
♦Work partially funded by the FEDER project �Object-Oriented Software Systems Automatic Generation� (TIC 1FD97-1102).

An algorithm to compare OO-Conceptual Schemas♦♦♦♦

J.Silva, J.A.Carsí, I.Ramos

Department of Information Systems and Computation
Valencia University of Technology

Camino de Vera s/n
E-46071 Valencia � Spain

{josilga | pcarsi | iramos}@dsic.upv.es

Abstract

In this paper, an algorithmic study about how
to compare object-oriented conceptual schemas in a data
migration context is carried out. An algorithm is
presented based on the tree-comparison technique that
compares conceptual schemas. The algorithm uses some
semantic information in order to optimize efficiency. A
template of the equivalences and differences between
two schemas is generated in an automatic way. The
template shows the results in terms of insertions,
updates and deletions. This work is the first phase in a
tool which performs the automatic migration of
databases starting from the differences detected.

Index Terms: Comparison Algorithms, Comparison
Strategies, Data Migration, Evolution, Schema
Comparison, Tree Processing.

1. Introduction

Many systems and processes can be
represented as tree structures, and sometimes it is
necessary to compare these structures to determine the
interoperation, the differences, or simply the level of
similarity between the systems. This technique is used
in software engineering field when it is necessary to
compare object-oriented conceptual schemas (CS).

The CS comparison is highly related to the
database (DB) migration problem. Ideally, software
evolution must be performed at the conceptual schema
level, when the applications and databases
implementing the information systems could be
automatically updated using the evolutioned conceptual
schema. Sometimes the database of the original system
contains information, and this information has to be
migrated to the new system; this fact is known as data
migration. The main problem concerning data migration
is that the databases involved in the migration process
are usually very different and are sometimes
incompatible.

Precisely in data migration, it is essential to
determine the evolution level of the schema and the
associated database to be migrated. It is also
indispensable to know the changes in the initial system
elements as well as the insertions and deletions that
have occurred during the evolution process. Moreover it
is very important to determine the information to use for
the identification of the origin and the target of the data
migrated. For example if Table A exists in the original
system DB, and there already exists a Table named A in
the target system, how could we determine if the
information in the initial Table A must be migrated to
the final Table A? It may be that Table A in the origin
DB has changed its name to B in the target DB, and this
information is vital for the migration.

In this context, it is necessary to design an
algorithm wich is able to automate the CS comparison
process. In addition, it would be useful for the algorithm
to use semantic information about the schemas during
the comparison in order to improve accuracy. In other
words, the algorithm score is not limited to tree
comparison; it has to be able to compare conceptual
schemas using the specific conceptual schemas
information to resolve possible indeterminism. This
work represents the first phase of the migration process
in the data migration tool developed [1].

Section 2 provides a review of the CS
comparison problem and its profound relation to the
general tree-comparison problem. In section 3, we
present how the comparison problem is currently dealt
with. In this section, we demonstrate that current
algorithms are not appropriate for solving the
conceptual schema comparison problem in data
migration contexts. In section 4, we provide an
algorithm that solves the conceptual schema comparison
problem and automatically generates all the mappings
between the schemas. The conclusions of the article are
presented in section 5.

2. The conceptual schema comparison
problem

We look for an algorithm to automate the CS
comparison in order to migrate the data stored in the DB
related with the original CS to the DB automatically

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

generated from the evolutioned CS. The algorithm has a
double utility. First, it can measure the evolution level
that exists between both schemas. The algorithm
measures different features of the schemas such as the
cyclomatic complexity of the services, the number of
classes, the mean number of attributes of each class, the
inheritance level, etc. Second, when the conceptual
schemas that are compared are models of the same
system, the algorithm can determine the individual
evolution of each element in those schemas. In this way,
the algorithm will determine the origin and the target of
the data and then use them in a migration tool.

Some comercial tools [2, 3] are able to identify
the evolution between schemas without a comparison
process. These tools keep the trace of the operations that
converts the initial schema to the final schema. The
problem with this solution is that it is not flexible,
because both schemas must be dependent; that is, one of
them has to be an evolution of the previous one.
However, using a schema comparison process allows
the schemas to be independent or to have a different
format. Moreover, the operation trace solution is not
appropriate in a data migration context, because, in
practice, most migrations imply legacy systems.
Systems of this kind don�t have an associated
conceptual schema. Thus, no trace of evolution services
exists between the models. In this situation, our
approach models the legacy system using an inverse
engineering process, and then the comparison process is
performed. A specific algorithm for the conceptual
schema comparison is then necessary.

The algorithm must be able to automatically
generate the differences between two schemas. The
differences are expressed in terms of insertions,
deletions and updates. In the data migration context, the
final objective is to transfer the stored instances between
the DBs; then, we only have to consider the elements of
the schemas that have a direct repercussion on data
persistence. These elements are classes, attributes,
aggregation and specialization relationships [2]. With
these elements, we represent a conceptual schema like
an acyclic and non-directed graph; in other words, like a
tree. See Fig. 1.

Figure 1 shows the representation of each
element of the conceptual schema as a node of the tree;
the root-node represents the conceptual schema.

Figure 1: Representation of conceptual

schemas as trees

In reality, in a data migration context, the
obtention of the minimum transformations between two
trees is not the main objective. The main objective is to
identify, as well as possible, the individual evolution
that undergoes each element of the conceptual schemas.
The associated cost of this evolution is not very
important. With this consideration in mind, the
algorithmic approach to be used is radically different in
both cases. First, the algorithm has to identify each one
of the elements of both trees, and then it has to establish
a bijective function between each pair of elements
identified as mapped elements (two elements of two
distinct trees are mapped elements, if one element is
derived from the other). In this paper, the bijective
function is called in the paper �mapping�. The formal
definition of mapping is presented below:

Tree Mapping: It intuitively denotes how an operation
set transforms a tree T into another tree T�, without
considering an order in the application of the operations.
Formally, a tree mapping is 3-ple (M, T, T�); where T is
the initial tree, T� the final tree, and M a set of pairs of
integers (i, j) that satisfy:

1) 1 ≤ i ≤ |T|, 1 ≤ j ≤ |T�|;

2) For each (i1,j1) and (i2,j2) in M:

a) i1 = i2 if and only if j1 = j2

b) i1 < i2 if and only if j1 < j2

c) T[i1] is an ancestor of T[i2] if and only if T�[j1]
is an ancestor of T�[j2].

Element mapping: Each pair (i,j) ∈ M of one tree
mapping is called an element mapping, or simply, a
mapping.

We can now define the main objectives of our
work:

1. To obtain a conceptual schema comparison
algorithm that correctly identifies the evolution
affecting each one of the elements of the initial
conceptual schema.

2. The algorithm must establish a mapping for all the
elements of the conceptual schemas.

3. The algorithm should not be limited to tree
comparison. It has to be a specific CS comparison
algorithm, and must use semantic information for
the comparison.

4. The CSs that are compared could be dependent or
independent.

Following, we will present an algorithmic
analysis that solves the problem taking into account
each of the established objectives. First, the minimum
path between trees algorithm is presented, and then, the
specific CS element identification problem is presented.

 CS

Class

 Attr.

Spe.R.

Agg.R.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

3. State of the art

3.1. The �Tree to Tree� problem

The problem of obtaining the differences
between two schemas is currently solved by different
comercial tools using the trace of the evolution
operations; i.e. VDIFF of Rational Rose [3]. The main
problem with these tools is that the CSs have to be
dependent. Moreover, the need for an evolution trace
requires the schemas to be in the same format, or to
pertain to the same application. These restrictions do not
exist when using a comparison process.

Many structures and processes can be modeled
as labeled trees, and sometimes it is very useful to know
how to transform one tree into another tree using the
minimum number of changes. A particular case of this
problem occurs when the trees are of depth two. This is
the case when we compare two strings, where each
character is represented by one node with a fixed
position in the leaf nodes. This problem was solved by
several authors. Sankoff [4], and Wagner and Fisher [5]
have presented an algorithm that is capable of
computing a sequence of edition operations with
minimum cost. This algorithm has an associated
computational cost O(n*m), where m and n are the
number of leaves of the trees. Later on, Wong and
Chandra [6]; and Aho, Hirschberg and Ullman [7]
demonstrated that Sankoff�s algorithm is optimal for
many computation models. Another algorithm that
solves the problem with optimum cost was presented in
1977 by Selkow [8].

A generalization of the problem is to consider
trees of any depth. In this case, the complexity of the
problem increases by a quadratic factor. The following
algorithm wich was developed by Kuo-Chung Tai [9]
solves the problem.

Given two trees T and T�, the algorithm by
Kuo-Chung Tai, computes their minimal distance with
O(V * V� * L2 * L�2) cost, where V and V� are the #
nodes of T and T�, respectively, and L, L� are the
maximal depth levels.

3.2. Compound type changes

A model is proposed in [10] for the
identification of type changes encountered in schema
evolution. In this work, a set of algorithms for the
schema comparison and for the compound type
comparison are introduced. The comparison algorithm
proceeds through three stages. First, in the name
comparison stage, old and new types that have the same
names in both versions are compared. In the second
stage, called use site comparison, types using types that
have been successfully compared are compared. In the
final stage, called exhaustive comparison, each old type
that does not already have a pair is compared to each
new type. This algorithm has an associated cost of
O(n*m).

The first inconvenience of this work, is that the
structure of the algorithm is very rigid; the types are
always compared using the same criterium and always
in the same order. An error in the first stage of the
algorithm, cannot be restored in the following stages,
and can lead to errors in the following stages as well.

In [10], a set of compound type changes are
presented to be solved by any comparison algorithm.
These changes are the following:

-Inline: Replace a type reference by its type
definition.

-Encapsulate: Create a new type by encapsulating
parts of one or more types.

-Merge: Replace two or more type definitions with a
new type that merges the old type definitions.

-Move: Move part of a type definition from one type
to another existing type.

-Reverse Link: Reverse the connection between two
types.

-Link Addition: Add a link between two existing
types.

The following section presents a study to
obtain a CS comparison algorithm wich is able to solve
the problem by finding all the related compound
changes and improving the [10] algorithm.

4. Algorithmic analysis based on semantic
information

Selkow�s algorithm computes the minimum
path between two trees of depth two; and Kuo-Chung
Tai�s algorithm computes it for trees of any depth. Thus,
we have an inferior limit of the cost of a CSs
comparison algorithm. Kuo-Chung Tai�s algorithm can
be used for comparing CS; however, this algorithm
wasn�t defined to compare CS but rather to compare
simple trees, and it wastes a lot of information of the
schemas that can be used to improve the comparison
result.

A lot of semantic information can in the
context of CSs comparison for data migration be used
by the comparison algorithms. Similarly, the
information that is generated during the comparison of
two elements can be reused in future comparisons of the
other elements of the conceptual schemas. In this
section, we are going to analyze exactly what
information should be used and how it can be utilized to
design an algorithm wich is specific to the CS
comparison.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

Figure 2: �Tree to Tree� conceptual schema

comparison

The distance concept between two trees can be
compared to the measure of similarity between them. In
an evolution context, this distance can measure the
evolution level that exists between two schemas that are
represented as tree structures. Nevertheless, the
computation of the minimum path between the trees is
not the best solution for identifying the evolution of two
conceptual schemas; Figure 2 shows an example of this
problem.

If the algorithm searches the minimum path
between the trees, it will compute the substitution of
�Car� by �Moto�. However, the class �Car� has been
deleted and the class �Moto� has in reality been created
so, in this case, a mapping between �Car� and �Moto�
wouldn�t exist. The search of a minimum way is not a
good solution for the CSs comparison, because the CSs
evolution follows random evolution patterns, that do not
have to coincide with minimum paths. Optimization
algorithms find the fastest form of converting one tree
into another tree. In the following sections, the
algorithms attempt to find alternative methods for
comparing conceptual schemas; they attempt to identify
the real evolution of the class instances. Also, the
algorithms presented above do not take advantage of the
semantic information of the models.

The �Tree to Tree� approximation can be used
when the conceptual schemas do not have instances to
be migrated; but, in a data migration and evolution
context, the conceptual schemas have a set of instances
associated to them that have to be transferred to another
database. In this context, �Tree to Tree� approximation
is not appropriate because it does not take into account
the data evolution features.

To solve the problem, it is necessary to find
alternative comparison methods; these methods have to
take into account the data migration and have to
establish the goal of identifying the analyst�s proposal
with each of the elements of the schemas changes when

the evolution is performed. Accordingly, we need to
find an algorithm that compares conceptual schemas
taking advantage of their tree structure and their CS
exclusive properties as well.

One of the initial premises was that the two
trees must be labeled trees. The question is what
information the labels of the nodes must contain? In a
CS there is a lot of information available to compare
CSs (identifiers, names, relationships, number of
atributes of the classes, etc.) and this information can
strongly determine the success of the comparison.
Several criteria for CS comparison are analized in detail
in [11]. We call the information used to compare a set of
elements comparison criteria.

Limiting the comparison of two CS to only
trees does not take advantage of a lot of semantic
information. A CS comparison algorithm must make use
of the tree structure, but also has to use the CS structure
properties. This idea can provide a lot of rich
information during the comparison. The algorithms of
the previous section waste this semantic information,
and consequently, process all nodes in the same way.
Comparing all elements with all? In a CS-Tree, there
exist four kinds of branches:

• Classes

• Attributes (subbranch of a class)

• Aggregation relationships

• Specialization relationships

With these four kinds of branches of a CS, the
comparisons done by an algorithm are limited to the
comparisons between elements of the same type. It does
not make sense to compare an attribute to a class.
Therefore, the logical comparisons are classes with
classes, attributes with attributes, aggregation
relationships with aggregation relationships and, finally,
specialization relationships with specialization
relationships. Because of this, the general tree
comparison algorithms can be strongly improved. To do
this, we are going to utilize a fragmentation technique
with the goal of dividing the trees into comparable
subtrees.

4.1 Improving the �Tree to Tree� algorithms
using fragmentation techniques

Given any two labeled trees, where V and V�
are its numbers of nodes, and where L and L� are its
respective depths; the Kuo-Chung Tai�s algorithm
computes the minimum way in terms of Additions,
Updates and Deletions with a cost:

)''(22 LLVVO ⋅⋅⋅

If we represent a conceptual schema as a tree:

 Vehicle

Code Weight Registration

 Car Vehicle

Code Weight Registration

 Moto

CS1

CS2

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

The cost of the application of Kuo�s algorithm is:

Cost1 = V·V�·4·4 = 16·V·V� ∈ O(V·V�)

This cost can be improved if we reduce the
number of comparisons by dividing the tree into
comparable subtrees. Thereby, if we fragment the tree,
we can reduce the cost of both variables L and L� to
one:

V1 V2 V3 V4

The cost would be:

Cost2 = (V1·V�1) + (V2·V�2) + (V3·V�3) + (V4·V�4)
∈ O(V·V�)

As V = V1 + V2 + V3 + V4 and V� = V�1 + V�2 +
V'3 + V�4 then:

Cost1 = V1·V�1 + V1·V�2 + V1·V�3 + V1·V�4 +
V2·V�1 + V2·V�2 + V2·V�3 + V2·V�4 + V3·V�1 +
V3·V�2 + V3·V�3 + V3·V�4 + V4·V�1 + V4·V�2 +
V4·V�3 + V4·V�4 ≥ Cost2

As any CS has V1>0 and V4>0, then cost1 is always
greater than cost2: cost1 > cost2.

You can decrease this cost if you continue
fragmentizing the subtrees (as we will explain later, this
is useful only in case the comparison follows a logical
order):

V1 V2 V3 VC1 � VCn

The cost would be:

Cost3 = (V1·V�1) + (V2·V�2) + (VC1·VC�1) + � +
(VCn·VC�n) ∈ O(V·V�)

As V4 = VC1 + ... + VCn

then

Cost2 = (V1·V�1) + (V2·V�2) + (V3·V�3) +
(VC1·VC�1) +...+ (VC1·VC�n) +...+ (VCn·VC�1) +...+
(VCn·VC�n) ∈ O(V·V�) > Coste3

The following always holds: cost1 > cost2 > cost3.

Another kind of semantic information that must
be taken into consideration is the comparison order. It is
not logical to compare attributes if its classes1 have not
already been compared. The CS comparison must
follow a logical order, not a preestablished one but one
that depends on the comparison criteria. For example,
comparing two schemas using a criterium based on the
OID, the logical order would be:

• Analysis of classes (part 1).

• Analysis of attributes.

• Analysis of classes (part 2).

• Analysis of relationships.

The first step (the analysis of classes) is to
identify what classes of the initial conceptual schema
have been deleted and what classes of the final
conceptual schema have been added; the rest of the
classes are considered to be invariant invariant2 classes.
The second step is the analysis of attributes wich is done
for each of the invariant classes (all attributes of added
classes are new; and all attributes of deleted classes
have also been deleted). When the analysis of attributes
ends, it is possible to determine which classes have been
updated, and which are really invariant. Finally, when
all classes are identified, the analysis of the
relationships between them is done.

When semantic information is applied, the
algorithm does not have to compare trees of depth two;
it has to compare many trees of depth one. In this case,
Selkow�s algorithm might solve the problem perfectly
by apply it to each pair of trees; but this is false.
Selkow�s algorithm considers the order of the nodes in
the tree when it makes the comparison, and this is
irrelevant for the CS comparison. Thus, we can reduce
still more the restrictions of the problem even.

4.2 The compound class changes

According to the compound type changes
related in [9], the algorithm must incorporate
mechanisms for the treatment of compound type
changes. The analysis of each compound type change
applied to the object oriented CSs follows:

-Inline: Replace a type reference by its type
definition.

Inline occurs when all the attributes of two associated
classes are included in one class or in both classes. An
algorithm that solves inline has to establish mappings

1 Parent nodes in the tree.
2 They might have been modified, but are mapping classes.

 CS CS CS Class

 Class Ag. R Sp. R Attrib.

 CS CS CS

 Class Ag. R Sp. R Attrib. Attrib.

 Class1 Classi

�

 CS

Class Agg.R.

Attrib.

Spe.R.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

between attributes of two diferent but related classes.
Then, it cannot limit the search of attributes of a class to
attributes of its mapping class. In other words, with
inline, mappings between attributes of unmapped
classes, but related by association, aggregation or
specialization in the original CS, can exist.

Figure 3: Inline example

-Encapsulate: Create a new type by encapsulating

parts of one or more types.

In the object-oriented approach, the encapsulate type
change is a generalization of inline. Encapsulate allows
the classes to be formed by attributes of one or more
classes, and these classes can be related to it or not. If
one algorithm solves the Encapsulate type changes, then
it also solves Inline type changes. When an algorithm
solves Encapsulate, the fragmentation presented in
section 4.1 cannot be applied. In this case, attributes do
not establish a new subbranch of the CS tree, because
the algorithm must search a mapping of one attribute in
all attributes of the conceptual schema.

Figure 4: Merge example

-Merge: Replace two or more type definitions with a
new type that merges the old type definitions. The main
difference between Inline and Merge is that in Merge at
least one of the attributes must have the same value in
both classes of the CS. When Merge occurs, in reality,
two objects exist in the system that are representing two
different features of one object of the real model that is
being represented. It implies that to determine when two
objects of the initial CS have to be transferred to one of
the final CS, it is necesary to verify values of the
instances�s attributes. To do this, the algorithm should

use population comparison criteria; that is, criteria that
use information from the instances stored in the
databases [11].

-Reverse Link: Reverse the connection between two
types.

In object-oriented conceptual schemas, this kind of
evolution is irrelevant, because the links of the types in
the databases�s schema are automatically generated
from the CS.

-Link Addition: Add a link between two existing
types.

This compound type change, like Reverse Link, does
not influence the algorithm�s design.

-Move: Move part of a type definition from one type
to another existing type. This compound change is a
subcase of Inline where only a few attributes change
class. If Inline is solved, then Move is also solved.

Figure 5: Move example

-Duplicate: Duplicate part of a type definition in

another type definition.

Figure 6: Duplicate example

Like Merge, Duplicate requires population
comparison criteria to be solved. In addition, this
compound type change implies that several mappings
can exist for just one attribute of the original CS. That

EC 1 EC 2

EC 1 EC 2

EC 1 EC 2

EC 1 EC 2

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

is, the information of one object in the original CS, must
be transferred to several objects of the final CS.

Now, we can present the algorithm that solves
the comparison of conceptual schemas:

We start with the following information:

• A, B: Are lists with the elements of the tree T and
T�, respectively.

• Criterium(x, y): Returns TRUE if x and y are the
same in accordance with any preestablished
comparison criterium.

• Pair(x, y): Introduce x and y in the pair list, and
take them out of the respective node lists.

• Deletion(x): Insert the element x in the deleted
elements list.

• Addition(x): Insert the element x in the added
elements list.

• Sort(Ai): As Ai is always a two depth subtree, all
elements are at the same depth level. This function
sorts the A list with a metric according with the
comparison criterium used.

ALGORITHM:

Procedure CompareTrees(A, B);
(We assume that A and B have subtrees A1,...,An;
B1,...,Bm where the first represents the classes subtree,
the second represents the aggregations subtree, the
third represents the specializations subtree and the
following represents all the attributes subtrees)
 Procedure CompareSubtrees(i, j)
 Begin
 Sort(Ai); Pa = first(Ai);
 Sort(Bj); Pb =first(Bj);
/* Pa and Pb are pointers to the first element of Ai and
Bj respectively */

 While ((a<Length(Ai)) and (b<Length(Bj)))
 If Criterium(Pa, Pb) = TRUE then
 Pair(Pa, Pb); Pa = next(Ai); Pb = next(Bj);
 Else If Pa < Pb then
 Deletion(Pa); Pa = next(Ai);
 Else If Pa > Pb then
 Addition(Pb); Pb = next(Bj);
 End if;
 End While; /* Complete the next part of the list
with insertions or deletions */
 End /* CompareSubtrees */

Begin
 For i = 1 to 3 do
 CompareSubtrees(i, i);
 End For;

 For each mapping of classes established in the first
iteration where ci, cj are the parent nodes of the
subtrees Ai and Bj respectively do
 CompareSubtrees(i, j);
 End For;

 /* Look for compound type changes */
 For each attribute b of B in a mapping class cb do
 /* Look for Inline and move */
 For each attribute a of A in a class R related with
the cb mapping class where maximum cardinality of the
R relationship is 1 do
 If Criterium(a, b) = TRUE then
 Pair(a, b);
 End if;
 End For;

 /* Look for encapsulate */
 For each attribute a of A in a class non-related with
the cb mapping class do
 If Criterium(a, b) = TRUE then
 Pair(a, b);
 End if;
 End For;
End For;
End /* CompareTrees */.

When the algorithm ends, we have three lists.
The first one contains all elements that have been
deleted from the initial CS; the second list contains all
elements that have been added to the final CS; and the
third list contains all elements that have been changed
during the evolution process. This algorithm is totally
dependent on the selected comparison criterium; this is
right because the selected criterium determines when
two elements are considered the same; this fact is very
important because, all criteria are not equivalent, and no
criterium exist that is the best in all cases.

Assuming a constant cost for the function
�criterium�, this algorithm has an associated cost
O(n*log(n))3 for the first part, because it sorts the lists
before its computation. For the search of the compound
type changes, the cost is O(s*s), where s is the number
of attributes in the CS. The comparison criterium can
present a high complexity if it uses the information that
the algorithm obtains during the comparison process.

The proposed algorithm is the core of a tool
developed at DSIC in the Valencia University of

3 Cost would be n*log(n) + m*log(m) + n + m : the first two
components are derived from the sort of the lists (using for example
�Mergesort� or �Quiksort�); the third and fourth components of the
cost represent the treatment of the lists.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

Technology. This tool provides a CASE environment
supporting evolution of schemas and the posterior
transfer of data between their associated databases. This
algorithm automatically determines the individual
evolution of each element of the schemas and proposes
a default migration plan for its instances.

5. Summary and concluding remarks

 The CS comparison problem is a richer process
than the simple tree-comparison problem. The
optimized algorithms for tree-comparison can be used
for comparing conceptual schemas, but they can also be
improved using semantic information:

• In a conceptual schema there exist four kinds of
comparable elements. Only elements of the same
group must be compared.

• Each element of a CS is unique, and is perfectly
identified: The first successful comparison of the
algorithm can end the search for this element.

• Unlike the simple tree-comparison algorithm, CS
comparison algorithms can make use of semantic
information that is generated during the comparison
process.

• The comparison algorithm must be driven using a
logical order of comparison.

• The comparison criteria will strongly determine the
final result of the comparison.

The main objective of a comparison is not the
search of minimum paths; the main objective is the
identification of the individual evolution of each
element. Finally, the CS comparison problem is not an
optimization problem.

References

[1] Carsí J.A., Ramos I., and Molina J.C., �Automatic
generation of data migration plans from OO conceptual
schemas�, IDEAS2001,IV Jornadas Iberoamericanas de
Ingeniería de Requisitos y Ambientes Software, San
José - Costa Rica, ISBN: 9968-32-000, April 2001. (in
Spanish)

[2] Carsí J.A., �OASIS as conceptual framework for
software evolution�, PhD Thesis, Faculty of Computer
Science, Valencia University of Technology, October
1999. (in Spanish)

[3] Rational, Rational Rose Software Development
Company Home Page: http://www.rational.com/.

[4] Sankoff D., �Matching sequences under
deletion/insertion constraints�, Proc. Nat. Acad. Sci.,
USA 69, pp. 4�6, 1972.

[5] Wagner R.A. and Fisher M.J., �The string to string
correction problem�, Journal of the ACM, 21(1):168-
173, January 1974.

[6] Wong C.K. and Chandra A.K., �Bounds for the string
editing problem�, Journal of the ACM, 23(1):13-16,
January 1976.

[7] Aho A.V., Hirschberg D.S. and Ullman J.D., �Bounds
on the complexity of the longest common subsequence
problem�, Journal of the ACM, 23(1):1-12, January
1976.

[8] Selkow S., �The tree-to-tree editing problem�,
Department of Computer Science, University of
Tennessee, Knoxville, Information Processing Letters,
6(6):184-186, December 1977.

[9] Kuo-Chung Tai, �The tree-to-tree correction
problem�, Department of Computer Science, North
Carolina State University, Raleigh, Journal of the ACM,
vol. 26 no 3, pp. 422-433, 1979.

[10] Staudt B., �A model for compound type changes
encountered in schema evolution�, University of
Massachusetts, Amherst, ACM Transactions on
Database Systems, Vol. 25, No. 1, March 2000, Pages
83�127.

[11] Silva J., Carsí J.A. and Ramos I., �Classification of
comparison criteria for object-oriented conceptual
schemas�, Technical Reports DSIC-II/04/02, Valencia
University of Technology, February 2002. (in Spanish)

[12] Assenova P., Johannesson P., �Improving Quality in
Conceptual Modeling by the Use of Schema
Transformations�, in: B. Thalheim (Ed.): Conceptual
Modeling: proceedings ER '96, Springer, Berlin et al., S.
277-291, 1996.

[13] Grau A., �Computer-Aided validation of formal
conceptual models�, PhD. Institute For Software,
Information Systems Group, Technical University of
Braunschweig, 1998.

[14] Herden O., �Measuring Quality of Database Schemas
by Reviewing - Concept, Criteria and Tool�, Oldenburg
Research and Development Institute for Computer
Science Tools and Systems, Escherweg 2, 26121
Oldenburg, Germany.

[15] Letelier P., Ramos I., Sánchez P. and Pastor O.,
�OASIS 3.0: A formal approach for object-oriented
conceptual modelling�,SPUPV-98.4011, Department of
Information Systems and Computation, Valencia
University of Technology, 1998.

[16] Pérez J., Anaya V., Silva J., Carsí J.A and Ramos I.,
�Automatic generation of data migration plans between
object-oriented databases�, I Workshop on Distributed
Objects Languages Methods & Environments,
DOLMEN2001, Sevilla. (in Spanish)

[17] Pastor O., Insfrán E., Pelechano V., Romero J., and
Merseguer J.,
�OO-METHOD: An OO Software Production
Environment Combining Conventional and Formal
Methods�, Conference on Advanced Information
Systems Engineering (CAiSE'97).
LNCS (1250), pag. 145-159. Springer-Verlag 1997.
ISBN: 3-540-63107-0.
Barcelona, Juny 1997.

Proceedings of the International Conference on Software Maintenance (ICSM�02)
0-7695-1819-2/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on December 26,2022 at 01:06:49 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

