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Abstract 

In this paper, an algorithmic study about how 
to compare object-oriented conceptual schemas in a data 
migration context is carried out. An algorithm is 
presented based on the tree-comparison technique that 
compares conceptual schemas. The algorithm uses some 
semantic information in order to optimize efficiency. A 
template of the equivalences and differences between 
two schemas is generated in an automatic way. The 
template shows the results in terms of insertions, 
updates and deletions. This work is the first phase in a 
tool which performs the automatic migration of 
databases starting from the differences detected. 

Index Terms: Comparison Algorithms, Comparison 
Strategies, Data Migration, Evolution, Schema 
Comparison,  Tree Processing. 

 

1. Introduction 

Many systems and processes can be 
represented as tree structures, and sometimes it is 
necessary to compare these structures to determine the 
interoperation, the differences, or simply the level of 
similarity between the systems. This technique is used 
in software engineering field when it is necessary to 
compare object-oriented conceptual schemas (CS).  

The CS comparison is highly related to the 
database (DB) migration problem. Ideally, software 
evolution must be performed at the conceptual schema 
level, when the applications and databases 
implementing the information systems could be 
automatically updated using the evolutioned conceptual 
schema. Sometimes the database of the original system 
contains information, and this information has to be 
migrated to the new system; this fact is known as data 
migration. The main problem concerning data migration 
is that the databases involved in the migration process 
are usually very different and are sometimes 
incompatible. 

Precisely in data migration, it is essential to 
determine the evolution level of the schema and the 
associated database to be migrated. It is also 
indispensable to know the changes in the initial system 
elements as well as the insertions and deletions that 
have occurred during the evolution process. Moreover it 
is very important to determine the information to use for 
the identification of the origin and the target of the data 
migrated. For example if Table A exists in the original 
system DB, and there already exists a Table named A in 
the target system, how could we determine if the 
information in the initial Table A must be migrated to 
the final Table A? It may be that Table A in the origin 
DB has changed its name to B in the target DB, and this 
information is vital for the migration.  

In this context, it is necessary to design an 
algorithm wich is able to automate the CS comparison 
process. In addition, it would be useful for the algorithm 
to use semantic information about the schemas during 
the comparison in order to improve accuracy. In other 
words, the algorithm score is not limited to tree 
comparison; it has to be able to compare conceptual 
schemas using the specific conceptual schemas 
information to resolve possible indeterminism. This 
work represents the first phase of the migration process 
in the data migration tool developed [1]. 

Section 2 provides a review of the CS 
comparison problem and its profound relation to the 
general tree-comparison problem. In section 3, we 
present how the comparison problem is currently dealt 
with. In this section, we demonstrate that current 
algorithms are not appropriate for solving the 
conceptual schema comparison problem in data 
migration contexts. In section 4, we provide an 
algorithm that solves the conceptual schema comparison 
problem and automatically generates all the mappings 
between the schemas. The conclusions of the article are 
presented in section 5.  

2. The conceptual schema comparison 
problem 

We look for an algorithm to automate the CS 
comparison in order to migrate the data stored in the DB 
related with the original CS to the DB automatically 
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generated from the evolutioned CS. The algorithm has a 
double utility. First, it can measure the evolution level 
that exists between both schemas. The algorithm 
measures different features of the schemas such as the 
cyclomatic complexity of the services, the number of 
classes, the mean number of attributes of each class, the 
inheritance level, etc. Second, when the conceptual 
schemas that are compared are models of the same 
system, the algorithm can determine the individual 
evolution of each element in those schemas. In this way, 
the algorithm will determine the origin and the target of 
the data and then use them in a migration tool. 

Some comercial tools [2, 3] are able to identify 
the evolution between schemas without a comparison 
process. These tools keep the trace of the operations that 
converts the initial schema to the final schema. The 
problem with this solution is that it is not flexible, 
because both schemas must be dependent; that is, one of 
them has to be an evolution of the previous one. 
However, using a schema comparison process allows 
the schemas to be independent or to have a different 
format. Moreover, the operation trace solution is not 
appropriate in a data migration context, because, in 
practice, most migrations imply legacy systems. 
Systems of this kind don�t have an associated 
conceptual schema. Thus, no trace of evolution services 
exists between the models. In this situation, our 
approach models the legacy system using an inverse 
engineering process, and then the comparison process is 
performed. A specific algorithm for the conceptual 
schema comparison is then necessary. 

The algorithm must be able to automatically 
generate the differences between two schemas. The 
differences are expressed in terms of insertions, 
deletions and updates. In the data migration context, the 
final objective is to transfer the stored instances between 
the DBs; then, we only have to consider the elements of 
the schemas that have a direct repercussion on data 
persistence. These elements are classes, attributes, 
aggregation and specialization relationships [2]. With 
these elements, we represent a conceptual schema like 
an acyclic and non-directed graph; in other words, like a 
tree. See Fig. 1. 

Figure 1 shows the representation of each 
element of the conceptual schema as a node of the tree; 
the root-node represents the conceptual schema.  

 

  

 

 

 

 

 
Figure 1: Representation of conceptual 

schemas as trees 

In reality, in a data migration context, the 
obtention of the minimum transformations between two 
trees is not the main objective. The main objective is to 
identify, as well as possible, the individual evolution 
that undergoes each element of the conceptual schemas. 
The associated cost of this evolution is not very 
important. With this consideration in mind, the 
algorithmic approach to be used is radically different in 
both cases. First, the algorithm has to identify each one 
of the elements of both trees, and then it has to establish 
a bijective function between each pair of elements 
identified as mapped elements (two elements of two 
distinct trees are mapped elements, if one element is 
derived from the other). In this paper, the bijective 
function is called in the paper �mapping�. The formal 
definition of mapping is presented below: 

Tree Mapping: It intuitively denotes how an operation 
set transforms a tree T into another tree T�, without 
considering an order in the application of the operations. 
Formally, a tree mapping is 3-ple (M, T, T�); where T is 
the initial tree, T� the final tree, and M a set of pairs of 
integers (i, j) that satisfy: 

1) 1 ≤ i ≤ |T|, 1 ≤ j ≤ |T�|;  

2) For each (i1,j1) and (i2,j2) in M: 

a) i1 = i2 if and only if j1 = j2 

b) i1 < i2 if and only if j1 < j2 

c) T[i1] is an ancestor of T[i2] if and only if T�[j1] 
is an ancestor of T�[j2]. 

Element mapping: Each pair (i,j) ∈ M of one tree 
mapping is called an element mapping, or simply, a 
mapping. 

We can now define the main objectives of our 
work: 

1. To obtain a conceptual schema comparison 
algorithm that correctly identifies the evolution 
affecting each one of the elements of the initial 
conceptual schema. 

2. The algorithm must establish a mapping for all the 
elements of the conceptual schemas. 

3. The algorithm should not be limited to tree 
comparison. It has to be a specific CS comparison 
algorithm, and must use semantic information for 
the comparison. 

4. The CSs that are compared could be dependent or 
independent. 

Following, we will present an algorithmic 
analysis that solves the problem taking into account 
each of the established objectives. First, the minimum 
path between trees algorithm is presented, and then, the 
specific CS element identification problem is presented. 

 CS 

Class   

 Attr.  
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Agg.R.
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3. State of the art 

3.1. The �Tree to Tree� problem 

The problem of obtaining the differences 
between two schemas is currently solved by different 
comercial tools using the trace of the evolution 
operations; i.e. VDIFF  of Rational Rose [3]. The main 
problem with these tools is that the CSs have to be 
dependent. Moreover, the need for an evolution trace 
requires the schemas to be in the same format, or to 
pertain to the same application. These restrictions do not 
exist when using a comparison process.   

Many structures and processes can be modeled 
as labeled trees, and sometimes it is very useful to know 
how to transform one tree into another tree using the 
minimum number of changes. A particular case of this 
problem occurs when the trees are of depth two. This is 
the case when we compare two strings, where each 
character is represented by one node with a fixed 
position in the leaf nodes. This problem was solved by 
several authors. Sankoff [4], and Wagner and Fisher [5] 
have presented an algorithm that is capable of 
computing a sequence of edition operations with 
minimum cost. This algorithm has an associated 
computational cost O(n*m), where m and n are the 
number of leaves of the trees. Later on, Wong and 
Chandra [6]; and Aho, Hirschberg and Ullman [7] 
demonstrated that Sankoff�s algorithm is optimal for 
many computation models. Another algorithm that 
solves the problem with optimum cost was presented in 
1977 by Selkow [8].  

A generalization of the problem is to consider 
trees of any depth. In this case, the complexity of the 
problem increases by a quadratic factor. The following 
algorithm wich was developed by Kuo-Chung Tai [9] 
solves the problem. 

Given two trees T and T�, the algorithm by 
Kuo-Chung Tai, computes their minimal distance with 
O(V * V� * L2 * L�2 ) cost, where V and V� are the # 
nodes of T and T�, respectively, and L, L� are the 
maximal depth levels. 

3.2. Compound type changes 

A model is proposed in [10] for the 
identification of type changes encountered in schema 
evolution. In this work, a set of algorithms for the 
schema comparison and for the compound type 
comparison are introduced. The comparison algorithm 
proceeds through three stages. First, in the name 
comparison stage, old and new types that have the same 
names in both versions are compared. In the second 
stage, called use site comparison, types using types that 
have been successfully compared are compared. In the 
final stage, called exhaustive comparison, each old type 
that does not already have a pair is compared to each 
new type. This algorithm has an associated cost of 
O(n*m). 

The first inconvenience of this work, is that the 
structure of the algorithm is very rigid; the types are 
always compared using the same criterium and always 
in the same order. An error in the first stage of the 
algorithm, cannot be restored in the following stages, 
and can lead to errors in the following stages as well. 

In [10], a set of compound type changes are 
presented to be solved by any comparison algorithm. 
These changes are the following: 

-Inline: Replace a type reference by its type 
definition. 

-Encapsulate: Create a new type by encapsulating 
parts of one or more types. 

-Merge: Replace two or more type definitions with a 
new type that merges the old type definitions. 

-Move: Move part of a type definition from one type 
to another existing type. 

-Reverse Link: Reverse the connection between two 
types. 

-Link Addition: Add a link between two existing 
types. 

The following section presents a study to 
obtain a CS comparison algorithm wich is able to solve 
the problem by finding all the related compound 
changes and improving the [10] algorithm. 

4. Algorithmic analysis based on semantic 
information 

Selkow�s algorithm computes the minimum 
path between two trees of depth two; and Kuo-Chung 
Tai�s algorithm computes it for trees of any depth. Thus, 
we have an inferior limit of the cost of a CSs 
comparison algorithm. Kuo-Chung Tai�s algorithm can 
be used for comparing CS; however, this algorithm 
wasn�t defined to compare CS but rather to compare 
simple trees, and it wastes a lot of information of the 
schemas that can be used to improve the comparison 
result. 

A lot of semantic information can in the 
context of CSs comparison for data migration be used 
by the comparison algorithms. Similarly, the 
information that is generated during the comparison of 
two elements can be reused in future comparisons of the 
other elements of the conceptual schemas. In this 
section, we are going to analyze exactly what 
information should be used and how it can be utilized to 
design an algorithm wich is specific to the CS 
comparison. 
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Figure 2: �Tree to Tree� conceptual schema 

comparison 
 

The distance concept between two trees can be 
compared to the measure of similarity between them. In 
an evolution context, this distance can measure the 
evolution level that exists between two schemas that are 
represented as tree structures. Nevertheless, the 
computation of the minimum path between the trees is 
not the best solution for identifying the evolution of two 
conceptual schemas; Figure 2 shows an example of this 
problem. 

If the algorithm searches the minimum path 
between the trees, it will compute the substitution of 
�Car� by �Moto�. However, the class �Car� has been 
deleted and the class �Moto� has in reality been created 
so, in this case, a mapping between �Car� and �Moto� 
wouldn�t exist. The search of a minimum way is not a 
good solution for the CSs comparison, because the CSs 
evolution follows random evolution patterns, that do not 
have to coincide with minimum paths. Optimization 
algorithms find the fastest form of converting one tree 
into another tree. In the following sections, the 
algorithms attempt to find alternative methods for 
comparing conceptual schemas; they attempt to identify 
the real evolution of the class instances. Also, the 
algorithms presented above do not take advantage of the 
semantic information of the models. 

The �Tree to Tree� approximation can be used 
when the conceptual schemas do not have instances to 
be migrated; but, in a data migration and evolution 
context, the conceptual schemas have a set of instances 
associated to them that have to be transferred to another 
database. In this context, �Tree to Tree� approximation 
is not appropriate because it does not take into account 
the data evolution features.  

To solve the problem, it is necessary to find 
alternative comparison methods; these methods have to 
take into account the data migration and have to 
establish the goal of identifying the analyst�s proposal 
with each of the elements of the schemas changes when 

the evolution is performed. Accordingly, we need to 
find an algorithm that compares conceptual schemas 
taking advantage of their tree structure and their CS 
exclusive properties as well.  

One of the initial premises was that the two 
trees must be labeled trees. The question is what 
information the labels of the nodes must contain? In a 
CS there is a lot of information available to compare 
CSs (identifiers, names, relationships, number of 
atributes of the classes, etc.) and this information can 
strongly determine the success of the comparison. 
Several criteria for CS comparison are analized in detail 
in [11]. We call the information used to compare a set of 
elements comparison criteria.  

Limiting the comparison of two CS to only 
trees does not take advantage of a lot of semantic 
information. A CS comparison algorithm must make use 
of the tree structure, but also has to use the CS structure 
properties. This idea can provide a lot of rich 
information during the comparison. The algorithms of 
the previous section waste this semantic information, 
and consequently, process all nodes in the same way. 
Comparing all elements with all? In a CS-Tree, there 
exist four kinds of branches: 

• Classes 

• Attributes (subbranch of a class) 

• Aggregation relationships 

• Specialization relationships 

With these four kinds of branches of a CS, the 
comparisons done by an algorithm are limited to the 
comparisons between elements of the same type. It does 
not make sense to compare an attribute to a class. 
Therefore, the logical comparisons are classes with 
classes, attributes with attributes, aggregation 
relationships with aggregation relationships and, finally, 
specialization relationships with specialization 
relationships. Because of this, the general tree 
comparison algorithms can be strongly improved. To do 
this, we are going to utilize a fragmentation technique 
with the goal of dividing the trees into comparable 
subtrees. 

4.1 Improving the �Tree to Tree� algorithms 
using fragmentation techniques 

Given any two labeled trees, where V and V� 
are its numbers of nodes, and where L and L� are its 
respective depths; the Kuo-Chung Tai�s algorithm 
computes the minimum way in terms of Additions, 
Updates and Deletions with a cost: 

)''( 22 LLVVO ⋅⋅⋅  

If we represent a conceptual schema as a tree: 
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The cost of the application of Kuo�s algorithm is: 

Cost1 = V·V�·4·4 = 16·V·V�  ∈  O(V·V�) 

This cost can be improved if we reduce the 
number of comparisons by dividing the tree into 
comparable subtrees. Thereby, if we fragment the tree, 
we can reduce the cost of both variables L and L� to 
one: 

 

 

V1               V2               V3               V4 

The cost would be: 

Cost2 = (V1·V�1) + (V2·V�2) + (V3·V�3) + (V4·V�4)   
∈  O(V·V�) 

As  V = V1 + V2 + V3 + V4   and   V� = V�1 + V�2 + 
V'3 + V�4  then: 

Cost1 = V1·V�1 + V1·V�2 + V1·V�3 + V1·V�4 + 
V2·V�1 + V2·V�2 + V2·V�3 + V2·V�4 + V3·V�1 + 
V3·V�2 + V3·V�3 + V3·V�4 + V4·V�1 + V4·V�2 + 
V4·V�3 + V4·V�4 ≥ Cost2 

As any CS has V1>0 and V4>0, then cost1 is always 
greater than cost2: cost1 > cost2. 

You can decrease this cost if you continue 
fragmentizing the subtrees (as we will explain later, this 
is useful only in case the comparison follows a logical 
order): 

 

 

V1            V2            V3           VC1   �   VCn 

The cost would be: 

Cost3 = (V1·V�1) + (V2·V�2) + (VC1·VC�1) + � + 
(VCn·VC�n)   ∈  O(V·V�) 

As V4 = VC1 + ... + VCn 

then 

Cost2 = (V1·V�1) + (V2·V�2) + (V3·V�3) + 
(VC1·VC�1) +...+ (VC1·VC�n) +...+ (VCn·VC�1) +...+ 
(VCn·VC�n)   ∈  O(V·V�) > Coste3 

The following always holds: cost1 > cost2 > cost3. 

Another kind of semantic information that must 
be taken into consideration is the comparison order. It is 
not logical to compare attributes if its classes1 have not 
already been compared. The CS comparison must 
follow a logical order, not a preestablished one but one 
that depends on the comparison criteria. For example, 
comparing two schemas using a criterium based on the 
OID, the logical order would be:  

• Analysis of classes (part 1). 

• Analysis of attributes. 

• Analysis of classes (part 2). 

• Analysis of relationships. 

The first step (the analysis of classes) is to 
identify what classes of the initial conceptual schema 
have been deleted and what classes of the final 
conceptual schema have been added; the rest of the 
classes are considered to be invariant invariant2 classes. 
The second step is the analysis of attributes wich is done 
for each of the invariant classes (all attributes of added 
classes are new; and all attributes of deleted classes 
have also been deleted).  When the analysis of attributes 
ends, it is possible to determine which classes have been 
updated, and which are really invariant. Finally, when 
all classes are identified, the analysis of the 
relationships between them is done. 

When semantic information is applied,  the 
algorithm does not have to compare trees of depth two; 
it has to compare many trees of depth one. In this case, 
Selkow�s algorithm might solve the problem perfectly 
by apply it to each pair of trees; but this is false. 
Selkow�s algorithm considers the order of the nodes in 
the tree when it makes the comparison, and this is 
irrelevant for the CS comparison. Thus, we can reduce 
still more the restrictions of the problem even. 

4.2 The compound class changes 

According to the compound type changes 
related in [9], the algorithm must incorporate 
mechanisms for the treatment of compound type 
changes. The analysis of each compound type change 
applied to the object oriented CSs follows: 

-Inline: Replace a type reference by its type 
definition. 

Inline occurs when all the attributes of two associated 
classes are included in one class or in both classes. An 
algorithm that solves inline has to establish mappings 

                                                 
1 Parent nodes in the tree. 
2 They might have been modified, but are mapping classes. 

  CS   CS   CS    Class

   Class    Ag. R   Sp. R    Attrib.

  CS   CS   CS

   Class    Ag. R   Sp. R    Attrib.    Attrib.

   Class1    Classi 
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 CS

Class Agg.R.

Attrib. 
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between attributes of two diferent but related classes. 
Then, it cannot limit the search of attributes of a class to 
attributes of its mapping class. In other words, with 
inline, mappings between attributes of unmapped 
classes, but related by association, aggregation or 
specialization in the original CS, can exist. 

 

   

 

 

 

 

Figure 3: Inline example 
 
-Encapsulate: Create a new type by encapsulating 

parts of one or more types. 

In the object-oriented approach, the encapsulate type 
change is a generalization of inline. Encapsulate allows 
the classes to be formed by attributes of one or more 
classes, and these classes can be related to it or not. If 
one algorithm solves the Encapsulate type changes, then 
it also solves Inline type changes. When an algorithm 
solves Encapsulate, the fragmentation presented in 
section 4.1 cannot be applied. In this case, attributes do 
not establish a new subbranch of the CS tree, because 
the algorithm must search a mapping of one attribute in 
all attributes of the conceptual schema. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Merge example 
 

-Merge: Replace two or more type definitions with a 
new type that merges the old type definitions. The main 
difference between Inline and Merge is that in Merge at 
least one of the attributes must have the same value in 
both classes of the CS. When Merge occurs, in reality, 
two objects exist in the system that are representing two 
different features of one object of the real model that is 
being represented. It implies that to determine when two 
objects of the initial CS have to be transferred to one of 
the final CS, it is necesary to verify values of the 
instances�s attributes. To do this, the algorithm should 

use population comparison criteria; that is, criteria that 
use information from the instances stored in the 
databases [11]. 

-Reverse Link: Reverse the connection between two 
types. 

In object-oriented conceptual schemas, this kind of 
evolution is irrelevant, because the links of the types in 
the databases�s schema are automatically generated 
from the CS. 

-Link Addition: Add a link between two existing 
types. 

This compound type change, like Reverse Link, does 
not influence the algorithm�s design. 

-Move: Move part of a type definition from one type 
to another existing type. This compound change is a 
subcase of Inline where only a few attributes change 
class. If Inline is solved, then Move is also solved. 

 
 

             
 

Figure 5: Move example 
 
-Duplicate: Duplicate part of a type definition in 

another type definition. 

 

               
 

Figure 6: Duplicate example 

Like Merge, Duplicate requires population 
comparison criteria to be solved. In addition, this 
compound type change implies that several mappings 
can exist for just one attribute of the original CS. That 
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is, the information of one object in the original CS, must 
be transferred to several objects of the final CS.  

Now, we can present the algorithm that solves 
the comparison of conceptual schemas: 

We start with the following information: 

• A, B: Are lists with the elements of the tree T and 
T�, respectively. 

• Criterium(x, y): Returns TRUE if x and y are the 
same in accordance with any preestablished 
comparison criterium.  

• Pair(x, y): Introduce x and y in the pair list, and 
take them out of the respective node lists. 

• Deletion(x): Insert the element x in the deleted 
elements list. 

• Addition(x): Insert the element x in the added 
elements list. 

• Sort(Ai): As Ai is always a two depth subtree, all 
elements are at the same depth level. This function 
sorts the A list with a metric according with the 
comparison criterium used. 

ALGORITHM:  

Procedure CompareTrees(A, B); 
(We assume that A and B have subtrees A1,...,An; 
B1,...,Bm where the first represents the classes subtree, 
the second represents the aggregations subtree, the 
third represents the specializations subtree and the 
following represents all the attributes subtrees) 
   Procedure CompareSubtrees(i, j) 
   Begin 
      Sort(Ai); Pa = first(Ai);  
      Sort(Bj); Pb =first(Bj); 
/* Pa and Pb are pointers to the first element of Ai and 
Bj respectively */ 

     While ( (a<Length(Ai)) and (b<Length(Bj)) ) 
          If Criterium(Pa, Pb) = TRUE then 
             Pair(Pa, Pb); Pa = next(Ai); Pb = next(Bj); 
          Else If Pa < Pb then  
             Deletion(Pa); Pa = next(Ai); 
          Else If Pa > Pb then  
             Addition(Pb); Pb = next(Bj); 
          End if; 
      End While; /* Complete the next part of the list 
with insertions or deletions */ 
  End /* CompareSubtrees */ 
 
Begin 
   For i = 1 to 3 do 
      CompareSubtrees(i, i); 
   End For; 

 
   For each mapping of classes established in the first 
iteration where ci, cj are the parent nodes of the 
subtrees Ai and Bj respectively do 
 CompareSubtrees(i, j); 
   End For; 
 
   /* Look for compound type changes */ 
   For each attribute b of B in a mapping class cb do 
      /* Look for Inline and move */ 
      For each attribute a of A in a class R related with 
the cb mapping class where maximum cardinality of the 
R relationship is 1 do 
         If Criterium(a, b) = TRUE then 
             Pair(a, b); 
         End if; 
   End For; 
 
      /* Look for encapsulate */ 
      For each attribute a of A in a class non-related with 
the cb mapping class do 
         If Criterium(a, b) = TRUE then 
             Pair(a, b); 
         End if; 
   End For;  
End For; 
End /* CompareTrees */. 
 

When the algorithm ends, we have three lists. 
The first one contains all elements that have been 
deleted from the initial CS; the second list contains all 
elements that have been added to the final CS; and the 
third list contains all elements that have been changed 
during the evolution process. This algorithm is totally 
dependent on the selected comparison criterium; this is 
right because the selected criterium determines when 
two elements are considered the same; this fact is very 
important because, all criteria are not equivalent, and no 
criterium exist that is the best in all cases. 

Assuming a constant cost for the function 
�criterium�, this algorithm has an associated cost 
O(n*log(n))3 for the first part, because it sorts the lists 
before its computation. For the search of the compound 
type changes, the cost is O(s*s), where s is the number 
of attributes in the CS. The comparison criterium can 
present a high complexity if it uses the information that 
the algorithm obtains during the comparison process.  

The proposed algorithm is the core of a tool 
developed at DSIC in the Valencia University of 

                                                 
3 Cost would be n*log(n) + m*log(m) + n + m : the first two 
components are derived from the sort of the lists (using for example 
�Mergesort� or �Quiksort�); the third and fourth components of the 
cost represent the treatment of the lists. 
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Technology. This tool provides a CASE environment 
supporting evolution of schemas and the posterior 
transfer of data between their associated databases. This 
algorithm automatically determines the individual 
evolution of each element of the schemas and proposes 
a default migration plan for its instances. 

5. Summary and concluding remarks 

 The CS comparison problem is a richer process 
than the simple tree-comparison problem. The 
optimized algorithms for tree-comparison can be used 
for comparing conceptual schemas, but they can also be 
improved using semantic information: 

• In a conceptual schema there exist four kinds of 
comparable elements. Only elements of the same 
group must be compared. 

• Each element of a CS is unique, and is perfectly 
identified: The first successful comparison of the 
algorithm can end the search for this element. 

• Unlike the simple tree-comparison algorithm, CS 
comparison algorithms can make use of semantic 
information that is generated during the comparison 
process. 

• The comparison algorithm must be driven using a 
logical order of comparison.  

• The comparison criteria will strongly determine the 
final result of the comparison. 

The main objective of a comparison is not the 
search of minimum paths; the main objective is the 
identification of the individual evolution of each 
element. Finally, the CS comparison problem is not an 
optimization problem. 
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