
Concolic Execution in Functional Programming
by Program Instrumentation?

Adrián Palacios?? and Germán Vidal

MiST, DSIC, Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain
{apalacios,gvidal}@dsic.upv.es

Abstract. Concolic execution, a combination of concrete and symbolic
execution, has become increasingly popular in recent approaches to model
checking and test case generation. In general, an interpreter of the lan-
guage is augmented in order to also deal with symbolic values. In this
paper, in contrast, we present a lightweight approach that is based on a
program instrumentation. Basically, the execution of the instrumented
program in a standard environment produces a sequence of events that
can be used to reconstruct the associated symbolic execution. We discuss
the usefulness of our approach for test case generation.

1 Introduction

Software testing is one of the most widely used approaches for program valida-
tion. In this context, symbolic execution [9] was introduced as an alternative to
random testing —which usually achieves a poor code coverage— or the complex
and time-consuming design of test-cases by the programmer or software tester.
In symbolic execution, one replaces the input data by symbolic values. Then, at
each branching point of the execution, all feasible paths are explored and the
associated contraints on symbolic values are stored. Symbolic states thus include
a so called path condition with the constraints stored so far. Test cases are finally
produced by solving the constraints in the leaves of the symbolic execution tree,
which is typically incomplete since the number of states is infinite.

Unfortunately, both the huge search space and the complexity of the con-
straints make test case generation based on symbolic execution difficult to scale.
For instance, most approaches only deal with linear constraints. Therefore, as
soon as a non-linear constraint is collected, the execution of this branch is ter-
minated in order to ensure soundness, giving rise to a poor coverage in many
cases.
? This work has been partially supported by the EU (FEDER) and the Spanish Min-

isterio de Economı́a y Competitividad under grant TIN2013-44742-C4-1-R and by
the Generalitat Valenciana under grant PROMETEOII2015/013.

?? Partially supported by the the EU (FEDER) and the Spanish Ayudas para contratos
predoctorales para la formación de doctores de la Secretaŕıa de Estado de Investi-
gación, Desarrollo e Innovación del Ministerio de Economı́a y Competitividad under
FPI grant BES-2014-069749.

Concolic execution [6, 11] is a recent proposal that combines concrete and
symbolic execution, and overcomes some of the drawbacks of previous approaches.
Essentially, concolic execution takes a program and some (initially random) con-
crete input data, and performs both a concrete and a symbolic execution that
mimics the steps of the concrete execution. In this context, symbolic execution
is simpler since we know the execution path that must be followed (the same of
the concrete execution). Moreover, if the current constraint becomes too com-
plex (e.g., non-linear), we can still push some concrete data from the concrete
execution, thus symplifying it and often allowing the symbolic execution to con-
tinue. In general, this technique —called concolic testing— is being used both for
model checking and test-case generation (see, e.g., SAGE [7] and Java Pathfinder
[10]). Test cases produced with this technique usually achieve a better code cov-
erage than previous approaches based solely on symbolic execution. Moreover,
it scales up better to complex or large programs.

Despite its popularity in the imperative and object-oriented programming
paradigms, we can only find a few preliminary approaches to concolic testing in
the context of functional and logic programming. On the one hand, [12] intro-
duced a formalization of both concrete and symbolic execution for the functional
and concurrent language Erlang [2], but the concolic testing procedure was barely
sketched. More recently, [5] presented the design and implementation of a con-
colic testing tool for a functional subset of Erlang (i.e., the concurrency features
are not considered in the paper). The tool, called CutEr, is publicly available
from https://github.com/aggelgian/cuter. On the other hand, within logic
programming, [13] presented a first approach to concolic testing in Prolog. How-
ever, this scheme was only aimed at statement coverage and, thus, it is simpler
than other approaches aimed at full path coverage (like, e.g., [5]).

However, the essential component of all these approaches is an interpreter
augmented to also deal with symbolic values. Besides involving a huge imple-
mentation effort, these approaches are difficult to maintain and usually do not
scale up well to medium and large applications.

In contrast, in this paper, we present a lightweight approach that is mainly
based on instrumenting the source program. Here, we deal with a simple func-
tional eager language that can be seen as a purely functional subset of Erlang.
First, we present an instrumented semantics, a conservative extension of the stan-
dard semantics that also produces a sequence of events that suffice to reconstruct
the associated symbolic execution. Then, we present a program instrumentation
such that the execution of the instrumented program with the standard seman-
tics produces the same events as the original program with the instrumented
semantics.

2 The Language

In this section, we introduce the language considered in this paper. Our language
is inspired in the concurrent functional language Erlang [2], which has a number
of distinguishing features, like dynamic typing, concurrency via asynchronous

pgm ::= a/n = fun (X1, . . . , Xn)→ e. | pgm pgm

Exp 3 e ::= a | X | [] | [e1|e2] | {e1, . . . , en} | apply e0 (e1, . . . , en)
| case e of clauses end | let p = e1 in e2 | do e1 e2

clauses ::= p1 → e1; . . . ; pn → en

Pat 3 p ::= [p1|p2] | [] | {p1, . . . , pn} | a | X
Value 3 v ::= [v1|v2] | [] | {v1, . . . , vn} | a

Fig. 1. Core Erlang Syntax

message passing or hot code loading, that make it especially appropriate for dis-
tributed, fault-tolerant, soft real-time applications. Erlang’s popularity is grow-
ing today due to the demand for concurrent services. But this popularity will
also demand the development of powerful testing and verification techniques,
thus the opportunity of our research.

Despite the fact that we plan to deal with full Erlang in the future, in this
paper we only consider a functional subset of Core Erlang [3], an intermediate
language used internally by the compiler, similarly to [5].

The basic objects of the language are variables (denoted by X,Y, . . . ∈ Var),
atoms (denoted by a, b, . . .) and constructors (which are fixed in Erlang to lists,
tuples and atoms); defined functions are named using atoms too (we will use,
e.g., f/n, g/m, . . .). The syntax for Core Erlang programs and expressions obeys
the rules shown in Figure 1. Programs are sequences of function definitions. Each
function f/n is defined by a rule fun (X1, . . . , Xn) → e. where X1, . . . , Xn are
distinct variables and the body of the function, e, can be an atom, a process
identifier, a variable, a list, a tuple, a function application, a case distinction,
a let expression or a do construct (i.e., do e1 e2 evaluates sequentially e1 and,
then, e2, so the value of e1 is lost). Patterns are made of lists, tuples, atoms, and
variables. Values are similar to patterns but cannot contain variables.

Example 1. Consider the Erlang function (left) and its translation to Core Er-
lang (right) shown in Figure 2, where some minor simplifications have been ap-
plied. Observe that Erlang’s sequence operator “,” is translated to a do operator
when no value should be passed (using pattern matching) to the next element in
the sequence, and to a let expression otherwise. Note also that, despite the fact
that this is not required by the syntax, some function applications are flattened
in order to avoid nested applications. For this purpose, some additional let ex-
pressions are introduced. Moreover, additional default alternatives are added to
each case expression in order to catch pattern matching errors, so it is common
to have overlapping patterns in the clauses of a case construct.

As we will see later, for our instrumentation to be correct, we require some addi-
tional constraints on the syntax of programs. Basically, we require the following:

– both the name and the arguments of a function application must be patterns,

f(X,Y) → g(X),
case h(X) of

a→ A = h(Y),
g(A);

b→ g(h([]))
end.

f/2 = fun (X,Y)→ do apply g/1 (X),
case apply h/1 (X) of

a→ let Z = apply h/1 (Y)
in apply g/1 (Z);

b→ let V = apply h/1 ([])
in apply g/1 (V);

W → fail
end.

Fig. 2. Erlang function and its translation to Core Erlang

pgm ::= a/n = fun (X1, . . . , Xn)→ let X = e in X. | pgm pgm

Exp 3 e ::= a | X | [] | [p1|p2] | {p1, . . . , pn} | let p = e1 in e2 | do e1 e2
| let p = apply p0 (p1, . . . , pn) in e | let p1 = case p2 of clauses end in e

clauses ::= p1 → e1; . . . ; pn → en

Pat 3 p ::= [p1|p2] | [] | {p1, . . . , pn} | a | X
Value 3 v ::= [v1|v2] | [] | {v1, . . . , vn} | a

Fig. 3. Flat language syntax

– the return value of a function must always be a pattern,

– the argument of a case expression must be a pattern, and

– both function applications and case expressions can only occur in the right-
hand side of a let expression.

The new constraints are needed in order to keep track of the intermediate values
returned by expressions. These values are stored in a pattern, which can then
be used by other expressions or returned as the result of a function application.

The restricted syntax is shown in Figure 3. In the following, we call the pro-
grams fulfilling this syntax flat programs. In practice, one can transform (purely
functional) Core Erlang programs to our flat syntax using a simple pre-processing
transformation.

Furthermore, in the flat language we also require the bound variables in the
body of the functions to have unique, fresh names. This is not strictly necessary,
but it simplifies the presentation by avoiding the use of context scopes associated
to every let expression, etc. (as in [8], where the last binding of a variable in the
environment should be considered to ensure that the right scope is used). In the
following, we denote with on a sequence of objects o1, . . . , on. Var(e) denotes the
set of variables appearing in an expression e; moreover, we say that e is ground
if Var(e) = ∅.

Here, we use the function bv to gather the bound variables of an expression:

Definition 1 (bound variables, bv). Let e be an expression. The function
bv(e) returns the set of bound variables of e as follows:

bv(e) =

{ } if e ∈ Pat

Var(p) ∪ bv(e′) if e ≡ let p = apply p0 (p1, . . . , pn) in e′

Var(p0) ∪ . . . ∪ Var(pn) if e ≡ let p0 = case p of pn → en end in e′

∪ bv(e1) ∪ . . . ∪ bv(e′)

Var(p) ∪ bv(e1) ∪ bv(e2) if e ≡ let p = e1 in e2

bv(e1) ∪ bv(e2) if e ≡ do e1 e2

where, in the fourth case, we assume that e1 is neither an application nor a case
expression (i.e., it is a pattern or another let expresssion).

3 Instrumented Semantics

In this section, we present an instrumented semantics for flat programs that
produces a sequence of events that will suffice to reconstruct the associated
symbolic execution. Essentially, we need to keep track of function calls, returns,
let bindings and case selections. Formally,

– The first event, call(params, vars, p, [p1, . . . , pn]), is associated to a function
application let p = apply p0 (p1, . . . , pn) in e. Here, params and vars refer
to the function where the application occurs; params is the list with the
current function parameters, and vars is the list with the bound variables.
Then, [p1, . . . , pn] are the arguments of the function call, and p will be used
to store the return value of the function call.

– The second event is exit(params, vars, p), where p is the pattern used to store
the return value of the function body.

– The next event is bind(params, vars, p, p′), which binds the pattern p from
a generic let expression (i.e., a let expression whose argument is neither an
application nor a case expression) to the return value p′ of that expression
(see function ret below).

– Finally, for each expression of the form

let p = case p0 of p1 → e1; . . . ; pn → en end in e

we have two associated events. The first one is

case(params, vars, i, p0, pi, [(p0, 1, p1), . . . , (p0, n, pn)])

Here, we store the position of the selected branch, i, the case argument
p0, the selected pattern pi, as well a list with all case branches, which will
become useful for producing alternative input data in concolic testing. The
second event is exitcase(params, vars, p, p′), where p′ is the return value of
the selected branch (see below).

Before presenting the instrumented semantics, we need the following auxiliary
function that identifies the return value of an expression:

Definition 2 (return value, ret). Let e be an expression. We let ret(e) denote
the return value of e as follows:

ret(e) =

e if e ∈ Pat
ret(e′) if e ≡ let p = apply p0 (p1, . . . , pn) in e′

ret(e′) if e ≡ let p0 = case p of pn → en end in e′

ret(e2) if e ≡ let p = e1 in e2
ret(e2) if e ≡ do e1 e2

where, in the fourth case, we assume that e1 is neither an application nor a case
expression (i.e., it is a pattern or another let expresssion).

The instrumented semantics for flat programs is formalized in Figure 4 following
the style of a natural —big-step— semantics [8]. Observe that we do not need
closures (as it is common in the natural semantics [8]) since we do not allow fun
expressions in the body of a function in this paper. Here, we use an environment θ
—i.e., a mapping from variables to patterns— because we need to know the static
values of the variables for the instrumentation (e.g., we use the case argument
that appears statically in the program, rather than the instantiated run time
value). The main novelty is that, for the instrumentation, we also need to keep
track of the function where an expression occurs. For this purpose, we also
introduce a simple context π that stores this information, i.e., for a given function
fun (X1, . . . , Xn) → e we store a tuple 〈[X1, . . . , Xn], [bv(e)]〉. The environment
is only updated in function applications, where [bv(e)] denotes a list with the
variables returned by bv(e).

Let us briefly explain the rules of the semantics (events are depicted in blue).
Statements have the form π, θ ` e ⇓τ p, where π is the aforementioned context, θ
is a substitution (the environment), e is an expression, τ is a sequence of events,
and p is a pattern —the value of e.

The first rule deals with patterns (including variables, atoms, tuples and
lists). Here, the evaluation just proceeds by applying the current environment
θ to the pattern p to bind its variables (if any), which is denoted by pθ. The
associated sequence of events is ε denoting an empty sequence.

The next rule deals with function applications. In this case, the context is
necessary for setting the first and second parameters of call and exit events.
Note that since we only consider flat programs, both the function name and the
arguments are patterns; thus, their evaluation amounts to binding their variables
using the current environment, which explains why the associated sequences of
events are ε. Note also that, when recursively evaluating the body of the function,
we update the context with the information of the function called. The bound
variables are collected using the function bv; and, as mentioned before, in the flat
language we assume that they all have different, fresh names. Observe that the
subcomputation for evaluating the body of the function called is preceeded by
the call event and followed by an exit event. Here, we use the auxiliary function

π, θ ` p ⇓ε pθ

〈vs, ps〉, θ ` p0 ⇓ε f/m . . . 〈vs, ps〉, θ ` pm ⇓ε p′m
〈[Ym], [bv(e2)]〉, θ ∪ σ ` e2 ⇓τ1 p′ 〈vs, ps〉, θ ∪ σ′ ` e ⇓τ2 p′′

〈vs, ps〉, θ ` let p = apply p0 (pm) in e ⇓call(vs,ps,p,[pm])+τ1+exit([Ym],[bv(e2)],p
′′
2)+τ2

p′′

if f/m = fun (Ym)→ e2 ∈ pgm, ret(e2) = p′′2 ,

match(Ym, p′m) = σ, match(p, p′) = σ′

〈vs, ps〉, θ ` p ⇓ε p′ 〈vs, ps〉, θ ∪ σ ` ei ⇓τ1 p 〈vs, ps〉, θ ∪ σ′ ` e ⇓τ2 p′′

〈vs, ps〉, θ ` let p0 = case p of clauses end in e ⇓case(vs,ps,i,p,pi,alts)+τ1+exitcase(vs,ps,p0,p
′
i)+τ2

p′′

if clauses = p1 → e1; . . . ; pm → em, cmatch(p′, clauses) = (i, pi, σ),
alts = [(1, p, p1), . . . , (m, p, pm)], ret(ei) = p′i, match(p0, p) = σ′

π, θ ` e1 ⇓τ1 p′1 π, θ ∪ σ ` e2 ⇓τ2 p
π, θ ` let p1 = e1 in e2 ⇓τ1+bind(vs,ps,p1,ret(e1))+τ2 p

if match(p1, p
′
1) = σ

π, θ ` e1 ⇓τ1 p1 π, θ ` e2 ⇓τ2 p2
π, θ ` do e1 e2 ⇓τ1+τ2 p2

Fig. 4. Flat language instrumented semantics

match to compute the matching substitution (if any) between two patterns, i.e.,
match(p1, p2) = σ if Dom(σ) ⊆ Var(p1) and p1σ = p2, and fail otherwise. In
this rule, match(Ym, p′m) just returns the substitution {Y1 7→ p′1, . . . , Ym 7→ p′m}.
The update of an environment θ using σ is denoted by θ∪σ. Formally, θ∪σ = δ
such that Xδ = σ(X) if X ∈ Dom(σ) and Xδ = Xθ otherwise (i.e., σ has
higher priority than θ). Observe that we use the evaluated patterns p′1, . . . , p

′
m

to update the environment, but the original, static patterns p1, . . . , pm in the
call event.

The next rule is used to evaluate case expressions. Here, we produce case
and exitcase events that also include the parameter variables of the function and
the bound variables. For selecting the matching branch of the case expression,
we use the auxiliary function cmatch that is defined as follows: cmatch(p, p1 →
e1; . . . ; pn → en) = (i, pi, σ) if match(p, pi) = σ for some i ∈ {1, . . . , n} and
match(p, pj) = fail for all j < i. Informally speaking, cmatch selects the first
matching branch of the case expression, which follows the usual semantics of
Erlang. As in the previous rule, note that we use p′ in cmatch but the original,
static pattern p in the case event.

The following rule is is used to evaluate let expressions. It produces a single
bind event which includes, as usual, the parameter variables of the function and
the bound variables. Finally, the last rule deals with do expressions. Here, we
proceed as expected and return the concatenation of the sequences of events
produced when evaluating the subexpressions.

main/1 = fun (X)→ let W = apply app/2 (X,X) in W

app/2 = fun (X,Y)→ let W1 = case X of
[]→ Y
[H|T]→ let W2 = apply app/2 (T, Y) in [H|W2]

end
in W1

Fig. 5. Example flat program

In the following, without loss of generality, we assume that the entry point
to the program is always the distinguished function main/n.

Definition 3 (instrumented execution). Given a flat program pgm and an
initial expression, apply main/n (p1, . . . , pn), with main/n = fun (X1, . . . , Xn)→
e ∈ pgm, its evaluation is denoted by

〈[Xn], [bv(e)]〉, θ ` e ⇓τ v

where θ = {X1 7→ p1, . . . , Xn 7→ pn} is a substitution, v is the computed value
and τ + exit([Xn], [bv(e)], ret(e)) is the associated sequence of events.

Example 2. Let us consider the flat program shown in Figure 5. An example
computation with the instrumented semantics is shown in Figure 6. Therefore,
the associated sequence of events1 is the following:

call([X], [W],W, [X,X])
case([X,Y], [W1,W2], 2, X, [H|T], [(1, X, []), (2, X, [H|T])])
call([X,Y], [W1,W2],W2, [T, Y])
case([X,Y], [W1,W2], 1, X, [], [(1, X, []), (2, X, [H|T])])
exitcase([X,Y], [W1,W2],W1, Y)
exit([X,Y], [W1,W2],W1)
exitcase([X,Y], [W1,W2],W1, [H|W2])
exit([X,Y], [W1,W2],W1)
exit([X], [W],W)

Note that the semantics is a conservative extension of the standard semantics in
the sense that the generation of events does not affect the evaluation, i.e., if we
remove the context information and the events labeling the arrows, we are back
to the standard semantics of an eager functional language essentially equivalent
to that in [8]. In the following, we denote computations with the standard, non-
instrumented semantics, with e ⇓ v. In this case, we do not use contexts nor

1 Note that the flat program is not syntactically correct according to Fig. 3 since the
right-hand side of the functions do not have the form let X = e in X with e a pattern,
a let binding or a do expression. Here, we keep this simpler formulation for clarity,
and it also simplifies the sequence of events by avoiding some redundant bind events.

π2, θ4 ` Y ⇓ε [a] π2, θ5 `W1 ⇓ε [a]

π2, θ4 ` let W1 = case . . . ⇓τ1 [a] π2, θ6 ` [H|W2] ⇓ε [a, a]

π2, θ3 ` let W2 = apply . . . ⇓τ2 [a, a] π2, θ7 `W1 ⇓ε [a, a]

π2, θ2 ` let W1 = case . . . ⇓τ3 [a, a] π1, θ8 `W ⇓ε [a, a]

π1, θ1 ` let W = apply app/2 (X,X) in W ⇓τ4 [a, a]

with

π1 = 〈[X], [W]〉 and π2 = 〈[X,Y], [W1,W2H,T]〉

θ1 = {X 7→ [a]} θ2 = {X 7→ [a], Y 7→ [a]}
θ3 = {X 7→ [a], Y 7→ [a], H 7→ a, T 7→ []} θ4 = {X 7→ [], Y 7→ [a]}
θ5 = {X 7→ [], Y 7→ [a],W1 7→ [a]} θ6 = {X 7→ [a], Y 7→ [a], H 7→ a, T 7→ [],W2 7→ [a]}
θ7 = {X 7→ [a], Y 7→ [a],W1 7→ [a, a]} θ8 = {X 7→ [a],W 7→ [a, a]}

τ1 = case([X,Y], [W1,W2], 1, X, [], [(1, X, []), (2, X, [H|T])])
+exitcase([X,Y], [W1,W2],W1, Y)

τ2 = call([X,Y], [W1,W2],W2, [T, Y]) + τ1 + exit([X,Y], [W1,W2],W1)

τ3 = case([X,Y], [W1,W2], 2, X, [H|T], [(1, X, []), (2, X, [H|T])]) + τ2
+exitcase([X,Y], [W1,W2],W1, [H|W2])

τ4 = call([X], [W],W, [X,X]) + τ3 + exit([X,Y], [W1,W2],W1)

Fig. 6. Example computation with the instrumented semantics

environments, and assume that the bindings are always applied to the current
expression.

The relevance of the computed sequences of events is that one can easily
reconstruct a symbolic execution that mimics the steps of the concrete execution
that produced the sequence of events. For instance, one can use the simple
Prolog-like program shown in Fig. 7.2 For example, given the sequence of events
of Example 2 and the initial call sym(Res,Vars), the above program returns:

Res = [X ,X], Vars = [X]

which obviously produces less instantiated values than the concrete execution
(where we had Res = [a, a], Vars = [a]). An extended version of this procedure
can be used to generate new test cases (see Section 5).

4 Program Instrumentation

In this section, we present a program transformation that instruments a program
so that its standard execution will return the same sequence of events produced
with the original program and the instrumented semantics of Figure 4.

2 Here, we assume that the elements of τ are renamed apart. In the implementation,
this is achieved when consulting them from a file. Indeed, this is why a context is
needed in the events, to be able to recover the right bindings.

sym(τ,Res,Vars)← eval(τ, [(Res,Vars)], [BVars]).

eval([], [], []).

eval([call(Vars,BVars,NRes,NVars)|Tau], [(Res,Vars)|Env], [BVars|BEnv])←
eval(Tau, [(NRes,NVars), (Res,Vars)|Env], [NBVars,BVars|BEnv]).

eval([case(Vars,BVars, N,Arg,Pat , Alts)|Tau], [(Res,Vars)|Env], [BVars|BEnv])←
Arg = Pat , eval(Tau, [(Res,Vars)|Env], [BVars|BEnv]).

eval([exitcase(Vars,BVars, Arg,Pat)|Tau], [(Res,Vars)|Env], [BVars|BEnv])←
Arg = Pat , eval(Tau, [(Res,Vars)|Env], [BVars|BEnv]).

eval([bind(Vars,BVars, Pat1, Pat2)|R], [(Res,Vars)|Env], [BVars|BEnv])←
Pat1 = Pat2, eval(R, [(Res,Vars)|Env], [BVars|BEnv]).

eval([exit(Vars,BVars,Pat)|Tau], [(Res,Vars)|Env], [BVars|BEnv])←
Res = Pat , eval(Tau,Env,BEnv).

Fig. 7. Prolog-like procedure for symbolic execution

Let us first introduce the predefined function out. It outputs its first argument
(e.g., to a given file or to the standard output) and returns its second argument.
This function is implemented as a function call (i.e., not as a function applica-
tion) so that there is not any conflict when performing the instrumentation.

Definition 4 (program instrumentation). Let pgm be a flat program. We
instrument pgm by replacing each function definition:

f/k = fun (X1, . . . , Xk)→ let X = e in X

with a new function definition of the form

f/k = fun (X1, . . . , Xk)→ [[let X = e in out(“bind(vs, bs,X, ret(e))”,

out(“exit(vs, bs,X)”, X))]]
vs,bs
F

where vs = [Xk], bs = [bv(e)], F is a flag to determine if an exitcase event should
be produced (see below), and the auxiliary function [[]] is shown in Figure 8.

Let us briefly explain the rules of the instrumentation. First, we add bind and
exit events at the end of each function. Then, we also add call and case events
in each occurrence of a function application and a case expression, respectively.
Finding the value returned by a case expression is a bit more subtle. For this
purpose, we introduce a flag that is propagated through the different cases so
that only when the expression is the last expression in a case branch (a pattern)
we produce an exitcase event. For let expressions, we produce a bind event and
continue evaluating both the expression in the right-hand side of the binding
and the result. Finally, the default case —the last equation in Figure 8— is only
used to ignore the call to the predefined function out/2.

Example 3. Consider again the flat program of Example 2. The instrumented
program is shown in Figure 9, where the new code is shown in blue.

[[e]]vs,bsF = e if e ∈ Pat

[[e]]vs,bsT(p) = out(“exitcase(vs, bs, p, e)”, e) if e ∈ Pat

[[let W = apply p0 (pn) in e]]vs,bsb = let W = out(“call(vs, bs,W, [p1, . . . , pn])”,
apply p/0 (p1, . . . , pn))

in [[e]]vs,bsb

[[let W = case p of = let W = case p of
p1 → e1; p1 → out(“case(vs, bs, 1, p, p1, alts)”,

[[e1]]vs,bsT(W))

.
pn → en pn → out(“case(vs, bs, n, p, pn, alts)”,

[[en]]vs,bsT(W))

end end

in e]]vs,bsb in [[e]]vs,bsb

[[let p = e1 in e2]]vs,bsb = let p = [[e1]]vs,bsF in out(“bind(vs, bs, p, ret(e1))”,

[[e2]]vs,bsb)

[[do e1 e2]]vs,bsb = do [[e1]]vs,bsF [[e2]]vs,bsb

[[e]]vs,bsb = e otherwise

where alts = [(p, 1, p1), . . . , (p, n, pn)]

Fig. 8. Program instrumentation

main/2 = fun (X)→ let W = out(“call([X], [W],W, [X,X])”,
apply app/2 (X,X))

in out(“exit([X], [W],W)”,W)

app/2 = fun (X,Y)→
let W1 = case X of

[]→ out(“case([X,Y], [W1,W2, H, T], 1, X, [], alts)”,
out(“exitcase([X,Y], [W1,W2, H, T],W1, Y)”,Y))

[H|T]→ out(“case([X,Y], [W1,W2, H, T], 2, X, [H|T], alts)”,
let W2 = out(“call([X,Y], [W1,W2, H, T],W2, [T, Y])”,

apply app/2 (T, Y)))
in out(“exitcase([X,Y], [W1,W2, H, T],W1, [H|W2])”,

[H|W2])
in out(“exit([X,Y], [W1,W2, H, T],W1)”,W1)

where alts = [(1, X, []), (2, X, [H|T])].

Fig. 9. Instrumented program

It can easily be shown that the instrumented program produces the same
sequence of events of Example 2 (e.g., by executing the program in the standard
environment of Erlang, together with an appropriate definition of out/2).

The correctness of the program instrumentation is stated in the next result:

Theorem 1. Let pgm be a flat program and pgmI its instrumented version ac-
cording to Definition 4. Given an initial expression, apply main/n (p1, . . . , pn),
its execution using pgm and the instrumented semantics (according to Defini-
tion 3) produces the same sequence of events as its execution using pgmI and
the standard semantics.

The proof is not difficult and can be performed by induction on the structure of
the proof trees.

5 Concolic Testing

In this section, we discuss the usefulness of our approach to concolic execution in
the context of test case generation. Basically, the process is similar to previous
algorithms (e.g., [13]). First, we introduce the following notion of trace:

Definition 5 (trace). Let τ be the sequence of events produced by an evaluation
with the instrumented semantics. Then, trace(τ) denotes the associated trace,
where the auxiliary function trace is defined as follows:

trace(τ) =

ε if τ = ε
trace(τ ′) if τ = call(vs, bs, p, ps) + τ ′

trace(τ ′) if τ = exit(vs, bs, p) + τ ′

trace(τ ′) if τ = bind(vs, bs, p, p′) + τ ′

i, trace(τ ′) if τ = case(vs, bs, i, p, pi, alts) + τ ′

trace(τ ′) if τ = exitcase(vs, bs, p, p′) + τ ′

For instance, the trace associated to the sequence of events τ of Example 2 is
trace(τ) = 2, 1. Roughly speaking, the trace just records the fact that two case
expressions have been evaluated, first selecting the second branch and then the
first branch.

Here, one is interested in computing all possible alternative input arguments
from a given sequence of events, rather than only the one that mimics the con-
crete execution. This can be obtained, e.g., using the Prolog-like procedure shown
in Figure 10 (a slight extension of the one in Section 3; the new case is in blue).
Now, input alt(τ,Vars) —where the events in τ are renamed apart, as before—
considers all possible alternatives by matching a different branch in every eval-
uated case expression. For instance, for the sequence of events of Example 2, we
get three (nondeterministic) answers:

Vars = [] ; Vars = [X] ; Vars = [X ,Y |R]

In the following, we assume a function alt(Traces, τ) that is based on input alt
but also fulfills the following conditions:

input alt(τ,Vars)← eval(τ, [(Res,Vars)], [BVars]).

eval([], [], []).

eval([call(Vars,BVars,NRes,NVars)|Tau], [(Res,Vars)|Env], [BVars|BEnv])
← eval(Tau, [(NRes,NVars), (Res,Vars)|Env], [NBVars,BVars|BEnv]).

eval([case(Vars,BVars, N,Arg,Pat , Alts)|Tau], [(Res,Vars)|Env], [BVars|BEnv])
← Arg = Pat , eval(Tau, [(Res,Vars)|Env], [BVars|BEnv]).

eval([case(Vars,BVars, N, , , Alts)|Tau], [(Res,Vars)|Env], [BVars|BEnv])
← member((M,Arg,Pat), Alts), N 6= M,
Arg = Pat , eval(Tau, [(Res,Vars)|Env], [BVars|BEnv]).

eval([bind(Vars,BVars, Pat1, Pat2)|R], [(Res,Vars)|Env], [BVars|BEnv])←
Pat1 = Pat2, eval(R, [(Res,Vars)|Env], [BVars|BEnv]).

eval([exitcase(Vars,BVars, Arg,Pat)|Tau], [(Res,Vars)|Env], [BVars|BEnv])
← Arg = Pat , eval(Tau, [(Res,Vars)|Env], [BVars|BEnv]).

eval([exit(Vars,BVars,Pat)|Tau], [(Res,Vars)|Env], [BVars|BEnv])
← Res = Pat , eval(Tau,Env,BEnv).

Fig. 10. Prolog-like procedure for concolic testing

– When selecting a case branch, the bindings should ensure not only that the
pattern of the branch is matched, but also that no previous patterns are
matched.

– The set of visited traces is used to avoid producing input data whose ex-
ecution will produce a trace that is a prefix of some of the already visited
traces.

– Finally, when the returned arguments are not ground, we further apply a
grounding substitution. Although any arbitrary values would be correct, one
can get a more precise algorithm by using type information to restrict the
possible values an argument may take.

Now, let us present the kernel of a concolic testing procedure.

Definition 6 (concolic testing).

Input: an instrumented program pgm and an expression apply main/n (pn).

Output: a set TC of test cases.

1. Let Pending := {apply main/n (pn)}, TC := {}, Traces := {}.
2. While |Pending| 6= 0 do

(a) Take e ∈ Pending, Pending := Pending\{e}, TC := TC ∪ {e}.
(b) Let τ be the sequence of events from the execution of e using the instru-

mented program, with trace(τ) = in. Let Traces := Traces ∪ {in}.
(c) Pending := Pending ∪ alt(Traces, τ)

3. Return the set TC of test cases

In general, the concolic testing algorithm will run forever since the possible
execution paths are infinite. In practice, we can make it finite by either using a
timeout or limiting the term depth of the input arguments. In either case, the
process will be incomplete, as usual. In the context of concolic testing, soundness
is the most relevant property in order to avoid false positives.

For instance, given the instrumented program of Example 3, the initial ex-
pression apply main/2 ([a]), and by limiting the term depth to 3, the concolic
testing algorithm produces the following test cases:

apply main/2 ([a])
apply main/2 ([])
apply main/2 ([a, b])
apply main/2 ([a, b, c])

Observe that concolic testing is not only useful for test case generation, but could
also be used for a sort of model checking by analyzing the concrete executions
that are run during the concolic testing procedure (i.e., if we get a run time
error in these executions, this is surely a real bug since there is no abstraction
involved in the process).

An implementation of the concolic testing tool has been undertaken. The first
stage, flattening and instrumenting the source program, is being implemented in
Erlang itself. In contrast, the concolic testing algorithm is being implemented in
Prolog since the facilities of this language —unification and nondeterminism—
make it very appropriate for dealing with symbolic executions.

6 Discussion

As mentioned in the introduction, there are only a couple of previous approaches
to concolic execution in functional and logic programming. Nevertheless, let us
mention some previous work on test case generation in functional and logic
programming.

In the context of logic programming, SWI-Prolog [14] includes a unit testing
tool which allows the interactive generation of test cases. The closest approach,
though, is that of Albert et al. [1] for test case generation based on symbolic
execution. However, their technique is based solely on traditional symbolic ex-
ecution. As mentioned before, concolic testing may scale better since one can
deal with more complex constraints by using data from the concrete execution.
Another close approach is [13], where a concolic execution semantics for logic
programs is presented. But this approach only considers a simpler statement
coverage (rather than path coverage). Moreover, both [1] and [13] follow the
interpreter-based model, in contrast to our approach based on a program trans-
formation. In the context of functional programming, one of the most well known
approaches for software testing is that of QuickCheck [4], a property-based frame-
work that includes a random generation of input values (though they can also
be driven by the user). In general, though, the quality of the achieved coverage
depends on the user, since a pure random data generation would often achieve a

poor coverage. As for concolic execution, [5] introduces CutEr, a concolic testing
tool for the functional component of Erlang. This approach, as mentioned in the
introduction, is also based on implementing an interpreter augmented to also
deal with symbolic values.

To the best of our knowledge, our paper proposes the first approach to con-
colic execution by program instrumentation in the context of functional or logic
programming. In contrast to using an interpreter-based design, our lightweight
approach is easier to maintain and may scale up better to medium and large pro-
grams since one can still use the standard environment for execution (although
the instrumentation will of course introduce some overhead).

As a future work, we plan to design a concolic testing algorithm, together
with efficient heuristics —including type information— in order to maximize the
coverage achieved by the generated test cases. We will also continue working on
the implementation in order to make it fully automatic and cover most of the
features of Erlang, concurrency being the main challenge.

References

1. E. Albert, P. Arenas, M. Gómez-Zamalloa, and J.M. Rojas. Test Case Generation
by Symbolic Execution: Basic Concepts, a CLP-Based Instance, and Actor-Based
Concurrency. In SFM 2014, Springer LNCS 8483, pages 263–309. Springer, 2014.

2. Joe Armstrong, Robert Virding, and Mike Williams. Concurrent programming in
ERLANG. Prentice Hall, 1993.

3. R. Carlsson. An Introduction to Core Erlang. In Proceedings of the PLI’01 Erlang
Workshop, 2001. Available from http://www.erlang.se/workshop/carlsson.ps.

4. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. In Proc. of ICFP ’00), pages 268–279. ACM, 2000.

5. A. Giantsios, N. Papaspyrou, and K. Sagonas. Concolic testing for functional
languages. To appear in Proc. of PPDP’15, ACM, 2015.

6. P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.
In Proc. of PLDI’05, pages 213–223. ACM, 2005.

7. P. Godefroid, M.Y. Levin, and D.A. Molnar. Sage: whitebox fuzzing for security
testing. Commun. ACM, 55(3):40–44, 2012.

8. G. Kahn. Natural Semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and
Martin Wirsing, editors, Proc. of STACS’87, pages 22–39, 1987.

9. James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, 1976.

10. C.S. Pasareanu and N. Rungta. Symbolic PathFinder: symbolic execution of Java
bytecode. In ASE’10, pages 179–180. ACM, 2010.

11. K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In
Proc. of ESEC/SIGSOFT FSE 2005, pages 263–272. ACM, 2005.

12. G. Vidal. Towards Symbolic Execution in Erlang (short paper). In Proc. of the
9th International Andrei Ershov Memorial Conference on Perspectives of Systems
Informatics (PSI’14), pages 351–360. Springer LNCS 8974, 2014.

13. G. Vidal. Concolic Execution and Test Case Generation in Prolog. In M. Proietti
and H. Seki, editors, Proc. of LOPSTR’14, pp. 167-181. Springer LNCS 8981, 2015.

14. Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog.
Theory and Practice of Logic Programming, 12(1-2):67–96, 2012.

