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Valencian Research Institute for Artificial Intelligence

Universitat Politècnica de València
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Abstract—Program slicing is a program analysis technique to
identify the parts of a program that can influence the values
computed at a given program point. Its application to concur-
rent programs with shared memory revealed a new program
dependence between threads called interference and uncovered
some problems associated with concurrent executions such as time
travel. To solve these problems, a new program representation
for slicing concurrent programs was proposed: the threaded
System Dependence Graph (tSDG), which aimed at solving the
time travel problem and to provide context-sensitive slices for
concurrent programs. In this paper, we show that the problem
remains unsolved because the tSDG is not context-sensitive
in some situations. We give a counterexample for the tSDG
and identify situations where the tSDG is imprecise, generating
context-insensitive slices for concurrent programs. To solve these
imprecisions, we redesign the tSDG to become context-sensitive in
those situations, solving the inaccuracy problem and preserving
the solution to time travel. The new program representation is
always as precise as the previous tSDG, and sometimes it is more
precise. That is, the slices computed with the new graph are
always smaller or equal than those computed with the previous
tSDG.

Index Terms—Program analysis, Program slicing, Concur-
rency, Threads, System Dependence Graph

I. INTRODUCTION

Program slicing [23] is a program analysis technique that
allows us to extract the subset of a program (called a slice)
that influences or is influenced by a given program point
(usually a variable in a specific program statement) called
slicing criterion. Program slicing was originally thought for
debugging [23], [6], [21] (the slicing criterion is often a
symptom of a bug, and the slice is the only part of the
program that can contain that bug). Besides debugging, the
decomposition of programs into data-flow and control-flow
analyses used in program slicing has proven useful for many
other applications such as software maintenance [9], program
comprehension [2], [22], program specialization [19], code
obfuscation [16], or information flow control [10], among
others.

This work has been partially supported by grant PID2019-104735RB-
C41 funded by MCIN/AEI/ 10.13039/501100011033, by the Generalitat
Valenciana under grant CIPROM/2022/6 (FassLow), and by TAILOR, a
project funded by EU Horizon 2020 research and innovation programme
under GA No 952215. Carlos Galindo was partially supported by the Spanish
Ministerio de Universidades under grant FPU20/03861.

In order to compute slices for sequential programs, most
techniques rely on a graph representation of the program
called the System Dependence Graph (SDG) [13], where nodes
represent program statements and edges represent dependences
between them. The SDG was a milestone in the area of
program slicing due to its potential for efficient context-
sensitive analysis of programs. An analysis is context-sensitive
if it reaches a procedure call, then enters the procedure, makes
the proper analysis inside the procedure, and finally, it is
able to exit the procedure and return only to the specific
call from which it entered, so the context (variables, argu-
ments, dependences, etc.) is preserved during the analysis. In
Section VI, we explain the evolution of this area and how
different solutions were proposed to slice concurrent programs.
Nowadays, the most advanced and accurate approach is the
one by Nanda et al. [18] who defined a new graph called
threaded System Dependence Graph (tSDG) and a new slicing
algorithm that produces complete context-sensitive slices. The
tSDG effectively and elegantly detects impossible executions
(the so-called ‘time travel’ problem), obtaining more precise
slices than their predecessors.

Nevertheless, in this paper we show that the problem has
not been solved yet. Specifically, we show that the tSDG pro-
duces inaccurate slices in different situations because it is not
always context-sensitive. Example 1 shows a counterexample
designed to illustrate the inaccuracy of the tSDG.

Example 1 (Inaccurate slice produced by the tSDG):
Consider the program in Figure 1a, where a thread T0 launches
two threads T1 and T2 that are executed in parallel. Consider
also variable a in line 7 as the slicing criterion (represented as
⟨7, a⟩). A program slicer can determine what parts of the code
can influence the slicing criterion: the value of variable a in
line 7 (T1) may come from the definition of a in line 13
executed (i) during the call f(4) in line 6 (T1); or (ii)
during the call f(5) in line 9 (T2) (depending on which was
executed last). Therefore, the slice (in black) does not contain
lines 2, 3, and 5 (in gray) because they cannot influence the
slicing criterion. This result can only be obtained by a context-
sensitive analysis. A context-insensitive analysis would include
lines 3 and 5 in the slice because they can influence lines 12
and 13 and, thus, the slicing criterion.

The slice in Figure 1b has been computed with a tSDG.



In this slice, two calls to procedure f (lines 6 and 9) are
correctly included in the slice together with the code in
procedure f; but the calls to procedure f in lines 3 and 5
in T0 and T1 respectively, are unnecesarily included in the
slice. As explained before, even though these calls actually
define variable a, their values are always overwritten before
the execution of the slicing criterion (either by the call in
line 6 or the one in line 9) preventing them from influencing
it, but the tSDG includes them as a context-insensitive analysis
would do.

Example 1 is our first contribution: a counterexample that
reveals the imprecision of the tSDG. It is not always context-
sensitive and may unnecessarily include in the slice procedure
calls that cannot influence the slicing criterion. In this work we
propose an alternative graph model (a new tSDG) that solves
this imprecision. It is worth to remark that, despite receiving
the same name, our tSDG is not a modification over Nanda et
al.’s tSDG, but a new graph built from the SDG of a program.
To build our new representation, we take advantage of the
good properties and principles of the tSDG, but we change
the way in which interference dependence is handled. In the
new tSDG, interference dependences are represented using the
same principle of summary edges in the SDG: the idea is to
represent all interference dependences that connect statements
in different procedures through their call statements, thus
making all interference dependences intraprocedural (as it
happens with flow dependence). This transformation allows
us to use the standard two-phase SDGs algorithm by Horwitz
et al. [13], enhanced with Nanda et al.’s approach to avoid time
travel. The main contributions of this paper are the following:

• The rationale behind the slicing inaccuracy in Nanda et
al.’s tSDG (Section III).

• A new tSDG where interferences are only intraprocedural
together with its construction algorithm (Section IV).

• A new backward static slicing algorithm that unifies
the context-sensitive properties of the original slicing
algorithm proposed by Horwitz et al. and the time travel
management of Nanda et al.’s algorithm to obtain context-
sensitive slices of concurrent programs in the situations
where the old tSDG was not able to (Section V).

1 // Thread T0
2 a = 1;
3 call f(2);
4 cobegin{ // Thread T1
5 call f(3);
6 call f(4);
7 print(a);
8 }{ // Thread T2
9 call f(5);

10 }
11
12 procedure f(x)
13 a = x;

(a) Expected slice

1 // Thread T0
2 a = 1;
3 call f(2);
4 cobegin{ // Thread T1
5 call f(3);
6 call f(4);
7 print(a);
8 }{ // Thread T2
9 call f(5);

10 }
11
12 procedure f(x)
13 a = x;

(b) Old tSDG slice

Fig. 1: Minimal slice (left) and old tSDG slice (right) w.r.t.
slicing criterion ⟨7, a⟩.

II. BACKGROUND

This section recalls the fundamentals of program slicing,
presenting the standard program representations used to slice
both sequential and concurrent programs. In this paper, we
consider concurrent programs with shared memory. Threads
interact accessing common variables and there is no other syn-
chronization mechanism between threads. Threads are created
via the classical cobegin language construct (see Figure 1).

Since it was defined in 1988 by Horwitz et al. [12], the
System Dependence Graph (SDG) is the program represen-
tation used in most program slicing techniques. The SDG is
the result of an iterative refinement over an initial program
representation resource, the Control-Flow Graph (CFG). We
explain it through its incremental evolution:

CFG → PDG → SDG

CFG [1]. It is a directed graph that represents all possible ex-
ecution paths of a program procedure. In the CFG, statements
are represented with nodes, and a node m is connected to a
node n if there is a possible execution where n is immediately
executed after m. The CFG additionally includes two extra
nodes, Enter and Exit, that represent the initial and final nodes
of the procedure execution.

The threaded version of the CFG is called threaded Control-
Flow Graph (tCFG). In the tCFG the beginning and end of
each thread in cobegin blocks are modelled with two extra
nodes labelled as Start and End, analogously to Enter and
Exit nodes in CFGs, embedded in the surrounding CFG of the
procedure that contains them.

PDG [7]. The Program Dependence Graph (PDG) contains
the same nodes as the CFG after removing the Exit node. The
edges of the PDG represent two different types of dependences
between program statements: control dependence and flow de-
pendence, both derived from the CFG, and defined hereunder.

Definition 1 (Control Dependence): Let G be a CFG. Let
m and n be nodes in G. A node m is post-dominated by a
node n in G if every path from m to the Exit node passes
through n. Node n is control dependent on node m if and only
if n post-dominates one but not all of m’s CFG successors.

Definition 2 (Flow Dependence): A node n is flow depen-
dent on a preceding node m if:

(i) m defines a variable v,
(ii) n uses v, and

(iii) there exists a control-flow path from m to n where v is
not redefined.

The concurrent counterpart of the PDG is the threaded
Program Dependence Graph (tPDG). The tPDG contains the
same nodes as the tCFG after removing not only the Exit node,
but also the End nodes of all threads. As the PDG, the tPDG
includes control and data edges, but it also includes additional
edges that represent a new type of dependence exclusive to
concurrent programs called interference dependence.

Definition 3 (Interference Dependence [18]): A node n is
interference dependent on a node m if m defines a variable
v, n uses the variable v, and n and m can execute in parallel.



Interference dependence differs from control and flow de-
pendences because it is intransitive. If a node n3 is interference
dependent on a node n2 and, in turn, n2 is interference
dependent on a node n1, n3 is interference dependent on n1

only if there is a possible execution sequence ⟨n1, n2, n3⟩.
This is detected by using the tCFG. All feasible execution
sequences are called threaded witnesses.

Definition 4 (Threaded witness [18]): Given a tCFG G
of a concurrent program, a threaded witness is an ordered
sequence of nodes ⟨n1, n2, . . . , nk⟩ belonging to G such that
any subsequence of nodes ni1 , ni2 , . . . , nij , j ≤ k, belonging
to the same thread, Ti, forms a realizable path in Ti.

Intuitively, a threaded witness can be interpreted as a se-
quence of tCFG nodes that form a valid execution chronology.

SDG [12]. The PDG is suitable to represent isolated pro-
cedures (it is an intraprocedural representation). The SDG
is an interprocedural representation. It generalized the PDG
by connecting all the procedures of a program in a single
graph. A SDG is compositionally constructed by connecting
the PDGs of a program’s procedures to model parameter
passing between procedure calls and procedure definitions.
The information transfer between calls and definitions is done
through temporary variables.

• Procedure call nodes are augmented with a set of new
nodes called actual-in and actual-out, which are control
dependent on the call node. For each argument at the
call site, an actual-in node contains an assignment that
copies the value from the argument to a temporary
variable, and for each argument re-defined during the
procedure execution, an actual-out node contains another
assignment that copies the temporary variable returned
by the procedure back to the caller.

• In a similar way, procedure definition nodes are also
augmented with a set of nodes called formal-in and
formal-out, control dependent on the Enter node. Formal-
in nodes contain an assignment to copy the value from
the temporary variable defined at the call site to the
corresponding parameter, while formal-out nodes contain
an assignment to copy the value of redefined parameters
to a new temporary variable.

In this model, flow dependences between different procedures
are transmitted throughout actual and formal nodes in the
procedure call. To connect PDGs, three new kinds of edges
are defined: (i) call edges connect each call site to the
corresponding Enter node of the procedure, (ii) input edges
connect actual-in nodes to the corresponding formal-in nodes,
and (iii) output edges connect formal-out nodes to associated
actual-out nodes. It is worth mentioning that, at the end of
the construction of this structure, all the flow dependences
associated to the values of the arguments in every procedure
call are moved to the corresponding actual node increasing
the precision of the representation. Finally, a new kind of
edge called summary edge is added to the SDG to represent
the dependences between arguments in procedure calls. A
summary edge connects an actual-in node to an actual-out

1 main()
2 a = 1;
3 increment(a);
4
5 increment(x)
6 x = x + 1;

Enter
increment

x_out = x

x = x + 1

x = x_in

call
increment

x_in = a a = x_out

Control Edge
Flow Edge
Call/Input Edge
Output Edge
Summary Edge

a = 1

Enter
main

Fig. 2: Procedure call and SDG representation

node if the value provided by the actual-in node is used inside
the procedure (or one of its transitive callees) to compute the
value of the actual-out node. An illustration of an SDG can
be seen in Figure 2.

The standard algorithm [12] to slice a SDG computes
program slices by traversing the SDG in two differentiated
phases. Both phases traverse all the control and flow edges
backwards to reach all possible nodes connected by these
dependences, but each phase ignores a specific kind of edge
with a particular purpose:

• Phase 1 ignores output edges. This phase identifies nodes
that can reach the slicing criterion, and are either in the
same procedure (P ) as the slicing criterion itself, or in a
procedure that directly or transitively calls P .

• Phase 2 ignores call and input edges. This phase locates
nodes in procedures that are called by (i) P or by (ii)
procedures that directly or transitively call P . Since call
and input edges are not traversed in this phase, Phase 2
includes in the slice the procedures called during Phase 1,
but prevents the inclusion of new calls. This fact makes
the algorithm aware of the calling contexts, producing
context-sensitive slices.

In the rest of the paper we explain the problems of the
current formulation of the threaded version of the SDG,
the threaded System Dependence Graph (tSDG) proposed by
Nanda et al. [18], and we reformulate the model to make
it context-sensitive and a natural extension of the SDG with
threads.

III. LIMITATIONS OF THE CURRENT TSDG

The slices computed with the SDG for concurrent programs
may be (i) incomplete or may (ii) travel in time, including
statements that, e.g., cannot be executed before the slicing
criterion, and obtaining an execution sequence that is not an
interprocedural threaded witness (a threaded witness computed
using an interprocedural tCFG). To solve these problems,
Nanda et al. [18] defined the tSDG, which includes two main
changes over the SDG:

1) The slicing algorithm switches to Phase 1 when
an interference edge is traversed. This solves the



1 // T0
2 a = 1;
3 call f(2);
4 cobegin{ // T1
5 call f(3);
6 call f(4);
7 print(a);
8 }{ // T2
9 call f(5);

10 }
11
12 procedure f(x)
13 a = x;

Start T1 Start T2

call f print(a)

f

a = x

a = a_out

Start T0

a = 1
cobegin

x = x_in

call f

a = a_out

a_out = a

1

2

4

3 9

10

1

10 16

15

4,11

call f

a = a_outx_in = 5

1

2 8a = a_outx_in = 32 8

3

5 4

5,12

6,13

7,146 5

7 6

8 7

x_in = 4

(a)

(b) (c)

(d)

9

Control Edge
Flow Edge
Call/Input Edge
Output Edge
Summary Edge
Interference Edge

Slicing Criterion

Slice Phase 1

Slice Phase 2

x_in = 2 call f3

n
n

n

Timestamp in T0
Timestamp in T1
Timestamp in T2

Wrong Slice

Fig. 3: Nanda et al.’s tSDG of the program in Figure 1

incompleteness problem (cf. Nanda et al. [18, Section
3.1]) because it ensures that all the dependences of the
statement that generate an interference are included in the
slice when we reach a different procedure throughout an
interference edge.

2) The introduction of timestamps inside tSDG nodes.
These timestamps allow us to solve the time travel
problem by detecting realizable paths, thus, ensuring that
the traversal of nodes is done using an interprocedural
threaded witness.

Unfortunately, the first modification solves the incomplete-
ness problem but introduces a problem of imprecision: the
tSDG can generate context-insensitive slices, as shown in
Example 1. Example 2 explains, for the code in Figure 1,
how the tSDG unnecessarily includes in the slice the calls to
procedure f in lines 3 and 5.

Example 2: Consider the program in Figure 1 and its
associated tSDG shown in Figure 3. The tSDG uses different
colours to show the slice computed with Nanda et al.’s
algorithm with respect to the slicing criterion ⟨7, a⟩ (the node
in bold). The colour of the nodes indicates the phase in which
they are included, white nodes are not part of the slice, and red
nodes are unnecessarily included in the slice. It can be seen
that the algorithm unnecessarily includes irrelevant calls to
procedure f and their corresponding actual-in nodes x_in =
2 and x_in = 3 in the slice. Table I shows the path followed
by the slicing algorithm to reach formal-in node x = x_in
during Phase 1 (which is the cause of including the irrelevant
calls to f). Each step (or row) represents the traversal of an
edge.

In the tSDG, each node is assigned a timestamp that

indicates the order in which each node is executed in each
thread. The Traversal State represents, with timestamps
for each thread, what is the chronological state (last nodes
executed in each thread).

Step 0 represents the start of the traversal. In this step the
slicing criterion is the statement in thread T1 with timestamp
16. The Traversal State is updated by annotating T1
with the set of timestamps {16}. Step 1 represents the traversal
of the interference edge from the print(a) node to state-
ment a = x in procedure f. This node has four timestamps
that are updated in the state. Note that the traversal state is a
countdown timer for each thread because the statements are
traversed backwards. For this reason, T1 had timestamp 16
and now it could be 6 or 13 (because there are two calls to
f in T1). Step 2, represents the traversal, inside procedure
f, of the flow edge to the formal-in node x = x_in. After
reaching the formal-in, the algorithm finds four possible input
edges to traverse labelled with letters from a to d. In the four
cases, the timestamp of the node reached is smaller than the
timestamp in the traversal state and there is an interprocedural
threaded witness (in the tCFG) from the statement in New
Node to the one in Last Node (x = x_in) (recall that we
traverse the execution backwards). Therefore, all four nodes
could be executed before the last node (in different executions)
and, thus, they are (unnecessarily) added to the slice, losing
context-sensitivity. Observe in Step 1 that traversing the inter-
ference edge leads us to procedure f. But, the algorithm exits
procedure f to all calls to f (in any thread) and not to the call
from which we entered.

In the next section we solve the imprecision problems of
the tSDG. We propose an alternative approach that takes



Last Edge New Node Traversal StateStep Node Type Phase Statement Timestamps T0 T1 T2
0 - - 1 print(a) {(T1,{16})} ⊥ {16} ⊥
1 print(a) Interference 1 a = x {(T0,{7}),(T1,{6,13}),(T2,{6})} {7} {6,13} {6}
2 a = x Flow 1 x = x in {(T0,{6}),(T1,{5,12}),(T2,{5})} {6} {5,12} {5}
3a x = x in Input 1 x in = 2 {(T0,{3})} {3} {5,12} {5}
3b x = x in Input 1 x in = 3 {(T1,{2})} {6} {2} {5}
3c x = x in Input 1 x in = 4 {(T1,{9})} {6} {9} {5}
3d x = x in Input 1 x in = 5 {(T2,{2})} {6} {5,12} {2}

TABLE I: Slicing traversal of the program in Figure 1 from the slicing criterion ⟨7, a⟩ to all the actual-in nodes x_in = x
in the calls to procedure f

advantage of the timestamp mechanism proposed by Nanda
et al. to solve time travel; but preserving the standard two-
phase slicing algorithm proposed by Horwitz et al. and solving
the interference dependence problem when transforming the
set of tPDGs in the tSDG, thus being context-sensitive in the
situations Nanda et al.’s tSDG was not.

IV. THE TSDG REVISITED

In this section we propose a redefinition of the tSDG in
such a way that: (i) It includes a new treatment for interference
dependence so that the graph is context-sensitive in situations
the old tSDG is not. (ii) It keeps the timestamp design to solve
the time travel problem. (iii) It can work with the standard
two-phase algorithm, thus, reducing complexity and improving
performance.

Interference dependence (see Definition 3) connects defini-
tions and uses of concurrent threads. In some cases, the nodes
connected may belong to the body of different procedures
(see, e.g., the interference edge in Figure 3). This means
that interference can be an interprocedural data dependence,
which breaks the principle of the SDG in which all data
dependences enter to and exit from procedures throughout
formal and actual nodes. This is the fundamental limitation
of Nanda et al.’s tSDG. The key point of the new tSDG is
to prevent interference edges from freely jumping from the
body of one procedure to the body of another one. That is,
interprocedural interference dependence is not permitted.

One of the main problems of previous approaches is that
formal and actual nodes, originally thought to represent de-
pendences in the sequential execution of programs, are also
used as source or target of interference edges which represent
flow dependences of concurrent executions. This fact results
in a mix of sequential and concurrent information managed by
the same node, overloading it with conflicting responsibilities
and leading to incomplete slices in some cases.

For this reason, the proposal of the new tSDG transfers
this knowledge to a new group of nodes that only represent
information about the concurrent execution: the formal and
actual interference nodes. These nodes are analogous to the
standard formal and actual nodes in sequential parameter
passing, but they model concurrent parameter passing, i.e.,
they represent the value of a variable used/defined inside a
procedure that has been defined/used in a thread executed in
parallel:

• Procedure definition nodes are augmented with
new formal-interference-in (formal-ifin) and formal-
interference-out (formal-ifout) nodes, control dependent
on the Enter node. For each variable v target of an
interference dependence whose source is in another
procedure, a formal-ifin node is generated with an
assignment to copy the value of v (e.g., v = v ifin).
On the other hand, for each variable v source of an
interference dependence with target in another procedure,
a formal-ifout node contains an assignment to copy
any value of v (e.g., v ifout = v) defined during the
execution of the procedure.

• In a similar way, procedure calls are augmented
with new actual-interference-in (actual-ifin) and actual-
interference-out (actual-ifout) nodes, which are control
dependent on the call node. At the call site, an actual-
ifin node contains an assignment that copies the value
of a shared variable v to a temporary variable (e.g.,
v ifin = v). Complementarily, an actual-ifout node con-
tains an assignment to copy the value of a shared variable
v (e.g., v = v ifout), defined inside the procedure.

In this model, as it happened with formal and actual nodes,
formal and actual interference nodes associated to concurrent
parameter passing are also connected by input edges (from an
actual-ifin to a formal-ifin) and output edges (from a formal-
ifout to an actual-ifout).

The addition of this new structure in procedure calls allows
us to separate flow and interference dependences, connecting
them to different actual nodes according to their sequential
or concurrent nature. In our model, flow dependences are
connected to actual-in/out nodes while interference depen-
dences are connected to actual-interference-in/out nodes. We
formalize these restrictions over flow and interference de-
pendence as follows: (1) flow dependence ignores variable
definitions and uses that occur in interference nodes, and
(2) interference dependence ignores definitions and uses in
formal/actual nodes, and is exclusively intraprocedural.

Definition 5 (tSDG-Flow Dependence): A node n is tSDG-
flow dependent on a node m if (i) n is flow dependent on m
(see Definition 2) and (ii) neither m nor n are interference
nodes.

Definition 6 (tSDG-Interference Dependence): A node n
is tSDG-interference dependent on a node m if (i) n is
interference dependent on m (see Definition 3), (ii) m and



n are in the same procedure, and (iii) neither m nor n are
actual-in / actual-out nodes.

A. Flow dependences generated by interference nodes

Although interference formal nodes are similar to formal
nodes used in sequential parameter passing, the information
represented by both is fundamentally different: while se-
quential formal nodes (formal-in) represent a definition of a
variable v that always occur before executing the procedure’s
code or a use that always occur after executing the whole
body of the procedure (formal-out), formal interference nodes
represent definitions (formal-ifin) or uses (formal-ifout) of v
that may happen in any timestamp during the execution of
the procedure’s code. For this reason, in order to represent
this specialized behaviour, we define a new dependence as-
sociated to formal interference nodes called concurrent flow
dependence.

Definition 7 (Concurrent flow dependence): A node n is
concurrent flow dependent on a preceding node m if:

(i) m or n are formal interference nodes,
(ii) m defines a variable v,

(iii) n uses v, and
(iv) there exists a control-flow path from m to n.

This definition is really interesting because it allows v to
be redefined in the control-flow path from m to n. Even
in that case, n depends on m. The rationale comes from
a fundamental property of interference formal nodes: they
represent an interference that could happen at any instant
during the execution of the procedure.

B. Timestamps in interference nodes

The addition of interference nodes produces a new drawback
when using the timestamp-based method to solve time travel:
which timestamps should be assigned to interference nodes? In
order to establish a correct node chronology when numbering
interference nodes we need to consider all moments in which
they could be defined or used. We start considering formal
interference nodes:

• Formal-interference-out nodes in a procedure represent
all possible definitions of a shared variable. For this
reason, the set of timestamps of these nodes includes
the union of the timestamps of all the definitions of the
variable in the procedure.

• Formal-interference-in nodes in a procedure represent a
definition of a shared variable that occurred in a parallel
thread and was used at some point in the procedure.
Therefore, the set of timestamps associated to formal-
ifin nodes is the union of all timestamps of uses of this
variable in the procedure.

While formal interference nodes of a procedure contain the
timestamps associated to all the calls to the procedure, actual
interference nodes are only associated to those timestamps that
happened during one specific call. They can be computed by
selecting the timestamps that happened between the initial and
final timestamps of the call.

Algorithm 1 tSDG interference structure creation algorithm
Input: A SDG G = (N, Ec∪Ef ∪Ecall ∪Ein∪Eout ∪Es)
Output: A tSDG G′ = (N ′, E′

c∪Ef∪Ecall∪E′
in∪E′

out∪E′
s∪E′

if ∪E
′
cf )

Initialization:
N ′ = N , E′

c = Ec, E′
in = Ein , E′

out = Eout , E′
if = ∅, E′

cf = ∅,
Iinter contains all interprocedural interference dependences,
Iintra contains all intraprocedural interference dependences

1: begin
2: for (n, n′) ∈ Iinter do
3: ADDINTERFERENCEINNODES(n′)
4: ADDINTERFERENCEOUTNODES(n)

5: for (n, n′) ∈ Iintra do
6: E′

if = E′
if ∪ {(n, n

′)}
7: E′

s ← COMPUTESUMMARYEDGES(G)
8: return G′ = (N ′, E′

c ∪Ef ∪Ecall ∪E′
in ∪E′

out ∪E′
s ∪E′

if ∪E′
cf )

9: end

10: function ADDINTERFERENCEINNODES(n)
11: v ← GETINTERFERENCEVAR(n)
12: if REPEATEDINTERFERENCE(n, “in”, v) then return
13: root ← GETPROCEDUREROOT(n)
14: tstamps ← GETTIMESTAMPS(n)
15: newFormal ← ADDNODE(N ′, “v = v ifin”, tstamps)
16: E′

c ← E′
c ∪ {(root ,newFormal)}

17: E′
cf ← E′

cf ∪ {(newFormal , n)}
18: for c ∈ GETCALLS(root) do
19: callTstamps ← FILTERTIMESTAMPS(c, tstamps)
20: newActual ← ADDNODE(N ′, “v ifin = v”, callTstamps)
21: E′

c ← E′
c ∪ {(c,newActual)}

22: E′
in ← E′

in ∪ {(newActual ,newFormal)}
23: ADDINTERFERENCEINNODES(newActual)

24: function ADDINTERFERENCEOUTNODES(n)
25: v ← GETINTERFERENCEVAR(n)
26: if REPEATEDINTERFERENCE(n, “out”, v) then return
27: root ← GETPROCEDUREROOT(n)
28: tstamps ← GETTIMESTAMPS(n)
29: newFormal ← ADDNODE(N ′, “v ifout = v”, tstamps)
30: E′

c ← E′
c ∪ {(root ,newFormal)}

31: E′
cf ← E′

cf ∪ {(n,newFormal)}
32: for c ∈ GETCALLS(root) do
33: callTstamps ← FILTERTIMESTAMPS(c, tstamps)
34: newActual ← ADDNODE(N ′, “v = v ifout”, callTstamps)
35: E′

c ← E′
c ∪ {(c,newActual)}

36: E′
out ← E′

out ∪ {(newFormal ,newActual)}
37: ADDINTERFERENCEOUTNODES(newActual)

C. An algorithm to generate the tSDG

Algorithm 1 describes how to transform a SDG into its asso-
ciated tSDG. The SDG is formed from a set of nodes N and a
set of control edges (Ec), flow edges (Ef ), call edges (Ecall ),
input edges (Ein ), output edges (Eout ), and summary edges
(Es) (see Section II). The tSDG also includes the interfer-
ence structure: formal-interference-in, formal-interference-out,
actual-interference-in, and actual-interference-out nodes; and
the edges needed to connect them, including the interference
edges (E′

if ) (induced by Definition 6) and the concurrent flow
edges (E′

cf ) (induced by Definition 7).
There is a set of functions used in the algorithm that need

to be explained beforehand. Given a node n, source or target
of an interference, functions GETINTERFERENCEVAR(n) and
GETTIMESTAMPS(n) return the name of the interfered vari-
able in n and the timestamps associated to n, respectively.



Function REPEATEDINTERFERENCE(n,l,v) is the termination
condition of the recursion. It checks whether node n has been
already processed with the same label l and the same interfered
variable v. Function GETPROCEDUREROOT(n) returns the
Enter node of the procedure where n is contained. Function
ADDNODE(N ′,l,t) creates (and returns) a new node in N ′

with label l and timestamp t. If the node already exists, t
is added to the already existing set of timestamps. Function
GETCALLS(n) returns a set with all the call nodes that call the
procedure whose Enter node is n. Finally, given a call node c
and a set of timestamps t, function FILTERTIMESTAMPS(c,t)
returns the timestamps that occur inside call c.

The algorithm starts by procesing all interprocedural in-
terference dependences. The structure that represents each
interprocedural interference dependence is created by means
of functions ADDINTERFERENCEINNODES and ADDINTER-
FERENCEOUTNODES. While the call to ADDINTERFEREN-
CEINNODES (line 3) creates formal-interference-in and actual-
interference-in nodes, the call to ADDINTERFERENCEOUTN-
ODES (line 4) creates formal-interference-out and actual-
interference-out nodes.

In each call to functions ADDINTERFERENCEINNODES and
ADDINTERFERENCEOUTNODES, we start by extracting the
variable involved in the interference and checking whether
the input node n has already been processed. In that case, the
function returns and nothing is generated (lines 12 and 26).
Otherwise, we extract the root (Enter) node of the procedure
and the set of timestamps associated to n. Then, according
to whether it is an input or output node, a different formal
interference node is created (newFormal) and connected to
the Enter node with a control edge (lines 15–16 and 29–
30), and the corresponding concurrent flow edge adds the
connection between the formal node and n (lines 17 and 31).

The next step is to extract all the call nodes to generate
the corresponding actual nodes. For each call c, we create and
add to the graph the corresponding actual interference node
(newActual) and connect it to c with a control edge (lines 20–
21 and 34–35). Then, actual and formal interference nodes are
connected with the corresponding input/output edges (lines 22
and 36).

After processing all interprocedural interference depen-
dences, we convert all intraprocedural interference depen-
dences into interference edges (E′

if ) (lines 5-6).
Finally, we can generate the summary edges with the stan-

dard algorithm (line 7). This completes the final tSDG, which
includes the new concurrent parameter passing structure.

Example 3: Consider the code in Figure 4, with two threads
T1 and T2 that read and write over the shared variable x. Fig-
ure 5 shows how the SDG of the program (left) is transformed
into the tSDG (right). According to Definition 3, this program
contains four interprocedural interference dependences (not
drawn because the SDG does not include interferences): two
from x=2 in T1 to a=x and x=x+1 in T2, and other two
from x=x+1 and x=a in T2 to print(x) in T1. These
four dependences stop being interprocedural in the tSDG: they
only enter and exit procedure f through the corresponding

interference nodes (those in grey).
When applying the transformation from SDG to tSDG,

the four interprocedural interferences are processed by Al-
gorithm 1 producing: (i) the set of interference nodes (grey
nodes), (ii) the input and output edges connecting them, (iii)
the set of concurrent flow edges associated to procedure f
(light blue edges), and (iv) the set of interference edges.
As statements 10 and 11 in procedure f are target of an
interprocedural interference dependence (they both use shared
variable x), a formal-ifin assignment for x is created con-
taining all their associated timestamps (6 and 7). On the other
hand, since statements 11 and 12 are source of interprocedural
interference dependences (they define shared variable x), a
formal-ifout assignment for x is also included in the tSDG
with the timestamp of both definition nodes (7 and 8). The
formal-interference structure is replicated in the corresponding
call to procedure f, generating actual interference nodes with
the same timestamps (they are associated to the only call to
procedure f). Finally, following Definition 7, concurrent flow
edges are generated in f from formal-ifin nodes (respectively
to formal-ifout nodes).

It is interesting to remark that flow edges only connect
actual and formal nodes but not interference nodes (according
to Definition 5), while concurrent flow edges only connect
interference nodes (according to Definition 7), dividing re-
sponsibilities.

It is worth mentioning that our tSDG generates new sum-
mary edges (see Figure 5) that account for all execution paths
induced by concurrent scenarios. This is the key point why our
model solves the incompleteness problem (see Section III and
cf. Nanda et al. [18, Section 3.1]). Instead of replicating the
behaviour of summary edges with interprocedural interference
edges and ad-hoc changes to the slicing algorithm, our solution
naturally uses the same summary mechanisms and slicing
algorithm as the standard SDG.

Finally, we state an important property of the tSDG: all
interferences are represented with a chain of dependences.
This is especially relevant because the tSDG does not contain
interprocedural dependence edges, but thanks to that property
they are represented through other dependence chains.

V. SLICING THE TSDG

The slicing algorithm used to slice our tSDG model is the
standard two-phase SDG slicing algorithm, but including the
timestamp mechanism proposed by Nanda et al. to avoid time
travel. The new nodes (interference nodes) introduced in the

1 procedure main()
2 x = 1;
3 cobegin{// T1
4 x = 2;
5 print(x);
6 }{// T2
7 call f;
8 }

9 procedure f
10 a = x;
11 x = x + 1;
12 x = a;

Fig. 4: Program that contains two threads with interference
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x = x + 1
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a = x x = a

Start T1 Start T2

x = 2 print(x)

cobegin

call f

x = 1

main

x_in = x x = x_out

Fig. 5: Transformation from SDG to tSDG of the code in Figure 4

tSDG have been conveniently labelled with timestamps so that
they can be directly processed with Nanda et al.’s timestamp
algorithm.

Example 4: Consider again the code in Figure 1 and
the slicing criterion ⟨7, a⟩. The new tSDG associated to this
program is shown in Figure 6. We can compare it with the
old tSDG shown in Figure 3. First, the slice computed with
the new tSDG is the minimal slice shown in Figure 1a. The
(imprecise) slice computed with the old tSDG is shown in
Figure 1b.

There are two differences that can be clearly observed:
(i) the new tSDG does not allow interprocedural interference
edges. In contrast, the old tSDG contains an interprocedural
interference edge (it connects a statement inside f’s body with
a statement outside f). Precisely for this reason, (ii) in the old
tSDG some nodes in procedure f are reached during slicing
Phase 1 while in the new tSDG all the nodes in f can only be
reached during slicing Phase 2. These two facts are the key
factors for obtaining the expected slice with the tSDG.

Table II shows how the slicing algorithm prevents the
traversal of input edges (because they are reached in Phase 2)
and, thus, excludes the calls to f in lines 3 and 5. The traversal
is divided into five main blocks: the first block (steps 1a and
2aa) represents the path in Phase 1 from the slicing criterion to
x_in = 4. The second block (steps 1b and 2ba) represents
the path in Phase 1 from the slicing criterion to x_in = 5.
The rest of nodes collected in Phase 1 are not represented in
the table because they are trivially reached through control
edges. In Phase 2, the third (steps 2ab and 3a) and fourth
(steps 2bb and 3b) blocks respectively represent the paths
from a = a_out and a = a_ifout to a = x. Finally,
the last block traverses a flow edge to reach the formal-in node
x = x_in. Since we are in Phase 2, the four input edges
cannot be traversed. This avoids to unnecessarily collect nodes
x_in = 2, x_in = 3, and, thus, the calls to f in lines 3
and 5. Note, however, that nodes x_in = 4 and x_in = 5
where already collected by summary edges in Phase 1 during
steps 2aa and 2ba, keeping the slice complete, and the slicing

traversal context-sensitive.

Complexity

In this section we compute the asymptotic size of the tSDG,
the temporal cost of building it, and the complexity of the
slicing algorithm. The size of the tSDG can be measured in
terms of the following parameters:

• Sif : statements that are source or target of an interproce-
dural interference dependence.

• Vi: number of different variables causing interprocedural
interference dependences at statement i.

• Ci: number of calls to procedures that may be in execu-
tion while statement i is being executed, i.e., procedures
that may directly or transitively execute i.

• Pi: number of procedures that contain at least one of the
calls in Ci.

• Fi: number of procedures in Pi not called by any other
procedure.

The tSDG increments the number of nodes of the SDG in:∑
i∈Sif

(Ci + Pi)

This formula can be easily obtained from Algorithm 1. In
the tSDG, Pi represents formal-ifin/ifout nodes and Ci rep-
resents actual-ifin/ifout nodes. On the other hand, the tSDG
increments the number of edges in:∑

i∈Sif

Vi + 2(Ci + Pi)− Fi

because for each statement source or target of interprocedural
interference dependence, Vi interference-flow edges are gen-
erated for each statement in Sif . Then, we generate two more
edges (one control edge and one interprocedural edge) for all
generated formal and actual nodes except for those in Fi (for
them, we only generate one control edge).

Constructing a tSDG G = (N,E) has a quadratic cost
O(N2), exactly the same as the SDG (and the old tSDG). This
is due to the fact that the most expensive task is computing
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Fig. 6: New tSDG of the program in Figure 1 sliced w.r.t. ⟨7, a⟩

Step Last Edge New Node Traversal State
Node Type Phase Statement Number T0 T1 T2

0 - - 1 print(a) {(T1,{16})} ⊥ {16} ⊥
1a print(a) Flow 1 a = a out {(T1,{15})} ⊥ {15} ⊥
2aa a = a out Summary 1 x in = 4 {(T1,{9})} ⊥ {9} ⊥
1b print(a) Interference 1 a = a ifout {(T2,{6})} ⊥ {16} {6}
2ba a = a ifout Summary 1 x in = 5 {(T2,{2})} ⊥ {9} {2}
2ab a = a out Output 2 a out = a {(T0,{8}),(T1,{7,14}),(T2,{7})} {8} {7,14} {7}
3a a out = a Flow 2 a = x {(T0,{7}),(T1,{6,13}),(T2,{6})} {7} {6,13} {6}

2bb a = a ifout Output 2 a ifout = a {(T0,{7}),(T1,{6,13}),(T2,{6})} {7} {6,13} {6}
3b a ifout = a Conc. Flow 2 a = x {(T0,{7}),(T1,{6,13}),(T2,{6})} {7} {6,13} {6}
4 a = x Flow 2 x = x in {(T0,{6}),(T1,{5,12}),(T2,{5})} {6} {5,12} {5}

TABLE II: New tSDG slicing traversal of the program in Figure 1 (from the slicing criterion ⟨7, a⟩ to all the actual-in nodes
x_in = x in the calls to procedure f)

summary edges (a quadratic operation) that is also done in the
standard SDG.

Finally, the complexity of the slicing algorithm is the same
as in the old tSDG. The timestamp mechanisms used to
compute and validate threaded witnesses makes the complexity
of the algorithm O(Ndt

), where d is the max depth of the call
graph1 and t the number of threads [18].

While keeping the same asymptotic cost, our algorithm is
more efficient than Nanda et al.’s algorithm thanks to the
improved treatment of context-sensitivity. Since our slicing
algorithm uses the two-phase traversal proposed by Horwitz et
al., the maximum number of nodes handled by the algorithm
with the same traversal state is N (while in Nanda et al.’s
approach is 2N ), being the runtime complexity for managing
timestamps at each node O(N3) and traversing each node to
manage context-sensitivity in our algorithm O(N +E) (every

1The maximum number of edges in an acyclic path [8].

node and edge is only processed once with the same traversal
state).

The termination of the slicing phase is ensured by the fact
that whenever a node is visited with the same timestamps, the
traversal finishes. Therefore, since the number of nodes to visit
is finite and each node is visited at most a number of finite
times, termination is ensured. In particular, a node can only be
visited as many times as combinations of timestamps exists,
and the number of timestamps is also finite.

VI. RELATED WORK

The first concurrency-aware graph representation model
was proposed by Cheng [4], [5]. He defined a graph-like
representation model called Process Dependence Net (PDN),
which represented five types of primary program dependences
in concurrent ADA programs. Cheng was the first author that
reduced the problem of slicing concurrent programs to a graph
reachability problem. Zhao [25] introduced a multi-thread



dependence graph to represent concurrent Java programs. His
approach replicated the classic two-phase slicing algorithm
for sequential interprocedural programs, traversing interfer-
ence and synchronization dependences transitively. Something
similar happened with the approach proposed by Hatcliff
[11]. Hatcliff specialized extra dependences in concurrent
Java programs while still treating interference dependences as
transitive. Because they modelled interference dependence as
transitive, all three approaches did not solve the time travel
problem, producing inaccurate slices.

There are several works that have tried to solve the inter-
ference intransitivity for generating accurate slices and work
around the time travel problem. Zhang et al. [24] calculated a
predecessor set, which ensures that every node in the slice may
be executed before the slicing criterion, since all the statements
included in a backward slice must be computed before it. On
the other hand, Chen et al. [3] discarded the two-phase algo-
rithm and computed what they called dependence sequences.
They used these sequences to compute slices as the difference
between the sequences reached from the slicing criterion and
the sequences formed by nodes that actually cannot be reached
due to time travel. Although these two approaches proposed
novel ideas, they were not able to completely resolve time
travel because both algorithms could not ensure that all nodes
in every dependence sequence formed a valid path. The above
approaches were the first proposals to deal with concurrent
dependences and with the time travel problem.

In 1998, Krinke [14] designed the threaded Program De-
pendence Graph (tPDG), an intraprocedural model based on
the PDG that introduced the definition of interference depen-
dence based on threaded witnesses. Krinke’s approach was
the first to define a precise slicing algorithm for programs
with shared memory that completely solved the time travel
problem. However, the summary edges and the two-phase
algorithm introduced by the SDG were not compatible with
Krinke’s approach, generating context-insensitive slices and
inaccuracies in the presence of nested threads and threads
nested within loops. Five years later, the same Krinke pro-
posed in [15] a context-sensitive version of his approach for
program slicing. His approach defined a new program repre-
sentation model called the threaded Interprocedural Program
Dependence Graph (tIPDG), built upon the Interprocedural
Threaded Control-Flow Graph (ITCFG). The tIPDG was the
first context-sensitive approach to slice concurrent programs.
In order to obtain accurate context-sensitive slices, the tIPDG
labels interprocedural edges to avoid visiting an actual-in node
of a call if its corresponding actual-out node has not been
previously included in the slice. Although this approach was
context-sensitive, it was much slower than either a context-
insensitive concurrent slicer or the SDG. The main difference
between Krinke’s approach and ours is the method used during
the traversal to reach context-sensitivity. Krinke implements a
single-phase algorithm that does not require summary edges
and collects labels during the traversal of interprocedural
edges, reaching context-sensitivity with an exponential cost.
In contrast, our model uses the linear-cost two-phase slicing

algorithm proposed by Horwitz et al., which manages traversal
restrictions according to two differentiated slicing phases. In
our approach, summary edges computed during the tSDG
construction process are essential to ensure completeness
because they represent the information flow of interprocedural
interference dependences, which are explicitly represented in
Krinke’s tIPDG.

Nanda et al. [17] adapted Krinke’s traversal algorithm
and refined it, defining flow dependences induced by threads
generated within loops and nested threads, and providing an
alternative way of computing threaded witnesses. Their slicing
algorithm was more efficient and remained precise in the
presence of the mentioned thread combinations. In a later pub-
lication [18] they introduced a more efficient quasi-context-
sensitive approach. This approach solved some completeness
and correctness issues of their previous work, but left room for
improvement in its context-sensitivity as shown in Section III.
We use the same system to solve the time travel problem as
Nanda et al. The main difference between their approach and
ours are (i) the way interferences edges are computed and (ii)
the modifications in the slicing algorithm required to ensure
completeness. While they allow interprocedural interference
edges, we force all interference edges to be intraprocedural
and we create new nodes to propagate interferences from one
procedure ot another through input and output edges. This fact
allows us to use the standard Horwitz et al.’s slicing algorithm,
while the old tSDG needs to perform phase changes during
the traversal to compute complete slices.

Later approaches have inherited either Krinke’s or Nanda
et al.’s approaches to context-sensitivity. A novel approach
to computing threaded witnesses is provided in [20], where
the authors produced a graph that combines the tSDG and
the possible states of the traversal proposed by Nanda et al.,
effectively encoding threaded witnesses into the graph and
simplifying the traversal algorithm. This proposal is orthog-
onal to our technique. Thus, it could be also applied to our
graph, speeding up the time required to slice our model.

VII. CONCLUSIONS

Concurrent program slicing poses additional challenges
in comparison to sequential program slicing. In the shared
memory concurrency model, the existence of interference de-
pendences generate two different slicing problems: time travel
and incompleteness. The scientific community has proposed
different representation models based on the SDG to deal with
these problems. In particular, Nanda et al.’s tSDG includes
mechanisms to accurately slice cobegin blocks dealing with
both problems through some changes in the slicing algorithm.

However, we have shown in this paper that even the tSDG
may generate context-insensitive slices when a procedure with
interference dependences is called from different program
points. We have designed a counterexample that reveals that
the tSDG is inaccurate in some situations. Furthermore, we
have identified the source of this imprecision and explained
the rationale behind it.



To solve the imprecision problem, we have proposed an
alternative representation model of the tSDG. Our graph is
based on the SDG model used to represent parameter passing
in the SDG and extends it to concurrent parameter passing
in the presence of interprocedural interference dependences.
For modelling interprocedural interference dependences, our
tSDG replaces interference edges with two new components:
(i) all procedures with statements that are source or target of
interprocedural interference dependences include new formal
nodes called formal interference nodes that model concurrent
parameter passing. Thus, all the calls to these procedures
are augmented with their corresponding actual interference
nodes analogously to parameter passing in the SDG; (ii) a
new type of flow dependence (concurrent flow dependence) is
used in procedure definitions to represent how the value of an
interference affects the statements inside a procedure.

These changes produce a new model where concurrent
and sequential dependences are separated at procedure calls
(thanks to (i)). In this model, interference edges only con-
nect statements executed in the same procedure, since their
behaviour inside procedures is represented by other flow
dependences (thanks to (ii)). The addition of (i) and (ii) may
generate new program dependence paths from formal in to
formal out nodes (both sequential and concurrent) in procedure
definitions that produce new summary edges at procedure calls
that solve the incompleteness problem without modifying the
traversal phase.

Finally, given the nature of our representation where concur-
rent and sequential dependences are split, the slicing algorithm
used to slice the tSDG also differs from the one used by the
previous tSDG. Our tSDG is capable of solving both the time
travel and summary incompleteness problems when slicing
concurrent programs in a more precise way by combining
the two-phase traditional SDG slicing algorithm (instead of
employing forced phase changes during the traversal) with
the use of the timestamps to detect time travel during the
slicing traversal. The result is a new tSDG that obtains context-
sensitive slices for programs with cobegin blocks in those
cases the previous tSDG could not.
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