Covering reductions and degrees in P systems *
(Extended Abstract)

José M. SEMPERE

Departamento de Sistemas Informaticos y Computacion
Universidad Politécnica de Valencia
Camino de Vera s/n 46020 Valencia, Spain
E-mail: jsempere@dsic.upv.es

1 Introduction

Membrane Computing and P systems [4] can be considered as a substantial part
of natural computing inspired by some aspects of the biology of the cell and how
these aspects can be adapted to propose universal computational models that show
high parallelism, distributed and cooperative computation and formal language (or
number sets) acceptance or generation.

The number of works related to P systems has been rapidly increased in the
recent years. One can refer to [5, 3] for studying several variants of P systems that
take into account different biological or computational aspects, for example, proton
pumping, promotors/inhibitors, symport/antiport, membrane creation or deletion,
etc.

A P system consists of a hierarchical finite set of regions where there are an
undefined number of objects that react according to a previously defined set of
rules. The reactions take part in every region in a parallel nondeterministic manner
and the result of the reactions can be communicated to other regions by allowing the
pass of objects from one region to a closest one through the membranes. Here, the
reactions in every region are defined by a finite set of rules which, usually, change a
finite set of predefined objects into another (possibly different) set of objects. The
covering rules are defined in a different way: The set of objects to be changed are not
defined explicitly but according to a pattern set (i.e. a language). The use of covering
rules has been explored in previous works. So, in [8], we introduced some aspects
about the influence of the external environment over the behavior of a P system and
we used covering rules to manage an undefined number of objects coming from the
outside environment every time unit. In [9], we showed some applications of covering
rules in P systems related to thermodynamic equilibria, description complexity, the
control for predominance of objects, etc. Finally, in a recent work [10], we have
explored new aspects of covering rules to analyze the description and computational
complexity of P systems.

*Work partially supported by the Ministerio de Ciencia y Tecnologia under project TIC2003-
09319-C03-02

384

In this work we use covering rules to study new computational aspects of P
systems. Mainly, we will use covering rules to define oracle P systems and we will
explore this kind of machines in order to define reductions and degrees as in classical
recursion theory.

2 Basic Definition and Notation

Here, we will introduce some basic concepts from formal language theory according
to [1, 7], and from membrane computing according to [4].

An alphabet ¥ is a finite nonempty set of elements named symbols. A string
defined over X is a finite ordered sequence of symbols from ¥. The infinite set of all
the strings defined over 3 will be denoted by ¥*. The empty string will be denoted
by A and T will denote ¥* — {A}. A language L defined over ¥ is a set of strings
from Y. L can be empty, finite or infinite. The number of strings that belong to a
language L is its cardinality.

Now, we will introduce some basic concepts about P systems. A general P
system of degree m, according to [4], is a construct

1= (VaTa C,,Lt,’ll)l,"' awma(Rlapl)a"' 7(Rm,pM)7i0)a

where:

e V is an alphabet (the objects),

e T CV (the output alphabet),

e CCV,CNT =0 (the catalysts),

e 4 is a membrane structure consisting of m membranes,

e w;, 1 <1i < m, is a string representing a multiset over V associated with the
region 1,

e R;, 1 <i<m,is a finite set of evolution rules over V associated with the ith
region and p; is a partial order relation over R; specifying a priority.

An evolution rule is a pair (u,v) (or u — v) where u is a string over V' and
v =" or v =4, where v’ is a string over

{ahereaaoutaainj | a E Va]- S .7 S m}a

and ¢ is an special symbol not in V' (it defines the membrane dissolving action).
From now on, we will denote the set {here,out} U {iny | 1 <k < m} by tar.

e iy is a number between 1 and m and it specifies the output membrane of II (in
the case that it equals to oo the output is read outside the system).

385

The language generated by II in external mode (i = oo) is denoted by L(II)
and it is defined as the set of strings that can be defined by collecting the objects
that leave the system by arranging them in the leaving order (if several objects
leave the system at the same time, then permutations are allowed). The set of
numbers that represent the multiplicity of objects in the output membrane g will
be denote by N(II). Obviously, both sets L(II) and N(II) are defined only for
halting computations. We suggest to the reader Paun’s book [4] to learn more about
P systems.

3 Covering Rules

Now, we will introduce a variant of P systems by defining covering rules. Observe
that in general P systems, as described in the previous section, different rules can
handle identical objects (e.g., @ — bc and a — de will transform a objects into objects
b,c,d, and e). Here, the application of a covering rule can handle the objects in an
exclusive manner. The term covering refers to the situation in which the rule covers
an undefined number of objects.

In addition, we can see that general P systems are systems with covering rules
in which the languages used in the right and left parts of the evolution rules have
the cardinality equal to 1.

We provide the formal definition of covering rules, as follows.

Definition 3.1 LetII be a P system. We say that r is a covering rule if r : L, — L,
orr: L, — L4, where L, C V* and L, C (V x tar)* and & implies membrane
dissolving.

Now, we will show how covering rules handle the objects of the region.

Example 3.1 Let ab* — (chere)* be a covering rule and abab be the set of objects
of its region. Then, after applying the rule, we will obtain the set of objects accc.

In the previous example we have handled the objects in a conservative manner.
That is, the number of objects after applying the rule does not decrease. The non
conservative choice implies that the result of the rule application could be a, ac, acc,
or acce, given that the object a or the objects b could be substituted by A (which
belongs to ¢*), so they disappear.

Example 3.2 Let the following covering rules be in the same region: Ty : ab™ —
(Chere)® and ro : ab™ — (dpere)*. Let us suppose that the objects in the region before
applying the rules are aabbb. If we use the rules in the exclusive mode, then the
result will be acccc or adddd (both in conservative mode). That is, the selected rule
T1 or ro covers all the objects b.

If we apply the rules in non exclusive manner, then the combinatorics increase
the number of results: we can obtain ccedd or ceddd or accce or adddd depending
on the number of objects b that every rule covers.

386

We can combine different ways of application of every rule (ezclusive vs. non
ezclusive together with conservative vs. mnon-conservative). Furthermore, in the
case that the rules are applied in a non-conservative manner we can arrive to an
extremely non-conservative mode. So, in example 3.1 the rule can be applied in a
non-conservative manner by eliminating some objects, as explained before, or it can
increase the number of objects so an undefined number of objects are presented at
a given computation step.

All the mentioned ways of application of the covering rules imply that a se-
cond degree of nondeterminism appears in P systems. Obviously, general P systems
are nondeterministic in the first sight. That is, whenever two or more rules can
be applied at a given computation step, then the election of the rules to work is
made in a non-deterministic manner, so all the combinatorics must be taken into
account in order to study the different computation sequences. Here, the covering
rules introduce a second degree of non-determinism given that, first a rule is non-
deterministically selected and then, if it is a covering rule, then the result of its
application is again non-deterministically produced. Let us illustrate this situation
in the following example.

Example 3.3 Consider the rules 71 : ab — cd (non-covering rule) and ro : ab™ —
et fTgt. Let us suppose that the objects in the region are aabbb. Then, if rule
r1 s selected twice, the result is ceddb, if rule ro is selected and it works in the
exclusive conservative manner, then the result can be aeefqg or aef fg or aefgg. If
rule ro works in non-exclusive manner, then the rule r1 could be applied together with
the covering rule. In the case that rule ro is applied in extremely non-conservative
exclusive manner, then an infinite number of results can be obtained.

We can summarize all the application modes by means of the following definition.

Definition 3.2 Let IT be a P system, and r : a — B a covering rule of the system.
We will say that P works in

(a) conservative mode if the application of r will never decrease the number of
selected objects in the system,

(b) non-conservative mode if the application of r can decrease the number of
selected objects in the system,

(c) exclusive mode: if rule r is selected and applied, then it covers all the objects
according to expression a and no object that belong to o remains free,

(d) extremely non-conservative mode if the result of applying the rule r is any
string that belongs to B and the number of selected objects can be increased.
Limiting the non-determinism: Indexed covering rules

As mentioned before, the introduction of covering rules in P systems increases the
non-determinism of the system. Now, we will introduce a variant of covering rules
that attempts to reduce this non-determinism. For example, let us take the rule

387

abtct — (chere) " (dhere) ' (€nere) ™. There is no explicit correspondence between
symbols of left-hand side and right-hand side. So, the objects abbce could be trans-
formed in cddee or ccede or cdeee, etc. (always in the case that the conservative
mode be applied). That is, there is not knowledge to make correspondences between
every pair of symbols from left and right sides. In order to control this situation we
will introduce indices to make this correspondence explicit.

Definition 3.3 Let II be a P system. We will say that r is an indezed covering rule
if r: Ly — Ly orr: Ly, — Ly, where L, C (V xN)* and L, C (V X tar x N)*, §
implies membrane dissolving and domy(Ly) = domy(L,) *.

Example 3.4 Let a1bj ci — (Chere)] (dhere)s (€nere)s be an indezed covering rule.
The meaning of the rule is that every object a is substituted by at least one object c,
every object b is substituted by at least one object d and every object c is substituted
by at least one object e.

Obviously, different objects can collapse to a single one: the rule a;b] — (cpere)1
means that one single object a together with an undefined positive number of objects
b are replaced by the object c. Observe that the previous rule always works in the
non-conservative mode.

4 Oracle P Systems

Once we have introduced the basic definitions of P systems and covering rules no-
tions, we will fix our attention to the arithmetic hierarchy. The following definitions
come from classical recursion theory and can be consulted in any book such as [6]

Definition 4.1 A language L is recursive if there exists a halting Turing machine
M such that L = L(M). A language L is A-r.e. if there exists a Turing machine
M with a recursive oracle A such that L(M) = L.

The notion of oracle is quite simple. No matter what computational model we
use, the oracle always answer in one time unit a question about formal languages.
We can use different oracle machines such as the following ones:

e membership oracles
Given any string z, the oracle L answer ’yes’ (usually defined by the output
'1’) if z € L and 'not’ (usually defined by the output ’0’) otherwise.

e superset/subset oracles

In superset (resp. subset) oracles, given any language L1, the oracle L answer
'yves’ if L1 D L (resp. Ly C L) and 'not’ otherwise.

'Given L C (V x N)* or L C (V x tar x N)* we will denote by domn(L) the set of positive
integers that appear in the description of L.

388

e equivalence oracles

Given any description M of a language (usually M is an abstract machine or
grammar), the oracle L answer ’yes’ if L(M) = L and 'not’ otherwise.

Obviously, there have been other proposals for oracle types along the time. Usu-
ally they have been used in computational learning theory or complexity theory,
among other areas. Now, we will use only membership oracles such as the one
defined before. Furthermore, in Definition 4.1 A is a membership oracle.

The definition of oracles in computability theory has been commonly used to
explore new aspects such as relativized complexities or families of non recursively
enumerable languages. The last approach will be formally used in the next definition

Definition 4.2 (The arithmetic hierarchy) ¥¢ is the class of recursive languages.
For eachn > 0 X141 is the class of languages which are A-r.e. for some set A € ¥y,.
For all n 11, = co-3,, A, = X, N1I,.

Constructing an oracle region

An oracle region with language L, will consists of an inner query region where the
oracle makes its performance together with an answer region where the question
is answered. Formally, the structure of the region will be [[lguery| Janswer)oracie
where the region query will include the covering rules r1 : Lor — ling,.uw., and
T2 1 X% = Oingnswe, With the priority ry > ro. The language L, is the language
of the oracle and the covering rule r; works as follows: if the query string belongs
to Ly, then an object 1 is transmitted to the region answer, otherwise the rule o
is applied and then an object 0 is transmitted to the region answer. In the region
answer the only rules are 0 — Oy and 1 — 1,,¢. Finally the oracle region consists
of the following rules 14 — 1,4t and 0# — Ogyut and the rules a — a;p,,,,, for every
object a except #.
The P system with an oracle region will work as follow:

1. The query string is sent to the oracle region.

2. The oracle region sends the query string to the query region.

3. The query region sends the answer (0 or 1) to the answer region.
4. The answer region sends the answer to the oracle region.

5. The oracle region sends the answer to the outside whenever the answer is
requested.

Observe that the system sends first the query string and later it sends the answer
requesting symbol #. In addition, the oracle computation time is always constant
given that it consists only of four computation steps. Here, the answer region is used
to ensure some synchronization of queries and answers. Furthermore, the queries
could be sent at an initial stage and all the answers could be received together.

389

Obviously, we can use the last construction in order to characterize the languages
from ¥3;, II; and A;. First, for all those languages in ¥; we can use P systems with an
oracle region where the query region uses a rule 71 : Lo, — lin,.,,., With Ly, € %075
We can use P systems for ¥; and inverting the output in order to accept languages
in II; or making intersections in order to accept languages in A;.

5 Covering reductions and degrees

The last construction induces a new way of reduction technique inspired from Turing
reduction between languages [6]. Here we can use oracle P systems in order to make
reductions between languages. It will define degrees between language classes. Now
we will give some basic definitions related to this topic

Definition 5.1 (covering reduction) Let Li and Lo be two languages. We will
say that L1 <p. Lo if there exists a P system II such that

1. II uses an oracle region with language Lo, and

2. 11 accepts the language L.

The last definition is quite similar to Turing reduction between languages. Ob-
viously if any language can be Turing-reduced to another language, then it can be
reduced with a covering reduction.

Definition 5.2 Let Ly and Ly be two languages. We say that Ly =p. L if L1 <p.
L2 and L2 SPC Ll.

Property 5.1 The relation =p. between languages is a binary equivalence relation
(i.e., it is reflexive, symmetric and transitive)

Definition 5.3 Let L be a language. Then =p. [L] = {L' | L =p. L'}. We will say
that =p. [L] is a covering degree.

Finally, the last definition induces, for any language L, a language class £ Pe
which consists of all the languages in =p. [L]. The relation between language classes
cL . Will be studied in the near future.

References

[1] J. Hopcroft, J. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison Wesley Publishing Co., 1979.

[2] M. Li, P. Vitanyi. An Introduction to Kolmogorov Complezity and its Applica-
tions. Springer-Verlag. 1993.

[3] C. Martin-Vide, G. Mauri, G. Piaun, G. Rozenberg, A. Salomaa (Eds.).
Membrane Computing. International Workshop WMC-2003. LNCS, Vol. 2933.
Springer, 2004.

390

[4]
[5]

[6]

[7]

[9]

G. Paun. Membrane Computing. An Introduction. Springer, 2002.

G. Paun, G. Rozenberg, A. Salomaa, and C. Zandron (Eds.). Membrane Com-
puting. International Workshop WMC-CdeA 2002. LNCS, Vol. 2597. Springer,
2003.

H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. MIT
Press, 1987.

G. Rozenberg, A. Salomaa (Eds.). Handbook of Formal Languages Vol. 1.
Springer, 1997.

J.M. Sempere. P systems with external input and learning strategies. Proceedings
of the Workshop on Membrane Computing WMC03. LNCS Vol. 2933, pp 341-
356. Springer, 2004.

J.M. Sempere. Covering Rules in P systems: some preliminary ideas. Work vol-
ume of the Second Brainstorming Week on Membrane Computing. TR 01/2004
of the Department of Computer Science and Artificial Intelligence, pp 449-456.
University of Seville. 2004.

[10] J.M. Sempere. Complexity applications of covering rules in P systems. (submit-

ted)

391

