2.3.- Relational Data Model (logic approach)

There are two logic-based manipulation languages for the relational model:

- The Tuple Relational Calculus.
- The Domain Relational Calculus.

- The logic approach in the relational data model is useful to make queries and express constraints.

- The Tuple Relational Calculus is the main reference over which the manipulation language in SQL is constructed.
2.3.1.- First order logic

FIRST ORDER LOGIC

- “Formal system which makes it possible to reason over a universe of discourse”

- First order logic is a formal language. Hence, it has two elements:
 - A **language** in which we can express assertions over the universe of interest. (SYNTAX)
 - Several **rules** with which the truth value of any stated assertions can be determined. (SEMANTICS)

Example: “Mortal(Socrates)” and “Planet (Socrates)” are syntactically correct, but only the first one is semantically true in our world.
2.3.1.- First order logic

\[D \]

- Luke
- John
- BDA
- AD1
- Mary

\[P: \]
- is a student
- is a course
- is registered (a student in a course)

ASSERTION: “All the students are registered in some course”

Is this assertion true?

We need more information about the properties of \(P \) in domain \(D \)

If this information is:
- is_a_student = \{John, Luke, Mary\}
- is_a_course = \{AD1, BDA\}
- is_registered = \{(Luke,AD1), (John,BDA)\}

The assertion is false for the knowledge we have about the properties \(P \) in domain \(D \)
2.3.1.- First order logic

FORMALISATION (SYNTAX):
• We must define a first-order language L to refer to the individuals and the properties of the universe of discourse:

L:
- Constants = {Luke, Mary, John, AD1, BDA}
- Predicates = {Student(.), Course(.), Inscription(.,.)}
- Variables = {x, y}
- Connectives = {→, ¬, ∧, ∨}
- Quantifiers = {∀, ∃}

• Example of syntactically correct formulas:
 - F: ∀x (Student(x) → ∃y Inscription(x, y))
 - G: Student(x) ∧ Inscription(x,’AD1’)

• Example of a syntactically incorrect formula:
 - $F’$: ∀Student ∃Inscription(x, y)
2.3.1.- First order logic

FORMALISATION (SEMANTICS):

• The interpretation I of the previous first-order language in the domain D
corresponding to the previous example:

$D = \{\text{Luke, Mary, John, AD1, BDA}\}$
$\text{Student} = \{\text{John, Luke, Mary}\}$
$\text{Course} = \{\text{AD1, BDA}\}$
$\text{Registration} = \{(\text{Luke, AD1}), (\text{John, BDA})\}$

• The evaluation of F: $\forall x \ (\text{Student}(x) \rightarrow \exists y \ \text{Registration}(x, y))$ in I is performed
following the following fixed rules.
2.3.1.- First order logic

FORMULA EVALUATION IN FIRST-ORDER LOGIC (SEMANTICS).

Given:

- A formula F.
- An interpretation I.
- A domain D.
- An assignment of values to the free variables in F.

The rules for the evaluation of F are as follows:
2.3.1.- First order logic

1) If F is a comparison:
 - if F is of the form $X \alpha Y$ where X and Y are constants or variables, then F is evaluated to the truth value of the comparison.

2) If F is an n-ary predicate of the form $R(x_1, ..., x_n)$, then F is evaluated to \textbf{true} if $(x_1, ..., x_n)$ belongs to the interpretation of R in I; otherwise, F is evaluated to \textbf{false}.

3) If F is of the form (G), F is evaluated to the truth value of G.
2.3.1.- First order logic

4) If F is like one of the following expressions $\neg G$, $G \land H$, $G \lor H$ or $G \rightarrow H$ where G and H are well-formed formulas, then F is evaluated according to the following truth tables:

<table>
<thead>
<tr>
<th>G</th>
<th>H</th>
<th>$F = G \land H$</th>
<th>$F = G \lor H$</th>
<th>$F = G \rightarrow H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>undefined</td>
<td>false</td>
<td>false</td>
<td>undefined</td>
<td>undefined</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>undefined</td>
<td>false</td>
<td>undefined</td>
<td>true</td>
</tr>
<tr>
<td>undefined</td>
<td>undefined</td>
<td>undefined</td>
<td>undefined</td>
<td>undefined</td>
</tr>
<tr>
<td>true</td>
<td>undefined</td>
<td>undefined</td>
<td>true</td>
<td>undefined</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>undefined</td>
<td>true</td>
<td>undefined</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>$F = \neg G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>undefined</td>
<td>undefined</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
</tr>
</tbody>
</table>

2.3.1.- First order logic

5) If F is of the form $\exists x \ G$, then F is true if there is an assignment for the variable x which makes the formula G true.

6) If F is of the form $\forall x \ G$, then F is true if for every assignment for the variable x, it makes the formula G true.
2.3.1.- First order logic

FORMALISATION (SEMANTICS):

EVALUATION OF OPEN AND CLOSED FORMULAE:

- Closed formulas are used to express assertions (constraints).
- Open formulas are used to express queries.

Given the previous interpretation example:

\[D = \{\text{Luke, Mary, John, AD1, BDA}\} \]

\[\text{Student} = \{\text{John, Luke, Mary}\} \]

\[\text{Course} = \{\text{AD1, BDA}\} \]

\[\text{Registration} = \{\text{(Luke, AD1), (John, BDA)}\} \]

A closed formula:

\[\forall x (\text{Student}(x) \rightarrow \exists y \text{ Registration}(x, y)) \]

All the variables are affected by a quantifier (bound variables)

An open formula:

\[\text{Student}(x) \land \text{Registration}(x, \text{‘AD1’}) \]

There are variables which are not affected by quantifiers (free variables)
EVALUATION OF A CLOSED FORMULA (SEMANTICS).

- The evaluation of F: $\forall x \ (\text{Student}(x) \rightarrow \exists y \ \text{Registration}(x, y))$.

Given the previous interpretation example:

- $D = \{\text{Luke}, \text{Mary}, \text{John}, \text{AD1}, \text{BDA}\}$
- $\text{Student} = \{\text{John}, \text{Luke}, \text{Mary}\}$
- $\text{Course} = \{\text{AD1}, \text{BDA}\}$
- $\text{Registration} = \{(\text{Luke, AD1}), (\text{John, BDA})\}$

- Following the rules we have seen, we can deduce that:

 "F is false in I"
2.3.1.- First order logic

EVALUATION OF AN OPEN FORMULA (SEMANTICS).

An open formula:

\[\text{Student}(x) \land \text{Registration}(x, \text{‘AD1’}) \]

Given the previous interpretation example:

\[D = \{\text{Luke}, \text{Mary}, \text{John}, \text{AD1}, \text{BDA}\} \]
\[\text{Student} = \{\text{John}, \text{Luke}, \text{Mary}\} \]
\[\text{Course} = \{\text{AD1}, \text{BDA}\} \]
\[\text{Registration} = \{(\text{Luke, AD1}), (\text{John, BDA})\} \]

EVALUATION:

- Look for values in the domain such that, assigned to the free variables (in this case \(x\)), make the formula true.

SOLUTION:

\(x = \{\text{‘Luke’}\} \)
2.3.2.- Logical interpretation of a relational database

- An **interpretation** consists of an association of each n-ary predicate with an n-ary relation defined over a domain D:

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>AD1</td>
<td></td>
</tr>
<tr>
<td>Luke</td>
<td>BDA</td>
<td>Luke AD1</td>
</tr>
<tr>
<td>Mary</td>
<td></td>
<td>John BDA</td>
</tr>
</tbody>
</table>

- Thus, an interpretation in a first-order language can be seen as a *relational database* in which:
 - The names of the relation match the names of the predicates.
 - The domain of the attributes match the set of constants.
2.3.2.- Logical Interpretation of a relational database

<table>
<thead>
<tr>
<th>Province</th>
<th>River</th>
<th>Is_crossed_by</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_id</td>
<td>r_id</td>
<td>p_id r_id</td>
</tr>
<tr>
<td>44</td>
<td>r1</td>
<td>44 r1</td>
</tr>
<tr>
<td>46</td>
<td>r2</td>
<td>46 r2</td>
</tr>
<tr>
<td>16</td>
<td>r3</td>
<td>30 r2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>20 r1</td>
</tr>
</tbody>
</table>

Predicates: \{Province(.,.) River(.,.) Is_crossed_by(.,.)\}

Interpretation: The extensions of the relations in the database

F1: \(\text{River}(x,y) \land \text{Is}_\text{crossed}_\text{by}(44,x) \Rightarrow x=\{\text{r1}\} \land y=\{\text{Sénia}\}, \text{also } x=\{\text{r3}\} \land y=\{\text{Xúquer}\}\)

F2: \(\text{River}(x,y) \land \neg \exists z \text{ Is}_\text{crossed}_\text{by}(z,x) \Rightarrow x=\{\} \land y=\{\}\)
2.3.2.- Logical Interpretation of a relational database

Tuple variables:

- are variables which are declared over the database relations \textit{Tuple_variable:relation_name}.
- their possible values are restricted to the tuples in the extension of the relation over which it was defined.
- their components can be referred to as follows \textit{Tuple_variable.relation_attribute}.

EXAMPLE:

\begin{verbatim}
River(r_id:string(6), name:string(20))
RX : River
possible values for \textit{RX}:
\{(r_id: “r1”), (name: “Sénia”)}
\{(r_id: “r3”), (name: “Xúquer”)}
\{(r_id: “xx”), (name: “xftrfsdh”)}
\{(r_id: “r2”), (name: “Tajo”)}
\{(r_id: “r3”), (name: “Túria”)}
\end{verbatim}

\begin{table}
\begin{tabular}{|c|c|}
\hline
\textit{id_r} & \textit{name} \\
\hline
r1 & Sénia \\
\hline
r2 & Túria \\
\hline
r3 & Xúquer \\
\hline
\end{tabular}
\end{table}
2.3.2.- Logical Interpretation of a relational database

Queries with tuple variables:
• The queries with tuple variables have the following form:
 \{Free_variables_declaration|Well-formed_formula\}

• The examples written in first-order logic can be rewritten with tuple variables in the following way:

First order logic:

F1: River(x,y) ^ Is_crossed_by(44,x)
F2: River(x,y) ^ ¬∃z Is_crossed_by(z,x)

First order logic with tuple variables:

F1: RX:River | ∃PPX:Is_crossed_by (PPX.r_id = RX.r_id ^ PPX.p_id = 44)
F2: RX:River | ¬∃PPX:Is_crossed_by (RX.r_id = PPX.r_id)
2.3.2.- Logical Interpretation of a relational database

Queries with tuple variables:
EXAMPLES:
River(r_id:r_id_dom, name:name_dom, length:len_dom)
Province(p_id:p_id_dom, name:name_dom)
Is_crossed_by(p_id:p_id_dom, r_id:r_id.dom)

Which rivers cross at least two provinces?
RX:River | ∃PPX:Is_crossed_by, ∃PPY:Is_crossed_by
(RX.r_id = PPX.r_id ^ RX.r_id = PPY.r_id ^ PPX.p_id ≠ PPY.p_id)

Which rivers cross all provinces?
RX:River | ∀PX:Province (∃PPX:Is_crossed_by (RX.r_id = PPX.r_id ^ PPX.p_id = PX.p_id))

Or using equivalence ∀x F(x) ≡ ¬∃x (¬ F(x))
RX:River | ¬∃PX:Province (¬∃PPX:Is_crossed_by (RX.r_id = PPX.r_id ^ PPX.p_id = PX.p_id))