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Abstract

Practical declarative multi-paradigm languages combine the main features of func-
tional, logic and concurrent programming (e.g., laziness, sharing, higher-order, logic
variables, non-determinism, search strategies). Usually, these languages also in-
clude interfaces to external functions as well as to constraint solvers. In this work,
we introduce the first formal description of an operational semantics for realistic
multi-paradigm languages covering all the aforementioned features in a precise and
understandable manner. We also provide a deterministic version of the operational
semantics which models search strategies explicitly. This deterministic semantics
becomes essential to develop language-specific tools like program tracers, profilers,
optimizers, etc. Finally, we extend the deterministic semantics in order to model
concurrent computations. An implementation of the complete operational seman-
tics has been undertaken.

1 Introduction

Modern declarative multi-paradigm languages combine the best features of
functional, logic and concurrent programming. The definition of a precise
operational semantics for these languages is not an easy task since one must
cover notions like sharing, logical variables, non-determinism, search strate-
gies, concurrency, etc., as well as the interactions among them. Recently, a se-
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mantic description for lazy functional logic languages has been given [2]. This
work defined a rigorous operational description for functional logic languages
based on lazy evaluation with sharing and non-determinism. Furthermore,
it presented two characterizations of the operational semantics: a high-level
description in natural style and a more detailed small-step semantics. The
equivalence between both characterizations is also proved in that paper.

However, in order to obtain a complete operational semantics of a prac-
tical language (like Curry [14] or Toy [18]), one has to add descriptions for
modeling search strategies and concurrency, for solving equational constraints,
evaluating external functions and higher-order features. These extensions are
orthogonal to the other operational aspects (sharing, non-determinism) and
have not been formally described yet. It is the aim of this paper to provide
an operational description for declarative multi-paradigm languages covering
all the aforementioned features in a precise and understandable manner.

The starting point in this work is the (non-deterministic) “small-step” op-
erational semantics of [2]. Firstly, we present an extension of this semantics in
order to cover practical features like integer and floating point numbers, exter-
nal functions (e.g., arithmetic operators), predefined constraints (unification)
and higher-order functions. Then, we provide a deterministic version of the
small-step semantics which makes the search strategy explicit. This determin-
istic description constitutes a formal basis to reason about implementation-
oriented aspects of programs, e.g., to develop appropriate tracing, profiling,
and debugging tools. For instance, one can instrument this semantics in order
to count the costs (time/space) associated to particular computations (simi-
larly to, e.g., [1,4,21,24]). This is useful to formally quantify the improvements
achieved by a concrete program optimization and to compare different search
strategies. Note that this approach would not be possible by considering a
non-deterministic semantics, since it cannot properly describe the computa-
tion paths associated to a particular search strategy. Finally, we consider the
use of threads to model concurrent computations and extend the previous
semantics accordingly. Thus, we obtain a complete deterministic semantics
which supports multi-threading with communication on logical variables.

To the best of our knowledge, this work is the first attempt to formally de-
fine the complete operational semantics of a realistic multi-paradigm language
like Curry [14]. An implementation of this semantics has been undertaken. It
can be useful to test language extensions, to check program optimizations, or
to derive programming tools by designing instrumented versions.

This paper is organized as follows. In the next section we briefly describe
the considered language. Section 3 recalls the small-step semantics of [2].
This is extended in Section 4 to cover the additional features of declarative
multi-paradigm languages. Section 5 presents a deterministic version of the
semantics and Section 6 adds concurrency so that the final semantics covers
all the important features. In Section 7, we describe an implementation of our
semantics and conclude in Section 8 with a comparison to related work.
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2 The Language

As we have already mentioned, a main motivation for this work is to provide
foundations for developing programming tools (like profilers, tracers, optimiz-
ers, etc.) for declarative multi-paradigm languages. In order to be concrete,
we consider Curry [12,14] as our source language. Curry is a modern multi-
paradigm language amalgamating in a seamless way the most important fea-
tures from functional, logic, and concurrent programming.

Basically, a Curry program is a set of function definitions (and data defi-
nitions for the sake of typing, which we ignore here). Each function is defined
by rules of the form “f t1 . . . tn = e” where f is a function, t1, . . . , tn are data
(or constructor) terms (i.e., without occurrences of defined functions), the left-
hand side f t1 . . . tn is linear (i.e., without multiple occurrences of variables),
and e is a well-formed expression.1 For instance, the addition on binary num-
bers, built from constructors 0, 1 and BO (binary overflow), can be defined by
the following rules:

addB 0 y = y

addB 1 0 = 1

addB 1 1 = BO

(data constructors usually start with upper case letter and function application
is denoted by juxtaposition). A rule is applicable if its left-hand side matches
the current application. Functions are evaluated lazily so that the operational
semantics of Curry is a conservative extension of lazy functional programming.

In order to provide an understandable operational description, we assume
that programs are translated into a “flat” form, which is a convenient stan-
dard representation for functional logic programs. The flat form makes the
pattern matching strategy explicit by the use of case expressions, which is
important for the operational description; moreover, Curry programs can be
automatically translated into this flat form [13]. The syntax for programs in
flat form is summarized in Figure 1. We use P to denote a program, D a func-
tion definition, p a pattern and e ∈ Exp an arbitrary expression. A program
P consists of a sequence of function definitions D such that the left-hand side
has pairwise different variable arguments. The right-hand side is an expression
e composed by variables from Var = {x, y, z, . . .}, data constructors (e.g., a,
b, c,. . . ), function symbols (e.g., f , g, h,. . . ), case expressions, disjunctions
(e.g., to represent non-deterministic or set-valued functions), and let bindings
where the local variables x1, . . . , xn are only visible in e1, . . . , en, e. A case

1 Although Curry allows rules with conditions, we will only consider unconditional rules for
the sake of simplicity. This is not a real restriction since conditional rules can be translated
into unconditional ones by the introduction of auxiliary functions, see [5].
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P ::= D1 . . . Dm

D ::= f(x1, . . . , xn) = e

e ::= x (variable)

| c(e1, . . . , en) (constructor application)

| f(e1, . . . , en) (function application)

| case e of {p1 → e1; . . . ; pn → en} (rigid case)

| fcase e of {p1 → e1; . . . ; pn → en} (flexible case)

| e1 or e2 (disjunction)

| let x1 = e1, . . . , xn = en in e (let binding)

p ::= c(x1, . . . , xn)

Fig. 1. Flat Representation for Programs

expression has the following form: 2

(f )case e of {c1(xn1
)→ e1; . . . ; ck(xnk

)→ ek}

where e is an expression, c1, . . . , ck are different constructors, and e1, . . . , ek

are expressions. The pattern variables xni
are locally introduced and bind

the corresponding variables of the subexpression ei. The difference between
case and fcase shows up when the argument e is a free variable: case sus-
pends whereas fcase nondeterministically binds this variable to the pattern in
a branch of the case expression and proceeds with the appropriate branch.

As an example, we show the translation of function “addB” into flat form:

addB(x, y) = case x of {0→ y; 1→ case y of {0→ 1; 1→ BO}}

Let bindings are in principle not required for translating Curry programs but
they are convenient to express the sharing of subterms without the use of
complex graph structures (like, e.g., [8,11]). Operationally, let bindings in-
troduce new structures in memory that are updated after evaluation, which
is essential in the presence of lazy computations and non-deterministic func-
tions. We also assume that all extra variables (i.e., variables in the right-hand
side of a function which do not appear in the left-hand side) are explicitly in-
troduced in flat programs by a direct circular let binding. For instance, if the
right-hand side e contains an extra variable x, it is denoted by let x = x in e.
Throughout this paper, we call such variables which are bound to themselves
logical variables. Our representation of logical variables does not exclude the
use of other circular data structures, as in let x = 1 : x in . . .

Curry also includes a number of practical features which will be described
in the remaining of this section. In particular, Curry extends the optimal

2 We write on for the sequence of objects o1, . . . , on and (f)case for either fcase or case.
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evaluation strategy of [6] by concurrent programming features. These are
supported by a concurrent conjunction operator “&” on constraints (i.e., ex-
pressions of the built-in type Success). For instance, a constraint of the form
“c1 & c2” is evaluated by solving both constraints c1 and c2 concurrently. El-
ementary constraints are Success, which is always satisfied, and equational

constraints e1 =:= e2 between two expressions. The latter is satisfied if both
expressions are reducible to a same ground constructor term (i.e., we consider
the so-called strict equality [9,19]). Operationally, an equational constraint
e1 =:= e2 is solved by evaluating e1 and e2 to unifiable constructor terms.

Higher-order features in Curry include partial function applications and
lambda abstractions. In our (first-order) flat representation, higher-order func-
tions are translated into applications to an auxiliary function apply [25]. This
distinguished function can easily be defined by means of ordinary program
rules (see the discussion in Section 4.3). However, the evaluation of higher-
order applications containing free variables as functions is not allowed (i.e.,
such applications are suspended to avoid the use of higher-order unification
[13]). Moreover, Curry also allows the use of functions which are not defined
in the user’s program (external functions), like arithmetic operators, basic
input/output facilities, etc.

Let us illustrate some of the above features with an example. Consider the
following rule defining a function to concatenate two lists (where [] denotes
the empty list and z:zs a list with first element z and tail zs):

conc(xs, ys) = case xs of { [] → ys;

(z : zs) → z : conc(zs, ys) }

Now, the equational constraint “conc(p,s) =:= [1,2,3]” is solved by in-
stantiating variables p and s to lists so that their concatenation yields the list
[1,2,3]. Thus, we can define a constraint which is satisfied if p is a prefix of
the list xs as follows:

prefix(p,xs) = let s=s in conc(p,s) =:= xs

In order to show an example for higher-order programming, we define a higher-
order constraint, satisfyAll, which takes a unary constraint c and a list xs
as input; it is satisfied if all elements of xs satisfy the constraint c:

satisfyAll(c,zs) = case zs of { [] → Success;

(x:xs) → apply(c,x)

& satisfyAll(c,xs) }

where we use apply to denote function application. Now, we can combine
this definition with our previous definition of prefix in order to compute a
common prefix of a list of strings (strings are considered as lists of characters):

commonPrefix(p,xs) = satisfyAll(prefix(p),xs)
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For instance, the solutions for the constraint

commonPrefix(p,["abc", "abda", "abab"])

are the instantiations "", "a", or "ab" for the variable p.

3 Small-Step Operational Semantics

In this section, we recall the small-step operational semantics for lazy func-
tional logic programs presented in [2]. This semantics covers notions like lazi-
ness, sharing, and non-determinism. It is described in two separated phases.
In the first phase, a normalization process is applied in order to ensure that the
arguments of functions and constructors are always variables. These variables
will be interpreted as references to express sharing and need not be pairwise
different.

Definition 3.1 The normalization of an expression e flattens all the argu-
ments of function (or constructor) applications by means of the mapping e∗

which is inductively defined as follows:

x∗ = x

ϕ(x1, . . . , xn)
∗ = ϕ(x1, . . . , xn)

ϕ(x1, . . . , xi−1, ei, ei+1, . . . , en)
∗ = let xi = e∗i in ϕ(x1, . . . , xi−1, xi, ei+1, . . . , en)

∗

where ei is not a variable and xi is fresh

(let {xk = ek} in e)∗ = let {xk = ek
∗} in e∗

(e1 or e2)
∗ = e1

∗ or e2
∗

((f)case e of {pk → ek})
∗ = (f)case e∗ of {pk 7→ ek

∗}

Here, ϕ denotes either a constructor or a function symbol. The extension of
this normalization process to programs is straightforward.

Normalization introduces one new let construct for each non-variable argu-
ment of a function (or constructor) application. Clearly, this could be modified
in order to produce one single let with bindings for all non-variable arguments.
For the definition of the small-step semantics, it is assumed that both the pro-
gram and the expression to be evaluated have been previously normalized.

The state transition semantics can be found in Figure 2. The rules obey
the following naming conventions:

Γ,∆,Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(en)

A heap is a partial mapping from variables to expressions. The empty heap

is denoted by [ ]. The value associated to variable x in heap Γ is denoted by
Γ[x]. Γ[x 7→ e] denotes a heap with Γ[x] = e, i.e., we will use this notation
either as a condition on a heap Γ or as a modification of Γ. A logical variable

6



Albert, Hanus, Huch, Oliver, Vidal

Rule Heap Control Stack

varcons Γ[x 7→ t] x S

=⇒ Γ[x 7→ t] t S

varexp Γ[x 7→ e] x S

=⇒ Γ[x 7→ e] e x : S

val Γ v x : S

=⇒ Γ[x 7→ v] v S

fun Γ f(xn) S

=⇒ Γ ρ(e) S

let Γ let {xk = ek} in e S

=⇒ Γ[yk 7→ ρ(ek)] ρ(e) S

or Γ e1 or e2 S

=⇒ Γ ei S

case Γ (f)case e of {pk → ek} S

=⇒ Γ e (f){pk → ek} : S

select Γ c(yn) (f){pk → ek} : S

=⇒ Γ ρ(ei) S

guess Γ[x 7→ x] x f{pk → ek} : S

=⇒ Γ[x 7→ ρ(pi), yn 7→ yn] ρ(ei) S

where in varcons: t is constructor-rooted

varexp: e is not constructor-rooted and e 6= x

val: v is constructor-rooted or a variable with Γ[v] = v

fun: f(yn) = e ∈ P and ρ = {yn 7→ xn}

let: ρ = {xk 7→ yk} and yk are fresh

or: i ∈ {1, 2}

select: pi = c(xn) and ρ = {xn 7→ yn}

guess: i ∈ {1, . . . k}, pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh

Fig. 2. Non-Deterministic Small-Step Semantics for Functional Logic Programs
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x is represented in a heap Γ by a circular binding of the form Γ[x] = x, i.e., x
is not instantiated w.r.t. Γ. A value is a constructor-rooted term or a logical
variable (w.r.t. the associated heap).

The small-step semantics is defined on states (or goals) of the form (Γ, e, S),
where Γ is the current heap, e is the expression to be evaluated (often called
the control of the small-step semantics), and S is the stack which represents
the current context. For stacks S ∈ Stack , we use the same notation as for
lists. Goal denotes the domain Heap × Control × Stack .

Let us briefly describe the transition rules of the small-step semantics:

varcons: This rule is used to evaluate a variable which is bound (in the heap)
to a constructor-rooted term. In this case, it simply returns this term.

varexp: It is used to evaluate a variable x which is bound to an expression e

(which is neither constructor-rooted nor a logical variable). It proceeds by
evaluating e and, then, adding to the stack the reference to variable x.

val: When a variable x is found on top of the stack, this rule updates the heap
with the binding x 7→ v once a value v is computed.

fun: It performs the unfolding of a function application. Here, the program P

is a global parameter of the calculus.

let: This rule is used to reduce a let construct by adding the associated (re-
named) bindings to the heap and by continuing with the evaluation of the
main argument of let .

or: It is used to non-deterministically evaluate an or expression by either
evaluating the first argument or the second argument.

case: This rule initiates the evaluation of a case expression by evaluating the
case argument and pushing the alternatives (f){pk → ek} on the stack.

select: If we reach a constructor-rooted term, then this rule is used to select the
appropriate branch of the case expression and continue with the evaluation
of this branch.

guess: If we reach a logical variable, then this rule is used to choose one
alternative non-deterministically and continue with the evaluation of the
selected branch. Renaming of pattern variables is also necessary in order
to avoid variable name clashes. Additionally, the heap is updated with the
(renamed) logical variables of the pattern.

In order to evaluate an expression e, we construct an initial goal of the form
([ ], e, [ ]) and apply the rules of Figure 2. We denote by =⇒∗ the reflexive and
transitive closure of =⇒. A derivation ([ ], e, [ ]) =⇒∗ (Γ, e′, S) is successful
if e′ is in head normal form (the computed value) and S is the empty stack.
The computed answer can be extracted from Γ by dereferencing the variables
of the initial goal e.

Example 3.2 Consider the program composed of function “addB”, defined

8
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([ ], let x1 = bit in foo(x1), [ ])
let
=⇒ ([x2 7→ bit], foo(x2), [ ])
fun
=⇒ ([x2 7→ bit], addB(x2, x2), [ ])
fun
=⇒ ([x2 7→ bit], case x2 of {0→ x2; 1→ case x2 of {0→ 1; 1→ BO}}, [ ])
case
=⇒ ([x2 7→ bit], x2, [{0→ x2; 1→ case x2 of {0→ 1; 1→ BO}}])
varexp
=⇒ ([x2 7→ bit], bit, [x2, {0→ x2; 1→ case x2 of {0→ 1; 1→ BO}}])
fun
=⇒ ([x2 7→ bit], 0 or 1, [x2, {0→ x2; 1→ case x2 of {0→ 1; 1→ BO}}])

or
=⇒ ([x2 7→ bit], 1, [x2, {0→ x2; 1→ case x2 of {0→ 1; 1→ BO}}])
val
=⇒ ([x2 7→ 1], 1, [{0→ x2; 1→ case x2 of {0→ 1; 1→ BO}}])
select
=⇒ ([x2 7→ 1], case x2 of {0→ 1; 1→ BO}, [ ])
case
=⇒ ([x2 7→ 1], x2, [{0→ 1; 1→ BO}])
varcons
=⇒ ([x2 7→ 1], 1, [{0→ 1; 1→ BO}])

select
=⇒ ([x2 7→ 1], BO, [ ])

Fig. 3. Evaluation of “let x1 = bit in foo(x1)”

in Section 2, and the following functions:

foo(x) = addB(x, x)

bit = 0 or 1

Figure 3 details the computation steps performed in one of the possible (non-
deterministic) derivations for the above program and the goal “foo(bit)”
(which is written as “let x1 = bit in foo(x1)” in normalized form). In each
step, we indicate the transition rule which has been applied.

The example is borrowed from [2] where it is used to illustrate the sharing
behavior of a big-step semantics. Similarly, we can also observe the effect
of sharing in the small-step semantics where the shared subterm “bit” is
evaluated only once. Note that the heap in the final goal, [x2 7→ 1], does
not contain a binding for the variable x1 of the initial expression (due to the
renaming of local variables). This corresponds to the fact that the computed
answer is the empty substitution.

4 Language Extensions

We described so far an operational semantics for the kernel of a functional logic
language. In this section, we extend the small-step operational semantics in
order to cover extensions like integer and floating point numbers, external
functions, predefined constraints (unification), and higher-order functions.

9
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4.1 Equality

An important feature of logic languages is their ability to perform constraint
solving in an efficient way. For equational constraints between terms, this
is achieved by unification, where equations between variables are solved by
binding these variables (instead of instantiating them to all possible values).
Similarly, functional logic languages offer equational constraints between ex-
pressions containing defined functions. Since such functions can denote infi-
nite terms, equational constraints are interpreted as strict equalities [9,19]: an
equational constraint e1 =:= e2 is satisfiable if both arguments e1 and e2 can be
reduced to unifiable constructor terms (i.e., expressions without occurrences
of defined functions). Usually, this is implemented by a recursive evaluation of
arguments to head normal form followed by the comparison of both arguments
with a possible instantiation of logical variables.

In order to provide a generic definition of the above operational behavior,
we need a way to evaluate arbitrary expressions to head normal form. In
the basic language of Figure 1, the only way to enforce the evaluation of an
expression to head normal form is the use of case expressions. This causes
difficulties for large sets (or even infinite sets of constructors like numbers, see
below). Therefore, we introduce a new predefined function hnf(e1, e2) which
first evaluates the argument e1 to head normal form before it returns e2 as
result. In order to formally specify this behavior in our small-step operational
semantics, we first perform the evaluation of the current expression e1 and
push a hnf context containing e2 on the stack. This element is popped off the
stack when the first element is in head normal form. Thus, the operational
semantics of hnf is formally defined by the following rules:

Rule Heap Control Stack

hnf1 Γ hnf(x1, x2) S

=⇒ Γ x1 hnf(x2) : S

hnf2 Γ v hnf(x) : S

=⇒ Γ x S

where v is a constructor-rooted term or a variable y with Γ[y] = y.

With the use of function hnf, arbitrary expressions can be evaluated to
head normal form. This fact is exploited in the following definition of the
strict equality (note that this definition needs to be normalized as any other
program rule):

x1 =:= x2 = hnf(x1, hnf(x2, prim constrEq(x1, x2)))

This definition ensures that x1 and x2 are reduced to head normal form,
i.e., a constructor-rooted term or a logical variable. The primitive function
prim constrEq recursively descends its two arguments and restarts the small-

10
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step operational semantics for subexpressions by putting new expressions into
the control. In the case of a successful unification, it yields a modified heap
and the result Success (an internal constructor to represent the successful
solving of a constraint).

The precise definition of the behavior of prim constrEq causes a new com-
plication due to unification. Since logical variables are not always instantiated
to constructor-rooted terms (as in rule guess) but can also be bound to other
logical variables, chains of bindings might occur in the heap. For instance, if
we unify variable x to y and then later unify y with constant 0, then x is not
directly bound to 0 and we have a heap Γ with Γ[x] = y and Γ[y] = 0. This
property requires the dereferencing of heap variables before we access them.
We express this by a function Γ∗ which is defined as follows:

Γ∗(x) =







Γ∗(y) if Γ[x] = y and x 6= y

Γ[x] otherwise

Note that Γ∗(x) = y implies that y is a logical variable (i.e., Γ[y] = y). In
the following rules, we will apply Γ∗ only to variables x which were already
evaluated to head normal form, i.e., Γ∗(x) is always a value. Now, we can
define the small-step semantics of prim constrEq as follows:

Rule Heap Control Stack

constrEq1 Γ prim constrEq(x, y) S

=⇒ Γ[x′ 7→ y′] Success S

constrEq2 Γ prim constrEq(x, y) S

=⇒ Γ[x′ 7→ c(xn), xn 7→ xn] (x1 =:= y1 &> . . . &>xn =:= yn)
∗ S

constrEq3 Γ prim constrEq(x, y) S

=⇒ Γ[y′ 7→ c(yn), yn 7→ yn] (x1 =:= y1 &> . . . &>xn =:= yn)
∗ S

constrEq4 Γ prim constrEq(x, y) S

=⇒ Γ (x1 =:= y1 &> . . . &>xn =:= yn)
∗ S

where in constrEq1: Γ
∗(x) = x′ and Γ∗(y) = y′

constrEq2: Γ
∗(x) = x′, Γ∗(y) = c(yn), and xn are fresh

constrEq3: Γ
∗(x) = c(xn), Γ

∗(y) = y′, and yn are fresh

constrEq4: Γ
∗(x) = c(xn) and Γ

∗(y) = c(yn)

In the rules above, equational constraints are solved in an incremental way
by an interleaved lazy evaluation of expressions and binding of variables to
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constructor terms. In particular, when both arguments of the equational
constraint, x and y, are bound in the heap to logical variables, x′ and y′,
rule constrEq1 returns Success and updates the heap by binding x′ to y′.
In rule constrEq2, variable x is bound to a logical variable x′ but variable y

is bound to a constructor application c(yn). In this case, we bind x′ to a
constructor application of the form c(xn), where xn are fresh variable names,
and constraint equality is checked for the constructor arguments. Since the
number of arguments which must be compared recursively depends on the arity
of constructor c, we put a new expression (in normalized form) containing the
sequential conjunction operator “&>” on the control. Here, we consider an
empty conjunction (n = 0) as equivalent to Success. The operator “&>” on
constraints is defined as follows:

x1 &> x2 = case x1 of {Success→ x2}

Rule constrEq3 proceeds in a similar manner. Finally, if both arguments, x and
y, are bound to the same constructor application, rule constrEq4 continues with
the comparison of the constructor arguments (without modifying the heap).

For the sake of simplicity, we have omitted the occur check in rules constrEq2

and constrEq3. For instance, in rule constrEq2 the occur check must ensure
that variable x′ does not occur in the value represented by y (if x′ and y are
different). Here, the value represented by y is the part of the expression re-
cursively referred to by y (according to the current heap) without considering
function applications (see [14, Appendix D.4] for more details).

We can also define the Boolean test equality function “==” for testing
the strict equality of two expressions in a similar way. In contrast to “=:=”,
function “==” is only defined on ground constructor terms (i.e., it suspends in
the presence of logical variables) and returns True (resp. False) if both terms
are identical (resp. different). Function “==” can be defined as follows:

x1 == x2 = hnf(x1, hnf(x2, prim boolEq(x1, x2)))

where prim boolEq recursively checks its two arguments for equality:

Rule Heap Control Stack

boolEq1 Γ prim boolEq(x, y) S

=⇒ Γ (x1 == y1 && . . . &&xn == yn)
∗ S

boolEq2 Γ prim boolEq(x, y) S

=⇒ Γ False S

where in boolEq1: Γ
∗(x) = c(xn) and Γ

∗(y) = c(yn)

boolEq2: Γ
∗(x) = c(. . .),Γ∗(y) = d(. . .), and c 6= d

In rule boolEq1 the operator && denotes the Boolean conjunction, which is
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defined as follows:

x1 &&x2 = case x1 of {True→ x2; False→ False}

Furthermore, we consider an empty conjunction (n = 0) as equivalent to True.

4.2 External Functions

Every realistic programming language must support a number of functions
that are not implemented in the same programming language. Let us consider,
for instance, arithmetic operators which are used to perform computations on
numbers. Conceptually, the infinite set of integers or floating point numbers
can be interpreted as an infinite set of constants (0-ary constructors). In the
following, we will call these constants literals. Literals can occur everywhere
in programs, including the patterns of case expressions. For instance, we could
also interpret arithmetic functions computing with integers (e.g., addition on
integers) as defined by an infinite set of program rules. Since case expressions
have only a finite number of branches, we cannot represent such an infinite
set in our kernel language. This requires an extension of the language in order
to include externally defined functions, i.e., functions which are not explicitly
defined by program rules. Such functions are called external functions.

In a naive approach, one could try to extend our operational semantics to
cover external functions with a generic rule like

〈Γ, F (en), S〉 =⇒ 〈Γ, FA(en), S〉

where the semantics of each predefined function F is represented by means
of an interpretation FA. However, in general, this is not sufficient since the
arguments of F are expressions that need to be evaluated to literals before
we interpret them with FA. Thus, we must ensure that these expressions are
evaluated to literals before the function FA is applied.

Similarly to equational constraints, we use the primitive hnf to solve this
problem. For example, we define the addition of two integers with the use of
the external function prim + by the rule

x1 + x2 = hnf(x1, hnf(x2, prim +(x1, x2))

Since the primitive function prim + is always applied to arguments which are
already evaluated to literals (or logical variables, see below), we define its
small-step semantics as follows:

Rule Heap Control Stack

prim + Γ prim +(x, y) S

=⇒ Γ l1+A l2 S

where Γ∗(x) = l1, Γ
∗(y) = l2, l1, l2 are literals, and +A denotes the arithmetic

sum. Note that this definition implies that the evaluation of prim + suspends
(there is no successor in =⇒) if one of the arguments is a logical variable.
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The definition of rules for the remaining primitive functions of a language
like Curry could easily be done in a similar manner.

4.3 Higher-Order Features

According to the syntax of Figure 1, flat programs are restricted to first-order.
In principle, this is sufficient since it is well known (e.g., [25]) that the higher-
order features of typical functional (logic) languages can be translated into
applications of a distinguished function apply which can be defined by a set of
first-order rules. For instance, an expression like “(f a) b” can be translated
into apply(apply(f, a), b) where the definition of apply contains the following
rules for the binary function f :

apply(f, x) = f(x)

apply(f(x), y) = f(x, y)

In order to avoid the generation of these rules for all functions of the program,
we provide a definition of apply based on a primitive function prim apply

which assumes that the first argument is in head normal form; note that only
the first argument of apply must be evaluated to head normal form. Thus, we
define apply by the following rule:

apply(x1, x2) = hnf(x1, prim apply(x1, x2))

The small-step semantics is then extended as follows:

Rule Heap Control Stack

apply Γ prim apply(x, y) S

=⇒ Γ ϕ(xk, y) S

where Γ∗(x) = ϕ(xk) and either ϕ is a constructor symbol or ϕ(yn) = e ∈ P

with k < n. For user-defined functions, the condition k < n is necessary since
“over-applications” are possible in higher-order languages, as the following
example shows (for clarity, the program is not normalized):

f(x) = g(x)

g(x,y) = 42

h = apply(apply(f,1),2)

In the definition of function h, it may seem that f is applied to two arguments.
However, this is an over-application and rule fun must directly unfold function
f once f is applied to one argument. For constructors, a similar condition on
the arity of ϕ is not necessary since the type system of the source language
should avoid over-applications of constructors.

Note that our definition requires a partial application like and(True) to
be considered as a constructor-rooted term. This means that functions with

14



Albert, Hanus, Huch, Oliver, Vidal

Rule Heap Control Stack (Heap × Control × Stack)∗

or Γ e1 or e2 S =⇒ (Γ, e1, S) (Γ, e2, S)

guess Γ[x 7→ x] x f{pk → ek} : S =⇒ (Γ[x 7→ ρ1(p1), yn1
7→ yn1

], ρ1(e1), S)
...

(Γ[x 7→ ρk(pk), ynk
7→ ynk

], ρk(ek), S)

where in guess: pi = ci(xni), ρi = {xni 7→ yni}, and yni are fresh variables

Fig. 4. Deterministic Small-Step Semantics

missing arguments are considered as constructor-rooted terms. However, these
constructors are “hidden” and only defined for the purpose of the operational
semantics, i.e., they do not appear in patterns.

5 A Deterministic Operational Semantics

The semantics presented so far is still non-deterministic. In actual declara-
tive multi-paradigm languages, this non-determinism is implemented by some
search strategy. For tracing or profiling, it is necessary to model search
strategies as well. For instance, consider the computation of costs associ-
ated to a program execution. In this case, by considering an instrumented

non-deterministic semantics, we could only compute the cost of each single

derivation in the search tree. However, we could not calculate the cost of a
computation path within the search tree, since some computation steps may
be shared by more than one derivation. Thus, it becomes essential to provide a
deterministic version of the semantics which properly models search strategies.
For this purpose, we extend the relation =⇒ as follows: =⇒⊆ Goal ×Goal ∗.
The idea is that a computation step yields a sequence consisting of all possible
successor states instead of non-deterministically selecting one of these states.
Non-determinism occurs only in the rules or and guess of Figure 2. Thus,
the deterministic semantics consists of all the rules presented so far except
for the rules or and guess which are replaced by the deterministic version of
Figure 4. The only difference is that, in the deterministic versions, all possible
successors are listed in the result of =⇒.

With the use of sequences, a search strategy (denoted by “◦”) can be de-
fined as a function which composes two sequences of goals. The first sequence
represents the new goals resulting from the last evaluation step. The second
sequence represents the old goals which must still be explored. For exam-
ple, a (left-to-right) depth-first search strategy (◦d) and a breadth-first search
strategy (◦b) can easily be specified as follows:

w ◦d v = wv and w ◦b v = vw
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A small-step operational semantics (including search) which computes the
first leaf in the search tree w.r.t. a search function “◦” can be defined as the
smallest relation −→ ⊆ Goal ∗ ×Goal ∗ satisfying

(Eval)
g =⇒ G

g G′ −→ G ◦G′
where g ∈ Goal and G,G′ ∈ Goal ∗

The evaluation starts with the initial goal g0 = ([ ], e0, [ ]) where e0 is the
expression to be evaluated. The relation −→ is deterministic and it may
reach four kinds of final states:

Solution. In this case, the first goal in the sequence has the form (Γ, v, [ ]),
where v is the computed value. Furthermore, the computed answer can be
extracted from Γ by dereferencing the variables of the initial expression e0.

Suspension. Then, the expression of the first goal in the sequence should be
either a rigid case expression with a logical variable in the argument position
or a primitive function applied to some logical variable. Note that, in the
latter case, not all primitive functions suspend on logical variables, e.g.,
prim constrEq performs unification in this case. This situation represents a
suspended goal and will be discussed in more detail in the next section.

Fail. Here, the first goal of the sequence should be either a case expression
whose argument does not match any of the patterns or the application of
a primitive function which does not succeed, e.g., prim constrEq applied to
values with different outermost constructors.

No more goals: This situation occurs when all the goals in the sequence
have already been explored.

In order to distinguish the different possibilities, we add a label to the relation
−→ which classifies the leaves of the search tree. The label is computed by
means of the following function type. For expressions e that are not primitive
function applications (i.e., e 6= prim f(xn)), it is defined as follows:

type(Γ, e, S) =



























SUCC if e = v and S = [ ]

SUSP if e = x, S = {pk → ek} : S
′, and Γ[x] = x

FAIL if e = c(yn), S = (f){pk → ek} : S
′,

and ∀i = 1, . . . , k. pi 6= c(. . .)

COMP otherwise

For primitive functions, it is defined by using a function primType representing
their behavior:

type(Γ, prim f(xn), S) = primType(Γ, prim f(xn), S)

The function primType represents the behavior of any primitive function. In
particular, primType(Γ, prim f(xn), S) = COMP iff (Γ, prim f(xn), S) =⇒ G

for some G. For instance, for the external function prim +, it is defined as
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follows:

primType(Γ, prim +(x, y), S) =

{

SUSP if Γ∗(x) = z or Γ∗(y) = z

COMP otherwise

where z is a logical variable. Similar definitions can be provided for the re-
maining primitive functions. In particular, for constraint equality, suspension
is not a possible behavior. Moreover, constraint equality may fail when it is
applied to different constructors:

primType(Γ, prim constrEq(x, y), S)

=

{

FAIL if Γ∗(x) = c(yn), Γ
∗(y) = d(zm), and c 6= d

COMP otherwise

With the use of function type, we can now define the complete evaluation of
an expression as follows:

(Eval)
g =⇒ G

g G′ COMP
−→ G ◦G′

(Discard)
g 6=⇒

g G′
type(g)
−→ G′

(g ∈ Goal and

G,G′ ∈ Goal ∗)

The (decidable) condition g 6=⇒ of rule Discard means that none of the rules
for =⇒ matches. In this case, −→ does not perform a COMP step as the
following lemma states: 3

Lemma 5.1 If g0 −→
∗ g G′ and g 6=⇒, then type(g) 6= COMP.

Proof. Case analysis on g = (Γ, e, S):

• e is a value. We distinguish two cases:
(i) e = c(xn):
If S = x : S ′, then val is applicable and g =⇒ G.
If S = (f){pk −→ ek} : S

′, then either e = c(yn) or e = x with Γ[x] = x.
In the first case, rule select is applicable or type(g) = FAIL; in the second
case, we can either apply rule guess or type(g) = SUSP .
If S = [ ], then no rule is applicable and type(g) = SUCC .

(ii) e = x:
If S 6= [ ] and S 6= {pk −→ ek} : S ′, then either rules varcons, varexp or
guess are applicable, type(g) = SUCC , or type(g) = FAIL.

• e = prim f (xn). The function primType yields the type COMP exactly in
the same cases where =⇒ yields a successor.

• e is any other expression. Then, for all possible expressions, there exists a
rule applicable independently of Γ and S.

2

3 We write −→∗ for the reflexive and transitive closure of −→ including all labels.
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(Eval)
(Γ, e, S) =⇒ (Γ1, e1, S1) . . . (Γn, en, Sn)

(Γ, T⊕(e, S)) : G
COMP
−→ (Γ1, T⊕(e1, S1)) . . . (Γn, T⊕(en, Sn)) ◦G

(Fork)
−

(Γ, T⊕(e1& e2, S)) : G
COMP
−→ (Γ, T⊕(e1, S)⊕(e2, S)) ◦G

(Succ1)
type(Γ, e, S) = SUCC

(Γ, T⊕(e, S)) : G
COMP
−→ (Γ, T ) ◦G

(Succ2)
−

(Γ, ∅) : G
SUCC
−→ G

(Fail)
type(Γ, e, S) = FAIL

(Γ, T⊕(e, S)) : G
FAIL
−→ G

(Deadlock)
∀(e, S) ∈ T : type(Γ, e, S) = SUSP

(Γ, T ) : G
SUSP
−→ G

Fig. 5. Concurrent Semantics for Multi-Paradigm Programs

The relation −→ contains all information of a computation. One can easily ex-
tract the part of interest from the (possibly infinite) derivation. For example,
the set of all solutions can be defined in the following way:

solutions(g0) = {g | g0 −→
∗ g G

SUCC
−→ G} .

6 Adding Concurrency

Modern declarative multi-paradigm languages like Curry support concurrency
which makes multi-threading with communication on shared logical variables
possible. The simplest semantics for concurrency is interleaving that is usually
defined at the level of a small-step operational semantics. The definition of
a concurrent natural semantics would be much more complicated because of
the additional don’t-care non-determinism of interleaving.

In this section, we show how our deterministic semantics −→ can be ex-
tended naturally to model concurrency. For simplicity, we restrict the consid-
ered concurrent programs by requiring that the initial expression is always a
constraint (i.e., main is of type Success).

For the formalization of concurrency (see Figure 5), we extend the expres-
sions and stacks in the goals to sets of expressions and stacks, i.e., Goal =
Heap × P(Control × Stack). Each element of P(Control × Stack) represents
a thread and these threads can perform actions non-deterministically (which
is the idea of an interleaving semantics). As an abbreviation for the disjoint
union T]{(e, S)} we write T⊕(e, S). New threads are created with the concur-
rent conjunction operator “&” by adding the new thread to the set (Fork). The
heap is a global entity for all threads in a goal. Thus, threads communicate
with each other by means of variable bindings in this global heap.

In our concurrent operational semantics, the following possibilities for dis-
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carding a goal are distinguished:

FAIL A goal fails if one of its threads fails.

SUCC A goal is a solution if all threads terminate successfully.

SUSP A goal represents a deadlock situation if all threads suspend.

The concurrent semantics is indeterministic (in other words, don’t-care non-
deterministic). An evaluation represents one trace of the system. During
the evaluation of a goal, several threads may suspend and later be awoken
by variable bindings produced from other threads. Then, a step with =⇒ is
again possible for the awoken process. A goal is only discarded in one of the
three cases discussed above. Note that there is only a non-deterministic choice
possible between rules Eval, Fork, Succ1, and Fail. In the application of rules
Succ2 and Deadlock, there is no alternative successor.

The rule Eval allows computation steps in an arbitrary thread of the first
goal. If such a step is don’t-know non-deterministic, i.e., it yields more than
one goal, the entire process structure is copied. Although this is necessary to
compute all solutions, it could be more efficient to perform a non-deterministic
step only if a deterministic step in another thread is not possible. This strategy
corresponds to stability in AKL [16] and Oz [22] and could easily be specified
in our framework, too.

We conjecture that −→ is confluent (up to variable renaming) for fair
search strategies, like breadth-first search. The reason is that the heap can
only be extended and logical variables can only be bound to one value. If
the variable bindings of different threads in the shared heap clash, then this
will happen in any scheduling policy due to the absence of committed choice
construct.

7 Implementation

Our semantic description does not only provide the theoretical foundation
to reason about actual multi-paradigm functional logic programs but it can
also be used as a basis to implement abstract machines, debuggers and opti-
mization tools in a high-level manner. In order to get confidence in the latter
aspect, we have implemented an interpreter for Curry based on the operational
description shown in this work.

The interpreter is written in Haskell. Thus, it can easily be adapted to
Curry in order to obtain a meta-interpreter for Curry. The entire implemen-
tation consists of a front-end to compile Curry programs into the flat form
introduced in Section 2 and an evaluator for expressions based on our small-
step semantics. The implementation of the heap uses balanced search trees
to ensure efficient access and update operations. The implementation also in-
cludes a garbage collector on the heap to be able to execute larger examples.
The results are quite encouraging. Standard functional programs are executed
(using the Glasgow Haskell compiler) with approximately 24000 reductions
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per second on a 1.3 GHz Linux-PC (AMD Athlon with 256 KB cache). For
logic programs involving search, more than 2000 non-deterministic steps are
executed per second. Although our interpreter is much slower than compil-
ers based on back-ends implemented in low-level (non-declarative) languages,
its performance is comparable to other meta-interpreters. In particular, it is
faster than previous meta-interpreters for Curry (e.g., [3]) due to an improved
handling of variable sharing. Thus, our implementation can be an appropri-
ate basis for developing further tools like program optimizers based on partial
evaluators, visualization tools, etc.

8 Conclusions and Related Work

We have presented an operational semantics for declarative multi-paradigm
languages covering features like laziness, sharing, non-determinism, higher-
order functions, equational constraints, and external functions. Furthermore,
we have extended this semantic description in several ways. First, we have
provided a deterministic version of the operational semantics which makes the
search strategy explicit. This is especially important for the development of
programming tools related to the operational aspects of a language, like pro-
filers and tracers. Then, we have refined our small-step semantics in order
to consider concurrent programming features with a distribution of the com-
putation tasks. Therefore, the developed semantics provides an appropriate
foundation to model declarative multi-paradigm languages like Curry [14].

Let us compare our work with some other related approaches. Operational
semantics for functional logic programs with sharing can be found in [10] and
[15]. However, [10] does not model the pattern-matching strategy used in real
implementations, and [15] does not model search strategies and concurrency
(but allows partial applications in case patterns). Sestoft [23] proposes similar
descriptions for purely lazy functional languages where logic programming
features and concurrency are not covered. [17] and [7] contain operational
and denotational descriptions of Prolog with the main emphasis on covering
the backtracking strategy and the “cut” operator. Although our modeling of
search strategies by the use of goal sequences has some similarities with their
description, laziness, sharing, and concurrency are not covered there. Podelski
and Smolka [20] define an operational semantics for constraint logic programs
with coroutining in order to specify the interaction of backtracking, cut, and
coroutining. Their modeling of coroutining via “pools” is related to our model
of concurrency, but demand-driven evaluation and sharing is not contained in
their semantics.

For future work, we plan to enhance this operational semantics with the
computation of cost information (which is useful, e.g., for profiling [4,21] or
for formally checking the improvement achieved by program optimizations
[1,24]). Furthermore, it could be interesting to use our operational semantics
as a basis to develop debugging and optimization tools (like partial evaluators
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[3]), and to check or derive new implementations (like in [23]) for Curry.
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