paper. Section 5 presents the
new annotation procedure and illustrates it with an example. Section 6 describes
an experimental evaluation of our approach by using a prototype implementa-
tion of the offline partial evaluator. Finally, Sect. 7 concludes and points out
some directions for future work. More details and missing proofs can be found
in [5].

2 Preliminaries

Term rewriting [6] offers an appropriate framework to model the first-order com-
ponent of many functional and functional logic programming languages. There-
fore, we follow the standard framework of term rewriting for developing our
results.

A set of rewrite rules (or oriented equations) l → r such that l is a nonvariable
term and r is a term whose variables appear in l is called a term rewriting system
(TRS for short); terms l and r are called the left-hand side and the right-hand
side of the rule, respectively. Given a TRS R over a signature F , the defined
symbols D are the root symbols of the left-hand sides of the rules and the
constructors are C = F \ D. We restrict ourselves to finite signatures and TRSs.
We denote the domain of terms and constructor terms by T (F ,V) and T (C,V),
respectively, where V is a set of variables with F ∩ V = ∅.

A TRS R is constructor-based if the left-hand sides of its rules have the
form f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C,V), for all
i = 1, . . . , n. The set of variables appearing in a term t is denoted by Var(t). A
term t is linear if every variable of V occurs at most once in t. R is left-linear
(resp. right-linear) if l (resp. r) is linear for all rules l → r ∈ R. The definition
of f in R is the set of rules in R whose root symbol in the left-hand side is f . A
function f ∈ D is left-linear (resp. right-linear) if the rules in its definition are
left-linear (resp. right-linear).

The root symbol of a term t is denoted by root(t). A term t is operation-
rooted (resp. constructor-rooted) if root(t) ∈ D (resp. root(t) ∈ C). As it is
common practice, a position p in a term t is represented by a sequence of natural
numbers, where ε denotes the root position. Positions are used to address the
nodes of a term viewed as a tree: t|p denotes the subterm of t at position p and

t[s]p denotes the result of replacing the subterm t|p by the term s. A term t is
ground if Var(t) = ∅. A term t is a variant of term t′ if they are equal modulo
variable renaming. A substitution σ is a mapping from variables to terms such
that its domain Dom(σ) = {x ∈ V | x 6= σ(x)} is finite. The identity substitution
is denoted by id. A substitution σ is constructor, if σ(x) is a constructor term
for all x ∈ Dom(σ). Term t′ is an instance of term t if there is a substitution σ
with t′ = σ(t). A syntactic object s1 is more general than a syntactic object s2,
denoted s1 6 s2, if there exists a substitution θ such that s2 = s1θ. A unifier
of two terms s and t is a substitution σ with σ(s) = σ(t); furthermore, σ is the
most general unifier of s and t, denoted by mgu(s, t) if, for every other unifier θ
of s and t, we have that σ 6 θ. In the following, we write on for the sequence of
objects o1, . . . , on.

Inductively sequential TRSs [3] are a subclass of left-linear constructor-based
TRSs. Essentially, a TRS is inductively sequential when all its operations are de-
fined by rewrite rules that, recursively, make on their arguments a case distinc-
tion analogous to a data type (or structural) induction. Inductive sequentiality
is not a limiting condition for programming. In fact, the first-order component
of many functional (logic) programs written in, e.g., Haskell, ML or Curry, are
inductively sequential.

Example 1. Consider the following rules which define the less-or-equal function
on natural numbers (built from zero and succ):

zero 6 y → true
succ(x) 6 zero → false
succ(x) 6 succ(y) → x 6 y

This function is inductively sequential since its left-hand sides can be hierarchi-
cally organised as follows:

n 6 m =⇒

 zero 6 m

succ(x) 6 m =⇒
{

succ(x) 6 zero
succ(x) 6 succ(y)

where arguments in a box denote a case distinction (this is similar to the notion
of definitional tree in [3]).

The evaluation of terms w.r.t. a TRS is formalised with the notion of rewriting.
A rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s if there
exists a position p in t, a rewrite rule R = (l → r) and a substitution σ with
t|p = σ(l) and s = t[σ(r)]p (p and R will often be omitted in the notation of
a reduction step). The instantiated left-hand side σ(l) is called a redex. A term
t is called irreducible or in normal form if there is no term s with t → s. We
denote by →+ the transitive closure of → and by →∗ its reflexive and transitive
closure. Given a TRS R and a term t, we say that t evaluates to s iff t →∗ s and
s is in normal form.

Functional logic programs mainly differ from purely functional programs in
that function calls may contain free variables. In order to evaluate such terms

containing variables, narrowing nondeterministically instantiates the variables
such that a rewrite step is possible [17]. Formally, t ;p,R,σ t′ is a narrowing
step iff p is a nonvariable position of t and σ(t) →p,R t′ (we sometimes omit p,
R and/or σ when they are clear from the context). The substitution σ is very
often the most general unifier1 of t|p and the left-hand side of (a variant of) R,
restricting its domain to Var(t). As in proof procedures for logic programming,
we assume that the rules of the TRS always contain fresh variables if they are
used in a narrowing step. We denote by t0 ;∗

σ tn a sequence of narrowing steps
t0 ;σ1 . . . ;σn tn with σ = σn ◦ · · · ◦ σ1 (if n = 0 then σ = id).

In order to avoid unnecessary computations and to deal with infinite data
structures, a demand-driven generation of the search space has been advocated
by a number of lazy narrowing strategies [15, 26, 27]. Because of its optimality
properties w.r.t. the length of derivations and the number of computed solutions,
we consider needed narrowing [4] in the following.

We say that s ;p,R,σ t is a needed narrowing step iff σ(s) →p,R t is a needed
rewrite step in the sense of Huet and Lévy [21], i.e., in every computation from
σ(s) to a normal form, either σ(s)|p or one of its descendants must be reduced.
Here, we are interested in a particular needed narrowing strategy, denoted by λ
in [4, Def. 13], which is based on the notion of a definitional tree [3] (a hierarchical
structure containing the rules of a function definition, which is used to guide the
needed narrowing steps). This strategy is basically equivalent to lazy narrowing
[27] where narrowing steps are applied to the outermost function, if possible,
and inner functions are only narrowed if their evaluation is demanded by a
constructor symbol in the left-hand side of some rule (i.e., a typical call-by-
name evaluation strategy). The main difference is that needed narrowing does
not compute the most general unifier between the selected redex and the left-
hand side of the rule but only a unifier. The additional bindings are required to
ensure that only “needed” computations are performed (see, e.g., [4]) and, thus,
needed narrowing generally computes a smaller search space.

Example 2. Consider again the rules defining function “6” of Example 1. In
a term like t1 6 t2, needed narrowing proceeds as follows: First, t1 should be
evaluated to some head normal form (i.e., a free variable or a constructor-rooted
term) since all three rules defining “6” have a non-variable first argument. Then,

1. If t1 evaluates to zero then the first rule is applied.
2. If t1 evaluates to succ(t′1) then t2 is evaluated to head normal form:

(a) If t2 evaluates to zero then the second rule is applied.
(b) If t2 evaluates to succ(t′2) then the third rule is applied.
(c) If t2 evaluates to a free variable, then it is instantiated to a constructor-

rooted term, here zero or succ(x) and, depending on this instantiation,
we proceed as in cases (a) or (b) above.

3. Finally, if t1 evaluates to a free variable, needed narrowing instantiates it to a
constructor-rooted term (zero or succ(x)). Depending on this instantiation,
we proceed as in cases (1) or (2) above.

1 Some narrowing strategies (e.g., needed narrowing) compute unifiers that are not
the most general, see below.

A precise definition of inductively sequential TRSs and needed narrowing is not
necessary in this work (the interested reader can find detailed definitions in [3,
4]). In the following, we use needed narrowing to refer to the particular strategy
λ in [4, Def. 13].

3 A Simple Offline NPE Scheme

In this section, we briefly present the offline approach to NPE from [29]. Given an
inductively sequential TRSR, the first stage of the process consists in computing
the annotated TRS. In [29], annotations were added to those subterms that
violate the non-increasingness condition, a simple syntactic characterisation of
programs that guarantees the quasi-termination of computations. Nevertheless,
annotations can be based on other, more refined, analyses—the goal of this
paper—as long as the annotated program still ensures the termination of the
specialisation process.

For the annotation stage, the signature F of a program is extended with a
fresh symbol: “•”. A term t is then annotated by replacing t by •(t).

Then, the second stage, i.e., the proper partial evaluation, proceeds as follows:

– it takes the annotated TRS, together with an initial term t,
– and constructs its associated (finite) generalising needed narrowing tree (see

below) where, additionally, a test is included to check whether a variant of
the current term has already been computed and, if so, stop the derivation.

Finally, a residual—partially evaluated—program is extracted from the general-
ising needed narrowing tree. Essentially, a generalising needed narrowing deriva-
tion s ∗

σ t is composed of

a) proper needed narrowing steps, for operation-rooted terms with no annota-
tions,

b) generalisations, for annotated terms, e.g., f(•(g(y)), x) is reduced to both
f(w, x) and g(y), where w is a fresh variable, and

c) constructor decompositions, for constructor-rooted terms with no annota-
tions, e.g., c(f(x), g(y)) is reduced to f(x) and g(y) when c ∈ C and f, g ∈ D.

The substitution in s ∗
σ t is the composition of the substitutions labelling the

proper needed narrowing steps of s ∗
σ t. Consider, for instance, the following

definitions of the addition and product on natural numbers built from zero and
succ:

add(zero, y) → y prod(zero, y) → zero
add(succ(x), y) → succ(add(x, y)) prod(succ(x), y) → add(prod(x, y), y)

According to [29], this program is not non-increasing because of the nested func-
tions in the right-hand side of the second rule of function prod . Therefore, it is
annotated as follows:

add(zero, y) → y prod(zero, y) → zero
add(succ(x), y) → succ(add(x, y)) prod(succ(x), y) → add(•(prod(x, y)), y)

E.g., the following needed narrowing computation is not quasi-terminating w.r.t.
the original program (the selected function call is underlined):

prod(x, y) ;{x7→succ(x′)} add(prod(x′, y), y)
;{x′ 7→succ(x′′)} add(add(prod(x′′, y), y), y) ; . . .

In contrast, the corresponding computation by generalising needed narrowing is
quasi-terminating (generalisation steps are denoted by “;•”):

add(w, y) ; . . .

prod(x, y) ;{x7→succ(x′)} add(•(prod(x′, y)), y)

• 666v6v6v6v6v

•
)))i)i)i)i)i

prod(x′, y) ; . . .

Our generalisation step is somehow equivalent to the splitting operation of con-
junctive partial deduction (CPD) of logic programs [10]. While CPD considers
conjunctions of atoms, we deal with terms possibly containing nested function
symbols. Therefore, flattening a nested function call is basically equivalent to
splitting a conjunction (in both cases some information is lost). A similar rela-
tion between term generalisation and CPD is also pointed out in [2, 23].

We skip the details of the extraction of residual programs from generalising
needed narrowing trees since it is orthogonal to the topic of this paper (a more
detailed description can be found in [29]).

4 Ensuring Quasi-Termination with Size-Change Graphs

In this section, we first recall some basic notions on size-change graphs from
[31], where the original scheme of [24] is adapted to term rewriting, and, then,
we introduce our new approach for ensuring quasi-termination.

A transitive and antisymmetric binary relation � is an order and a transitive
and reflexive binary relation % is a quasi-order. A binary relation � is well
founded iff there exist no infinite decreasing sequence t0 � t1 � t2 � . . . In the
following, we say that a given order “�” is closed under substitutions (or stable)
if s � t implies σ(s) � σ(t) for all s, t ∈ T (F ,V) and substitution σ.

Size-change graphs are parameterized by a so called reduction pair:

Definition 1 (reduction pair). We say that (%,�) is a reduction pair if %
is a quasi-order and � is a well-founded order on terms where both % and � are
closed under substitutions and compatible (i.e., % ◦ � ⊆ � and � ◦ % ⊆ � but
% ⊆ � is not necessary, where “ ◦” is defined on binary relations R and R′ as
follows: R ◦R′ = {(a, c) | (a, b) ∈ R and (b, c) ∈ R′}). We also require that s R t
implies Var(t) ⊆ Var(s) for all R ∈ {%,�} and terms s and t.

Informally speaking, the restriction Var(t) ⊆ Var(s) above is necessary in order
to correctly propagate groundness information through narrowing steps.

Definition 2 (size-change graph). Let (%,�) be a reduction pair. For every
rule f(sn) → r of a TRS R and every subterm g(tm) of r where g ∈ D, we have
a size-change graph as follows:

– The graph has n output nodes marked with {1f , . . . , nf} and m input nodes
marked with {1g, . . . ,mg}.

– If si � tj, then there is a directed edge marked with � from if to jg. Other-
wise, if si % tj, then there is an edge marked with % from if to jg.

A size-change graph is thus a bipartite labelled graph G = (V,W,E) where V =
{1f , . . . , nf} and W = {1g, . . . ,mg} are the labels of the output and input nodes,
respectively, and we have edges E ⊆ V ×W × {%,�}.

Size-change graphs are used to represent the way each function parameter changes
from one call to another, according to a given reduction pair. In order to analyse
the termination (or quasi-termination) of a program, it suffices to focus on its
loops. For this purpose, we now compute the transitive closure of the size-change
relations as follows:

Definition 3 (multigraph, concatenation). Every size-change graph of R is
a multigraph of R and if

G = ({1f , . . . , nf}, {1g, . . . ,mg}, E1)

and

H = ({1g, . . . ,mg}, {1h, . . . , ph}, E2)

are multigraphs of R w.r.t. the same reduction pair (%,�), then the concatena-
tion

G ·H = ({1f , . . . , nf}, {1h, . . . , ph}, E)

is also a multigraph of R. For 1 ≤ i ≤ n and 1 ≤ k ≤ p, E contains an edge
from if to kh iff E1 contains an edge from if to some jg and E2 contains an
edge from jg to kh. Furthermore, if some of the edges are labelled with “�”, then
the edge in E is labelled with “�” as well. Otherwise, it is labelled with “%”.

A multigraph G is idempotent if G = G · G (which implies that its input and
output nodes are both labelled with {1f , . . . , nf} for some f). In the following, we
will only focus on the idempotent multigraphs of a program, since they represent
its (potential) loops.

Example 3. Consider the following example which computes the reverse of a
given list:

rev([]) → [] app([], y) → y
rev(x : xs) → app(rev(xs), x : []) app(x : xs, y) → x : app(xs, y)

where “[]” and “:” are the list constructors. In this example, we consider a
particular reduction pair (%,�) defined as follows:

– s % t iff Var(t) ⊆ Var(s) and for all x ∈ Var(t), dv(t, x) 6 dv(s, x);
– s � t iff Var(t) ⊆ Var(s) and for all x ∈ Var(t), dv(t, x) < dv(s, x).

where the depth of a variable x in a constructor term t [8], dv(t, x), is defined
as follows:

dv(c(tn), x) = 1 + max (dv(tn, x)) if x ∈ Var(c(tn))
dv(c(tn), x) = −1 if x 6∈ Var(c(tn))

dv(y, x) = 0 if x = y
dv(y, x) = −1 if x 6= y
dv(t, x) = −1 if t is not a constructor term

with c ∈ C a constructor symbol of arity n > 0. The corresponding size-change
graphs of this program are the following:

G1 : 1rev
� // 1rev G2 : 1rev %

''NNNNNN 1app

2app

G3 : 1app
� // 1app

2app
% // 2app

where G1 and G3 are also the idempotent multigraphs of the program.

Definition 4 (PE-termination, PE-terminating TRS). A needed narrow-
ing computation is PE-terminating if only a finite number of nonvariant function
calls (i.e., redexes) have been unfolded. A TRS is PE-terminating if every pos-
sible needed narrowing computation is PE-terminating.

Observe that a PE-terminating TRS does not ensure the quasi-termination of
its computations. For instance, given the TRS of Example 3 and the initial call
rev(xs), we have the following needed narrowing derivation:

rev(xs) ;{xs 7→y:ys} app(rev(ys), y : [])
;{ys 7→z:zs} app(app(rev(zs), z : []), y : [])
;{zs 7→w:ws} . . .

Although this derivation contains an infinite number of different terms, there is
only a finite number of nonvariant function calls. Fortunately, this is sufficient
to ensure termination in many partial evaluation schemes because they often
include some form of memoisation.

Online methods for partial evaluation usually consider a distinction between
the so called local and global control levels. The local control should ensure that
function (or procedure) calls are not unfolded infinitely, while the global control
should take care of not unfolding infinitely many function (or procedure) calls. In
fact, this distinction can be applied to both online or offline partial evaluators. In
some cases, the distinction is made explicit (e.g., in the online partial evaluation
scheme for logic programs of [13]) and in some other cases it is left implicit.2 The

2 For instance, many partial evaluators for functional programs (see, e.g., [22]) include
an algorithm that iteratively (1) takes a function call, (2) performs some symbolic

main difference between these partial evaluators is that, in the online case, both
the local and the global control take decisions on-the-fly, while in the offline case
all decisions are taken before the actual specialisation starts (i.e., offline partial
evaluators mainly follow the program annotations).

In this work, we consider a simple offline partial evaluation procedure as
follows:

– Local control : here, we stop generalising needed narrowing derivations (i.e.,
needed narrowing derivations where annotated subterms are replaced by
fresh variables) when the selected function call is a variant of a previously
reduced function call in the same derivation. Observe that our local control
examines the previous function calls in order to determine if a given func-
tion call should be unfolded or not. This should not be considered an online
strategy but a simple memoisation technique. Furthermore, one could also
consider cheaper (though less precise) strategies like, e.g., a depth-k unfold-
ing strategy where narrowing computations stop after k function unfoldings
and no variant checking is necessary.

– Global control : once the unfolding of a function call stops, the non-constructor
terms in the leaves of the generalising needed narrowing tree are fully flat-
tened before adding them to the set of (to be) partially evaluated calls.
For instance, given the term f(g(x), h(y)), the function calls f(w1, w2), g(x)
and h(y) are added to the current set of (to be) partially evaluated calls,
where w1, w2 are fresh variables. This flattening step is required in order for
PE-termination to imply the termination of the partial evaluation process.

Now, we consider that the output of a simple (monovariant) binding-time anal-
ysis (BTA) is available. Informally speaking, given a TRS and the information
on which parameters of the initial function call are static and which are dy-
namic, a BTA maps each program function to a list of static/dynamic values.
Here, we consider that a static parameter is definitely known at specialisation
time (hence it is ground), while a dynamic parameter is possibly unknown at
specialisation time. The output of the BTA must be congruent [22]: the value
of every static parameter is determined by the values of other static parameters
(and thus ultimately by the available input).

In the following, we will also require the component % of a reduction pair
(%,�) to be bounded, i.e., the set {s | t % s} must contain a finite number of
nonvariant terms for any term t. Some closely related notions are that of rigidity
[7] and instantiated enough [25], both defined w.r.t. a so called norm. These
notions are used in many termination analyses for logic programs (e.g., [9, 14,
25]).

The following theorem states sufficient conditions to ensure PE-termination.
The proof of correctness is based on Ramsey’s Theorem (see [5]).

evaluations, and (3) extracts from the partially evaluated expression the set of pend-
ing function calls—the so-called successors of the initial function call—to be pro-
cessed in the next iteration of the algorithm. Steps (1) and (3) would correspond to
the global control while step (2) would correspond to the local control.

Theorem 1. Let R be a TRS and (%,�) a reduction pair. R is PE-terminating
w.r.t. any linear term if every idempotent multigraph associated to a function f/n
contains either

(i) at least one edge if
�−→ if for some i ∈ {1, . . . , n} such that if is static, or

(ii) an edge if
R−→ if , R ∈ {%,�}, for all i = 1, . . . , n, such that % is bounded.

Also, we require R to be right-linear w.r.t. the dynamic variables, i.e., no repeated
occurrence of the same dynamic variable may occur in a right-hand side.

Boundedness of “%” in the second case (ii) above is necessary to ensure that no
infinite sequences of nonvariant function calls with arguments of the same “size”
according to % are allowed. Consider, for instance, an order % which is based on
the length of a list, i.e., t1 % t2 if t1 and t2 are lists and the number of elements
of t2 is less than or equal to the number of elements of t1. In this case, % is
not bounded: consider, e.g, the term [x] so that the set {s | [x] % s} contains
infinitely many nonvariant terms. Therefore, one can have infinite sequences of
calls with nonvariant arguments where each argument is less than or equal to
the previous one in the sequence:

f([x]) ; f([succ(x)]) ; f([succ(succ(x))]) ; . . .

with [x] % [succ(x)] % [succ(succ(x))] %

Example 4. The last condition of Theorem 1 on right-linearity of dynamic vari-
ables is required in order to avoid situations like the following one: given the
TRS

double(x) → add(x, x)
add(zero, y) → y
add(succ(x), y) → succ(add(x, y))

although double and add seem clearly terminating (and thus quasi-terminating),
the following infinite computation is possible:

double(x) ;{ } add(x, x)
;{x7→succ(x′)} succ(add(x′, succ(x′)))
;{x′ 7→succ(x′′)} succ(succ(add(x′′, succ(succ(x′′)))))
;{x′′ 7→succ(x′′′)} . . .

which is not quasi-terminating nor PE-terminating.

5 Annotation Procedure

In this section, we introduce our new annotation procedure for offline narrowing-
driven partial evaluation. Analogously to [29], rather than requiring source pro-
grams to fulfil the conditions of Theorem 1, we use this result to determine which
subterms (if any) violate the conditions of this theorem.

The annotation procedure proceeds as follows: it considers every function
symbol f/n of the program such that f has an associated idempotent multigraph
(i.e., there is a potential loop that involves function f), and performs one of the
following actions:

1. if the conditions of Theorem 1 hold, no annotation is added to the program;
2. otherwise, each argument tj of every function call f(t1, . . . , tj , . . . , tn) with no

edge jf
R−→ jf , R ∈ {%,�}, is annotated as follows: f(t1, . . . , •(tj), . . . , tn);3

3. finally, if there is more than one occurrence of the same dynamic variable (not
yet annotated) in the right-hand side of a program rule, then all occurrences
but one (e.g., the leftmost one) are annotated.

Roughly speaking, the correctness of the annotation procedure follows from the
following facts:

– Let us consider a function call f/n with an associated idempotent multigraph
(note that, by Theorem 1, termination can be ensured by focusing only on
those program functions that have an associated idempotent multigraph).

– If the conditions of Theorem 1 hold, we have that from every call f(t1, . . . , tn)
to the next call f(s1, . . . , sn) in a computation the following conditions hold:
• there exists some i ∈ {1, . . . , n} such that ti � si and the i-th argument

of f is static (i.e., both ti and si are ground), which means that only
finitely many different calls to f can be produced;4

• otherwise, we have that either ti % si or si is annotated (and thus
generalising needed narrowing replaces this argument by a fresh variable)
for all i = 1, . . . , n, which means that only finitely many nonvariant calls
to function f can be produced since % is bounded.

– Finally, the only exception to the above reasoning comes from the possible
non right-linearity of the program w.r.t. dynamic variables, which is avoided
by also annotating all but one such variables, so that situations like the one
illustrated by Example 4 are no longer possible.

Let us illustrate the complete process with an example.

Example 5. Consider the well known Ackermann function:

ack(zero, n) → succ(n)
ack(succ(m), zero) → ack(m, succ(zero))
ack(succ(m), succ(n)) → ack(m, ack(succ(m), n))

First, we compute the size-change graphs of this program (here, we consider the
same reduction pair of Example 3):

G1 : 1ack
� // 1ack

2ack 2ack

G2 : 1ack
� // 1ack

1ack 2ack

G3 : 1ack

% // 1ack

2ack
� // 2ack

3 Analogously to [29], we use a fresh symbol, denoted by •, to annotate problematic
subterms that should be generalised at partial evaluation time.

4 This case is similar to the bounded anchoring principle of [16].

where graph G1 is associated to the second rule and graphs G2 and G3 are
associated to the third rule. In this example, these graphs coincide with the
idempotent multigraphs of the program.

Assume that we want to specialise this program w.r.t. the initial function
call ack(succ(succ(succ(zero))), y), i.e., the first argument is static (ground).
Clearly, the binding-time analysis returns the division {ack 7→ [S, D]}, which
means that the first argument of every call to ack is static and the second
argument is dynamic. In this case, we have that

– the first condition of Theorem 1 holds for G1 and G2 since the first argument
of ack is static and there is an edge 1ack

�−→ 1ack , and
– the second condition of Theorem 1 holds for G3 since there is an edge asso-

ciated to each argument (and % is bounded).

Furthermore, the right-linearity condition also holds since the only repeated
occurrences of the same variable are the repeated occurrences of variable m in
the third rule. However, no annotation is required in this case since variable m
is static according to the output of the binding-time analysis. Therefore, the
annotated program coincides with the original one.

Consider now that we want to specialise function ackermann w.r.t. the initial
call ack(x, succ(succ(succ(zero)))), i.e., the second argument is static (ground).
Here, the binding-time analysis returns the division {ack 7→ [D,D]} (because of
the nested calls in the third rule). In this case, we have that

– the second condition of Theorem 1 holds for G3 since there is an edge asso-
ciated to each argument,

– but, since no condition holds for both G1 and G2, we should annotate the
second argument of every call to function ack .

The annotated program is thus as follows:

ack(zero, n) → succ(n)
ack(succ(m), zero) → ack(m, •(succ(zero)))
ack(succ(m), succ(n)) → ack(m, •(ack(succ(m), •(n))))

Observe that there is no violation of the right-linearity condition since one of
the repeated occurrences of variable m in the third rule is already inside a •.

6 Experimental Evaluation

We have undertaken an implementation of the improved annotation procedure.
In particular, we have included the new annotation procedure into an offline
partial evaluator for Curry programs [29]. This partial evaluator has been im-
plemented in Curry itself [18]. In its current form, only a subset of Curry is
considered. The extension to the remaining features of Curry (e.g., constraints,
higher-order functions, built-ins, etc) is planned. The sources of the partial evalu-
ator and a detailed explanation of the benchmarks considered below are publicly

Table 1. Benchmark results

simple improved

benchmark codesize original peval speedup1 peval speedup2

ackermann 739 3363 1077 3.12 688 4.89
allones 662 1522 1444 1.05 1452 1.05
dec list 825 589 587 1.00 525 1.12
gauss 2904 308 320 0.96 252 1.22
inc list 817 937 834 1.12 730 1.28
insert sort 1005 1953 1280 1.53 1322 1.48
kmpA∗B 30580 428 298 1.44 227 1.89
kmpB∗A 30582 86 80 1.08 72 1.21
power 794 591 602 0.98 571 1.03

Average 7656 1086 725 1.36 649 1.68

available from

http://www.dsic.upv.es/users/elp/german/offpeval/

Table 1 shows the results of some benchmarks. For each benchmark, we show the
size (in bytes) of each program (codesize), the run time of the original program
(original), the run time for executing the residual program specialised with the
previous offline partial evaluator which uses the simpler annotation procedure
(simple peval), the run time for executing the residual program produced with
the partial evaluator which includes the new annotation procedure (improved
peval), and the speedup achieved by each partial evaluator; speedups are given
by orig/spec, where orig and spec are the absolute run times of the original and
specialised programs, respectively. Times are expressed in milliseconds and are
the average of 10 executions on a 2.4 GHz Linux-PC (Intel Pentium IV with 512
KB cache). Run time input goals were chosen to give a reasonably long overall
time. All programs (including the partial evaluators) were executed with the
Curry to Prolog compiler of PAKCS [19].

As it can be seen in Table 1, residual programs obtained with the improved
partial evaluator run (in the average) 7% faster than the residual programs
obtained with the previous partial evaluator. This is not an impressive improve-
ment but demonstrates that the novel annotation procedure is able to produce
faster specialised programs. Analysis and specialisation times are not shown be-
cause they are generally very small. We note that the current partial evaluator
is rather simple (i.e., it follows the simple strategy mentioned in Sect. 4). We
expect to produce faster residual programs by improving the control procedures
involved in the specialisation phase.

7 Conclusions and Future Work

This work introduced a new annotation procedure for the offline partial eval-
uation of functional logic programs. This procedure combines the information

gathered from a simple binding-time analysis and a size-change analysis [24].
In contrast to previous approaches like [16], several extensions were necessary
to cope with the logic component of the considered functional logic language
(e.g., the conditions of boundedness and right-linearity in Theorem 1 were not
needed in [16]). Preliminary experiments point out the improved performance of
a partial evaluator which included the new annotation procedure.

In order to further improve the precision of the partial evaluator, we are
currently implementing a polyvariant version of the program annotation stage.
In this case, every function call is treated separately according to the information
gathered from the associated idempotent multigraph. The resulting algorithm
would be more expensive but also more precise.

Acknowledgements

We gratefully acknowledge the anonymous referees as well as the participants of
LOPSTR 2006 for many useful comments and suggestions.

References

1. E. Albert and G. Vidal. The Narrowing-Driven Approach to Functional Logic
Program Specialization. New Generation Computing, 20(1):3–26, 2002.

2. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic
Programs. ACM TOPLAS, 20(4):768–844, 1998.

3. S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Algebraic and
Logic Programming (ALP’92), pages 143–157. Springer LNCS 632, 1992.

4. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776–822, 2000.

5. G. Arroyo, J.G. Ramos, J. Silva, and G. Vidal. Improving Offline Narrowing-
Driven Partial Evaluation Using Size-Change Graphs. Technical report,
Technical University of Valencia, 2006. Available from the following URL:
http://www.dsic.upv.es/users/elp/german/papers.html.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

7. A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by
Exploiting Term Properties. In S. Abramsky and T.S.E. Maibaum, editors, Proc.
of TAPSOFT’91, pages 153–180. Springer LNCS 494, 1991.

8. W.N. Chin and S.C. Khoo. Better Consumers for Program Specializations. Journal
of Functional and Logic Programming, 1996(4), 1996.

9. Michael Codish and Cohavit Taboch. A semantic basis for the termination analysis
of logic programs. J. Log. Program., 41(1):103–123, 1999.

10. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M.H.
Sørensen. Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming, 41(2&3):231–277, 1999.

11. S. Decorte, D. De Schreye, M. Leuschel, B. Martens, and K.F. Sagonas. Termi-
nation Analysis for Tabled Logic Programming. In Proc. of LOPSTR’97, pages
111–127. Springer LNCS 1463, 1998.

12. N. Dershowitz. Termination of Rewriting. Journal of Symbolic Computation,
3(1&2):69–115, 1987.

13. J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of the
ACM Symp. on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM’93), pages 88–98. ACM, New York, 1993.

14. S. Genaim, M. Codish, J.P. Gallagher, and V. Lagoon. Combining Norms to Prove
Termination. In Proc. of 3rd Int’l Workshop on Verification, Model Checking, and
Abstract Interpretation (VMCAI’02), pages 126–138. Springer LNCS 2294, 2002.

15. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel Leaf: A Logic
plus Functional Language. Journal of Computer and System Sciences, 42:363–377,
1991.

16. A.J. Glenstrup and N.D. Jones. Termination analysis and specialization-point in-
sertion in offline partial evaluation. ACM Trans. Program. Lang. Syst., 27(6):1147–
1215, 2005.

17. M. Hanus. The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming, 19&20:583–628, 1994.

18. M. Hanus. Curry: An Integrated Functional Logic Language. Available at:
http://www.informatik.uni-kiel.de/~mh/curry/, 2003.

19. M. Hanus (ed.), S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS 1.6.0: The Portland Aachen Kiel Curry System—User
Manual. Technical report, University of Kiel, Germany, 2004.

20. C.K. Holst. Finiteness Analysis. In Proc. of Functional Programming Languages
and Computer Architecture, pages 473–495. Springer LNCS 523, 1991.

21. G. Huet and J.J. Lévy. Computations in orthogonal rewriting systems, Part I + II.
In J.L. Lassez and G.D. Plotkin, editors, Computational Logic – Essays in Honor
of Alan Robinson, pages 395–443, 1992.

22. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

23. L. Lafave and J.P. Gallagher. Constraint-based Partial Evaluation of Rewriting-
based Functional Logic Programs. In Proc. of the 7th Int’l Workshop on Logic Pro-
gramming Synthesis and Transformation (LOPSTR’97), pages 168–188. Springer
LNCS 1463, 1997.

24. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The Size-Change Principle for Pro-
gram Termination. In ACM Symposium on Principles of Programming Languages
(POPL’01), volume 28, pages 81–92. ACM press, 2001.

25. Naomi Lindenstrauss and Yehoshua Sagiv. Automatic termination analysis of logic
programs. In ICLP, pages 63–77, 1997.

26. R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo. A Demand Driven Com-
putation Strategy for Lazy Narrowing. In Proc. of 5th Int’l Symposium on Pro-
gramming Language Implementation and Logic Programming (PLILP’93), pages
184–200. Springer LNCS 714, 1993.

27. J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming with Func-
tions and Predicates: The language Babel. J. Logic Programming, 12(3):191–224,
1992.

28. S. Peyton-Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

29. J.G. Ramos, J. Silva, and G. Vidal. Fast Narrowing-Driven Partial Evaluation
for Inductively Sequential Systems. ACM SIGPLAN Notices (Proc. of ICFP’05),
40(9):228–239, 2005.

30. J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity and Associativity. Journal of the ACM, 21(4):622–642, 1974.

31. R. Thiemann and J. Giesl. The size-change principle and dependency pairs for
termination of term rewriting. Appl. Algebra Eng. Commun. Comput., 16(4):229–
270, 2005.

32. S. Verbaeten, K. Sagonas, and D. De Schreye. Termination Proofs for Logic Pro-
grams with Tabling. ACM Transactions on Computational Logic, 2(1):57–92, 2001.

