
Tracking CSP computationsI

M. Llorens, J. Oliver, J. Silva∗, S. Tamarit

Departamento de Sistemas Informáticos y Computación

Universitat Politècnica de València

Valencia, Spain

Abstract

Tracing is one of the most important techniques for program understanding and debugging. A trace
gives the user access to otherwise hidden information about a computation. In the context of concur-
rent languages, computations are particularly complex due to the non-deterministic execution order of
processes and to the restrictions imposed on this order by synchronizations; hence, a tracer is a powerful
tool to explore, understand and debug concurrent computations. In CSP, traces are sequences of events
that de�ne a particular execution. This notion of trace is completely di�erent to the one used in other
paradigms where traces are formed by those source code expressions evaluated during a particular ex-
ecution. We refer to this second notion of traces as tracks. In this work, we introduce the theoretical
basis for tracking concurrent and explicitly synchronized computations in process algebras such as CSP.
Tracking computations in this kind of systems is a di�cult task due to the subtleties of the underlying
operational semantics which combines concurrency, non-determinism and non-termination. We de�ne
an instrumented operational semantics that generates as a side-e�ect an appropriate data structure (a
track) which can be used to track computations. The formal de�nition of a tracking semantics improves
the understanding of the tracking process, but also, it allows us to formally prove the correctness of the
computed tracks.

Keywords: Concurrency theory/modelling; CSP; Semantics; Tracking.

1. INTRODUCTION

One of the most widespread concurrent speci�cation languages is the Communicating Sequential Pro-
cesses (CSP) [21, 43] whose operational semantics allows the combination of parallel, non-deterministic
and non-terminating processes. CSP allows for a precise description and analysis of event-based concur-
rency. An important advantage of this language is that it o�ers a well-developed syntax, algebraic and
operational semantics, a hierarchy of congruent denotational semantic models, as well as a formal theory
of re�nement and compositional veri�cation [42].

The study and transformation of CSP speci�cations often uses di�erent analyses such as deadlock
analysis [27], reliability analysis [24], security analysis [36] and program slicing [55], which are based on a
data structure able to represent computations through the use of traces [10]. Two of the most important
analysis tools for CSP are ProB [29, 30] and FDR [15]. Both are re�nement checking software tools,
designed to check formal models. Speci�cally, they implement an animator, constraint solver and model
checker for CSP. ProB is now being used within Siemens, Alstom, and several other companies for data

IThis work has been partially supported by MINECO/AEI/FEDER (EU) under grant TIN2016-76843-C4-1-R and by the
Generalitat Valenciana under grant PROMETEO-II/2015/013 (SmartLogic). The authors acknowledge a partial support
of COST Action IC1405 on Reversible Computation - extending horizons of computing. Salvador Tamarit was partially
supported by the Conselleria de Educación, Investigación, Cultura y Deporte de la Generalitat Valenciana under the grant
APOSTD/2016/036.
∗Corresponding author
Email addresses: mllorens@dsic.upv.es (M. Llorens), fjoliver@dsic.upv.es (J. Oliver), jsilva@dsic.upv.es (J.

Silva), stamarit@dsic.upv.es (S. Tamarit)

Preprint submitted to Logical and Algebraic Methods in Programming September 26, 2018

validation. FDR, originally developed by Formal Systems (Europe) Ltd, is, since 2008, developed in
Oxford University under support from EPSRC, ONR, and industry. The last release of FDR is FDR4,
whose �rst stable version appeared in late 2016.

CSP has been used in research, teaching and industry [1, 3, 28, 41], and is nowadays applied to many
di�erent industrial problems such as medical simulations [34, 19], modeling web services choreographies
[33], hardware simulation and veri�cation [37, 18], cloud computing models [22], widespread concurrent
languages (e.g. MPI [8], Go [52] and Verilog [47]), testing [9], and social networks modeling [23, 40].

Even though traces are always used to represent computations, the word trace is polysemic, and its
exact meaning changes depending on the programming language we are referring to. For instance, in
languages such as Haskell, traces are graph-like data structures formed by the redexes that are evaluated
in a computation. Traces such as the Augmented Redex Trail are the basis of many analysis methods and
tools (see, e.g., [10, 11, 12, 2]). In other languages the notion of trace is essentially di�erent. Concretely,
in CSP a trace is not a graph, but a sequence of events (see Chapter 8 of [43] for a detailed study of
this kind of traces). To distinguish both notions of trace, we call the �rst kind of traces�not existing in
CSP�tracks, and we use the word trace for its standard meaning in CSP (i.e., sequence of events).

In this work we introduce tracks in CSP. In our setting, a track is a data structure that represents
the sequence of expressions that have been evaluated during the computation, and moreover, this data
structure is labeled with the location of these expressions in the speci�cation. Therefore, a CSP track
is much more informative than a CSP trace since the former not only contains a lot of information
about original program structures but also explicitly relates the sequence of events with the parts of the
speci�cation that caused these events.

Example 1. Consider the �nite state machine (FSM)

Figure 1: FSM used to recognize tokens

in Figure 1 used to recognize strings of a language.The
following CSP processes1 describe the previous �nite
state machine (for the time being ignore the under-
lining). Event valid (respectively notvalid) is used
to denote that a string has (respectively not) been rec-
ognized. The speci�cation is composed of three main
processes that run in parallel and synchronize when
needed: FSM, INPUT and CHECK. Process FSM models the
�nite state machine. It uses a parameter to indicate
the current state, for instance, FSM(1) indicates that
the �nite state machine is currently in state s1. Pro-
cess INPUT represents the string to evaluate and pro-
cess CHECK determines whether this string is valid or
not.

MAIN = ((FSM(0) ||
{a,b}

INPUT) ||
{a,b}

CHECK(s0))\{end}

FSM(0) = a!s1→ FSM(1) 2 b!s2→ FSM(2)

FSM(1) = a!s1→ FSM(1) 2 b!s2 → FSM(2)

FSM(2) = a!s0→ FSM(0) 2 b!s0→ FSM(0)

INPUT = a?state1→ b?state2 → b?state3→ a?state4→ b?state5→ end!state5→ STOP

CHECK(fin) = end?st→ ((valid→ SKIP)≮ st = fin ≯(notvalid→ SKIP))

The whole speci�cation models a FSM not accepting the string abbab. The trace produced by this

1We refer those readers non familiar with CSP syntax to Section 4 where we provide a brief introduction to CSP.

2

speci�cation is 〈a.s1, b.s2, b.s0, a.s1, b.s2, notvalid〉. If we observe the track in Figure 2 (for the time
being ignore the di�erent shapes and colours of nodes) it is possible to identify the processes and their
synchronizations, which are represented with dashed arcs. Each node represents a term in the source code
in a speci�c instant of the computation, i.e., each time a term is evaluated it is represented in the track with
a new node. Arcs are of two types: control-�ow arcs and synchronizations. Control-�ow arcs somehow
represent a timeline. They represent the transition from one term to another term during the evaluation
of the speci�cation. Synchronizations always connect nodes whose associated term is a pre�x. All this
provides some interesting properties: (i) one can follow control-�ow arcs to know the order in which source
code terms where evaluated. (ii) One node represents one speci�c term in one speci�c evaluation instant.
(iii) A node with more than one synchronization arc represents a multiple synchronization (it should not
be confused with a set of independent synchronizations at di�erent moments), that is, all pre�xes in a
path of synchronization arcs must occur at the same time.

Figure 2: Track of the program in Example 1

Observe that the track is intuitive enough as
to be a powerful program comprehension tool that
provides much more information than the trace.
For instance, it is easy to see that process CHECK
only communicates with process INPUT; and also
that the execution of process CHECK cannot start
until the other two processes have ended their com-
munication.

Moreover, observe that the track contains ex-
plicit information about the speci�cation expres-
sions that were involved in the computation.2

Therefore, it can be used for dynamic program slic-
ing (see [53, 48] for an explanation of the technique
and [32] for an adaptation of static program slic-
ing to CSP). In particular, in this example, we can
use the track to extract the part of the program
that was involved in a particular sub-computation.
For instance, if we select in the track the �rst oc-
currence of event b in process INPUT (this node
has a double line), we can identify the part of the
track that was necessarily executed before the oc-
currence of this event. This part has been coloured
in grey. Of course, we can automatically map the
coloured parts of the track to the speci�cation and
discover the part of the speci�cation that is needed
to execute event b for the �rst time. This part
has been underlined in the example. With a quick
look, one can see that the underlined parts skip
process CHECK. This is not only useful for program
comprehension, it is also useful for other program
analyses and can help to speed up the processing
or analysis of a speci�cation by only concentrating
on the part that a�ects the event or expression of
interest (see, e.g., [6]).

Another interesting application of tracks is re-
lated to component extraction and reuse. If we
are interested in a particular trace, and we want

2For the sake of clarity, we have omitted the identi�ers that point to unique expressions in the source code. Instead, we
have included the referenced expression.

3

to extract the part of the speci�cation that models
this trace to be used in another model, we can simply produce a slice, and slightly augment the code to
make it syntactically correct (see [32, 6] for examples and explanations of this transformation, and [20, 26]
for uses of dynamic slices for component extraction and reuse). Our example is too simple to show the
usefulness of this technique but for a more complex speci�cation it can be very convenient. For instance,
consider a speci�cation of a server with several services. In this case, we could slice the speci�cation to
obtain only the services used by a particular client and then create a specialized version of the server.

Section 2 further discusses applications of tracking, and it also compares tracking with other data
structures by using two illustrative examples. We want to highlight that the goal of this paper is not to
produce systems that use tracks, e.g., to perform dynamic analyses. Instead, the main goal is to formally
de�ne CSP tracks, prove properties about CSP tracks (specially their relation with CSP traces), and
provide a tool to calculate them (formally, an instrumented semantics, and practically, the implementation
of a CSP tracker). However, as part of the motivation, we use sketches of how tracks can be used in
di�erent scenarios.

In summary, the main contributions of this work are (i) the formal de�nition of tracks, (ii) the
de�nition of the �rst tracking semantics for CSP, (iii) the proof that the trace of a computation can be
extracted from the track of this computation, and (iv) the implementation of the �rst CSP tracker and
its empirical evaluation. Concretely, we instrument the standard operational semantics of CSP in such a
way that the execution of the semantics produces as a side-e�ect the track of the computation. It should
be clear that the track of an in�nite computation is also in�nite. Therefore, we designed the semantics in
such a way that the track is produced incrementally step by step. Thus, if the execution is stopped (e.g.,
by the user because it is non-terminating or due to a speci�ed timeout), then the semantics produces
the track of the computation performed so far. This semantics can serve as a theoretical foundation for
tracking CSP computations because it formally relates the computations of the standard semantics with
the tracks of these computations.

The rest of the paper has been organized as follows. First, in Section 2 we introduce applications
of tracking through some examples, and compare results with similar techniques. Then in Section 3
we present and discuss the related work. Next, in Section 4 we recall the syntax and semantics of
CSP. In Section 5 we de�ne the concept of track for CSP. Then, in Section 6, we instrument the CSP
semantics in such a way that its execution produces as a side-e�ect the track associated with the performed
computation. In Section 7 we present the main results of the paper proving that the instrumented
semantics presented is a conservative extension of the standard semantics, its computed tracks are correct
and the corresponding trace can be extracted from the track. We describe our implementation in Section 8
(CSP-Tracker) and its empirical evaluation in Section 9. Finally, Section 10 concludes.

2. APPLICATION EXAMPLES

This section presents two examples of usage of our CSP tracking that illustrate some applications of
the technique.

2.1. Debugging

Our �rst example is a CSP speci�cation used to simulate the process scheduler of a CPU. The CPU
contains three main components (see Figure 3): an Arithmetic Logic Unit (ALU), a Control Unit (CU),
and a process scheduler with a queue. The ALU is controlled by the CU. Only one process can access
the CU each time. Therefore, the scheduler is in charge of granting access to the CU. For this, it uses a
round robin strategy using the queue. In the �gure, messages between components use solid arrows for
query messages, and dashed arrows for answers.

This system can be modeled with the CSP speci�cation at the bottom of the �gure (for the time being,
the reader can ignore the di�erence between black and grey colours). The speci�cation is buggy. It is
syntactically correct, but the traces produced are not the expected ones. In particular, one can generate
the trace 〈alu.3, working.3, cui.3, result.3, operation.3〉, which should be interpreted as: Process 3
requires access to the ALU, Process 3 continues working, Process 3 gets access to the CU, ALU produces
a result for Process 3, CU asks ALU to solve an operation of Process 3.

4

channel operation, answer, cuo, cui, alu, working, result: {0..3}

channel shift, deq, empty

channel enq, next, left, right, comm: {0..3}

MAIN = SYSTEM

SYSTEM = CPU ||
{alu,answer}

(Process(1) ||| Process(2) ||| Process(3))

Process(X) = alu!X → working.X → result.X → SKIP

CPU = (Sched ||
{enq,deq,next,empty}

Queue) ||
{cui,cuo}

(CU ||
{operation,answer}

ALU)

Sched = Sched_idle

Sched_idle = alu?proc → cui!proc → Sched_busy

Sched_busy = cuo?proc → (result.proc → Sched_check) 2 alu?proc → enq!proc → Sched_busy

Sched_check = deq → (empty → Sched_idle 2 next?proc → cui!proc → Sched_busy)

CU = cui?proc → operation.proc → answer.proc → cuo!proc → CU

ALU = operation?proc → answer!proc → ALU

Queue = (DQ(0) ||
{left,right,shift}

BUFF)\{left,right,shift}

DQ(2) = deq → shift → X(2)

DQ(i) = enq?x → (left!x → shift → DQ(i+1)) 2 deq → (empty → DQ(0) ≮ i==0 ≯ X(i))

X(i) = right?y → (next!y → DQ(i-1)) 2 shift → X(i)

BUFF = (CELL [[right < comm]] ||
{comm}

CELL [[left < comm]])\{comm}

CELL = left?x → shift → right!x → CELL

Figure 3: CPU diagram and its speci�cation in CSP

Clearly, the two last events (result.3, operation.3) are in the wrong order. At this time we have a
bug symptom, but we have to manually inspect the code to understand the problem. We are interested
in determining what parts of the speci�cation conducted the execution to produce event result.3, hence,
we mark (it is marked with a box in the speci�cation) event result.X of process Process(X) as the
slicing criterion. CSP-Tracker3 includes the �rst dynamic slicer for CSP. It can automatically extract

3CSP-Tracker is the tracker tool that the authors developed following the ideas presented in this paper. Section 8

5

the dynamic slice produced for that slicing criterion using the internal track generated. The slice only
contains the black code, which is enough to produce the error. Thus, it must contain a bug.

For the computation of slices we use tracks. Note that they are an internal data structure, and thus
the user does not need to inspect the track, just the sliced source code. For instance, a part of the track
associated with the computation that produced the bug is depicted in Figure 4. The code that must be
inspected in the slice is very small compared to the original speci�cation. But, the track can still help us
to inspect the slice to discover the bug because it allows us to graphically inspect the code at the same
time that we follow the trace.

Figure 4: Partial track of the CPU speci�cation. The node with the bold line is the slicing criterion. Dark nodes are the
slice.

provides implementation details and describes its functionality.

6

In the Figure 4, one can follow the trace and very quickly see that event result.3 (node 32)4 is
not synchronized (there is not a dashed arc connecting this node). This means that this event occurred
internally, without any communication. However, looking at Figure 3, we can see that the processes and
the scheduler communicate via two messages: alu.proc and result.proc. Therefore, it is clear that
channels alu and result should be synchronized between the processes and the CPU. However, if we
observe process SYSTEM in the slice, we can see that channel result has been accidentally replaced by
answer. This is also obvious because process Process does not contain channel answer. Therefore, we
can correct the error:

SYSTEM = CPU ||
{alu,answer}

(Process(1) ||| Process(2) ||| Process(3))

should be

SYSTEM = CPU ||
{alu,result}

(Process(1) ||| Process(2) ||| Process(3))

This example illustrates how one can debug a CSP speci�cation by using slices computed from tracks,
or by just looking at the track, where syntactic information is shown graphically, coloured, and clearly
organized with di�erent kinds of arcs and nodes. Moreover, it shows non-explicit information in the
speci�cation, such as synchronizations.

2.2. Program Comprehension

Our second example is a very simple program that illustrates the power of CSP-Tracker as a program
comprehension tool that can complement other existing tools able to (i) graphically represent all possible
traces of a speci�cation and (ii) explore traces step by step, such as FDR45. CSP-Tracker is currently
being used in academia as an analysis and program comprehension tool. Concretely, CSP-Tracker is used
in the �rst year of the Master of Computer Science of the Universitat Politècnica de València.

This scenario is a real example that was programmed by a student learning CSP. The student was
provided with a description of a system that simulates part of a casino. The student developed the
following CSP buggy speci�cation (this is just a small subset):

(1) channel betred, betblack, red, black, prize, noprize
(2)
(3) MAIN = ROULETTE ||

{red,black}
CROUPIER

(4)
(5) ROULETTE = black→ SKIP u red→ SKIP

(6)

(7) CROUPIER = betblack→ black→ prize→ SKIP

(8) 2 betblack→ red→ noprize→ SKIP

(9) 2 betred→ red→ prize→ SKIP

(10) 2 betred→ black→ noprize→ SKIP

This part of the program de�nes a process ROULETTE that can behave either as a black or a red

events. And a process CROUPIER with four di�erent alternative cases. Both processes run in parallel and
can synchronize with black or red. Even though the program is trivial, it contains a bug: when the
student executed the program, it produced a deadlock. Then, the student used FDR4 to produce the
graph on the left in Figure 5. This is a static graph that represents all possible traces. It includes the
expected ones (e.g., 〈betred, red, prize〉), but it also includes four nodes that represent deadlocks (e.g.,
with the trace 〈betblack〉). At this point, the student knows that his program can produce a deadlock,
but why the deadlock is produced remains unclear for him.

To complement the static information produced by the FDR4 graph, the student used CSP-Tracker
to inspect a single computation. Fortunately, tracks include information about syntactic operators, and
thus the student can observe where exactly in the program the deadlock was caused.

4The notation �from (9,36) to (9,42)� speci�es the starting and ending positions of the term in the source code, i.e.,
from line 9, column 36 to line 9, column 42.

5An extended description of this tool is included in Section 3.

7

Figure 5: Graphs generated by FDR4

Figure 6: Tracks generated by CSP-Tracker

In the track (shown in Figure 6 left), it is clear that process ROULETTE deadlocked after u, and process
CROUPIER deadlocked after betred→. At this point, the student realized that the external choice (node
4) randomly selected the fourth branch (i.e., line 10). Hence, event betred was activated (node 8). On
the other hand, the internal choice (node 5), randomly activated event black, and thus the deadlock
occurred (one branch tried to synchronize with black and the other with red). The student corrected
this problem replacing the internal choice by an external choice: ROULETTE = black→ SKIP u red→ SKIP

8

should be ROULETTE = black→ SKIP 2 red→ SKIP.6

After the program was corrected, the student generated again both the FDR4 graph (shown in Figure 5
right) and the track (shown in Figure 6 right). The syntactic information of the track is very helpful to
identify the problem with precision in the program, and also to understand the di�erent behavior of the
internal and the external choices. In fact, we can observe in the track an interesting phenomenon that
is not obvious for those not familiar with the semantic rules of external choice (see Figure 8): In the
execution, it is possible to execute the three external choices (see nodes 4, 6 and 7 in the track on the
left), even though only the �rst branch of the �rst choice was �nally developed. The intuition would say
that once we have executed a branch of a choice, the other branch cannot be developed. But this is not
true according to the semantics (external choices can develop both branches while τ events happen), and
according to the track.

3. RELATED WORK

Computing CSP tracks is a complex task due to the non-deterministic execution of processes, dead-
locks, non-terminating processes and mainly synchronizations. This is probably the reason why no
correctness result exists that formally relates the track of a speci�cation to its execution. This semantic
relation is needed as it will allow us to prove important properties (such as correctness and completeness)
of the techniques and tools based on tracking.

To the best of our knowledge, there does not exist any attempt to de�ne and build tracks for CSP.
Contrarily, there exists a lot of work associated with the study of CSP traces. In particular, there exist
several structured trace models that provide more information than the �at list of events provided by
standard traces. Two such trace models are View-Centric Reasoning (VCR) [49] and structural traces [4].
CSP and VCR tracing are both based on recording the events in a single, fairly �at trace. A VCR trace
is similar to a CSP trace, but instead of recording a sequence of single events in a trace, the observer
records a sequence of multisets, where each multiset represents events that can be executed in parallel.
In structural tracing a structure is built up that re�ects the parallel and sequential composition of the
processes being traced. Traces can be composed in parallel with the || operator, and these parallel-
composed traces may appear inside normal sequential traces. The following provides an example:

Example 2. Consider the following CSP process:

MAIN = (a→ b→ SKIP) ||
{a}

(a→ c→ SKIP)

We have the following maximal CSP traces: 〈a, b, c〉 and 〈a, c, b〉. The possible maximal VCR traces
are7 〈a, b, c〉, 〈a, c, b〉 and 〈a, {b, c}〉. Note that {b, c} is explicitly saying that b and c could happen at
the same time. In structural tracing, there is only one maximal trace: 〈a, b〉 || 〈a, c〉. Note that a single
occurrence of an event is recorded multiple times (once by each process engaging it) and when a process
runs several sub-processes in parallel, information about the ordering of events between processes is lost.
For instance, for trace 〈a, a, a, a〉 || 〈b, b, b, b〉, we cannot tell whether all the events a must occur before
all the events b, vice versa or any other possible pattern.

In addition to the usual model of traces, there exist other denotational models in CSP to study the
circumstances under which processes can deadlock (the stable failures model), and also the circumstances

6Although the solution of the student removes the deadlock, it makes the ROULETTE process to lose its non-deterministic
nature. A better solution would be to amend CROUPIER:

ROULETTE = black→ SKIP u red→ SKIP

CROUPIER = betblack→ (black→ prize→ SKIP 2 red→ noprize→ SKIP)

2

betred→ (red→ prize→ SKIP 2 black→ noprize→ SKIP)

7We write multisets of size one without set notation.

9

under which processes can livelock (the divergences model) [43]. All of them produce sets of traces that
satisfy some property of interest, and they are de�nitely useful to express the meaning of a speci�cation.

We introduced tracks and explained its usefulness for a reduced subset of CSP in [35]. In this article
we extend and complete that work by extending the syntax to a wide subset of CSP able to specify
almost all industrial processes (i.e., it includes operators such as Hiding, Renaming and Conditional choice;
it allows variables as parameters of processes; etc.). Moreover, this article includes the proofs of the
technical results, the implementation of a CSP tracker and its empirical evaluation, and new interesting
results such as a way to extract traces from tracks.

The data structure produced by FDR4's debugger is the most similar to our notion of tracks. FDR4's
debugger generates counterexamples to re�nement assertions that are represented with a data structure
that is in many aspects related to our tracks. First, as it happens with our tracks, the debug viewer can
represent several behaviours of particular machines all together, and how they relate (each behavior is
represented with a sequence of events, and events that are vertically aligned are synchronised). The main
di�erence between this data structure and our tracks is that our tracks explicitly represent the relation
between the sequence of events, and the source code that produced these events, in such a way that
the analyst knows exactly what part of the code is being activated when an event, a choice, a parallel
execution, etc. happens. Moreover, graphs produced by FDR4 are labeled transition systems (LTS),
thus nodes represent states, and arcs model transitions through the occurrence of events. Contrarily,
tracks are not LTS. In a track, nodes are not states, but terms of the source code (such as pre�xes, choice
operators or parallel operators). Arcs can be of two types: control-�ow and synchronization. Control-�ow
arcs represent the �ow of control from one node to another one. They describe that the activation of
one node happened after the activation of another node. For instance, if we consider the speci�cation
a→ SKIP 2 b→ SKIP and the trace 〈a〉, then the track explains that pre�x a was activated after choice
operator 2 was activated, thus the control �ow passed from 2 to a. This relation of the trace with
the source code is missing in FDR4's graphs, and it can be useful, e.g., for program comprehension (see
Section 2.2). In tracks, synchronizations always connect two nodes that contain two (possibly di�erent)
pre�xes whose events synchronized. Hence, it explicitly says what two pre�xes of the source code are
being synchronized.

FDR4 also uses an LTS to represent computations using the command :graph. This graph is also
di�erent to a track, because it also lacks source code information, and moreover, it is a static data
structure (it represents all possible computations) while a track is dynamic (it represents one particular
computation).

Concerning the idea of con�uence, introduced by Milner in [38, 39] and explored in the context of
CSP by Roscoe [44, 45, 46] and used to analyse the applicability of partial-order methods in, e.g., [54], a
track ensures con�uence according to Lemma 10.3 in [46], because tracks are a form of truly concurrent
semantics where all forms of choice other than parallel scheduling have been resolved.

Some other related work has been proposed in the context of the static analysis of CSP. In this area,
some analyses are based on the use of a data structure that approximates all possible derivations of a CSP
speci�cation. Of course, this is radically di�erent to our approach because a track is a dynamic structure
that could be in�nite, while their data structures are �nite representations of possibly in�nite derivations.
Moreover, tracks are con�dent data structures (i.e., tracks are reliable�possibly in�nite�representations
of a computation), while their data structures are approximations. The similitude with our work appears
in the fact that some of their data structures also use a mapping to the source code, and thus they are
able to relate a derivation with the part of the source code that is needed to perform this derivation.
For instance, Brückner and Wehrheim [5] proposed a data structure based on the standard program
dependence graph [14]. It is useful for program slicing but it is insu�cient for other analyses that need a
context-sensitive graph [25] (i.e., each di�erent process call has a di�erent representation). Later, a similar
data structure that was context-sensitive was proposed in [32]. This structure is a graph, the context-
sensitive control �ow graph, that represents all possible computations (and maybe some unfeasible ones)
of a CSP speci�cation. In contrast, the dynamic approach presented here only represents one feasible
computation. Other similar approaches, all of them static, are [7, 17].

10

4. THE SYNTAX AND SEMANTICS OF CSP

In order to make the paper self-contained, we recall in this section the syntax and semantics of CSP.
Figure 7 summarizes the syntax constructs used in CSP speci�cations [43]. A speci�cation is viewed as
a �nite set of process de�nitions. The left-hand side of each de�nition is the name of a process, which
is de�ned in the right-hand side (abbrev. rhs) by means of an expression that can be a call to another
process or a combination of the following operators:

Domains
M,N . . . ∈ N (Process names)
P,Q . . . ∈ P (Processes)
a, b . . . ∈ Σ (Events)
x, y . . . ∈ ΣV (Events with variables)

S ::= {D1, . . . , Dn} (Entire speci�cation)
D ::= N = P (Process de�nition)

| N(EVn) = P (Parameterized process) EVn = EV1, . . . , EVn

P ::= M (Process call)

| M(EVn) (Parameterized process call)
| CO → P (Pre�xing)
| P u Q (Internal choice)
| P 2 Q (External choice)
| P ≮ Bool ≯ Q (Conditional choice)
| P ; Q (Sequential composition)
| P ||

{EVn}
Q (Synchronized parallelism)

| P\{EVn} (Hiding)
| P [[<]] (Renaming) < ⊆ ΣV × ΣV
| SKIP (Skip)
| STOP (Stop)

CO ::= EV | CO?EVI | CO!EV (Compound Object)

EVI ::= EV | v : T (Input event with Variables) T ⊆ Σ,
v is a variable

EV ::= a | v | EV.EV (Event with Variables) v is a variable

Bool ::= true | false | Bool ∨Bool (Boolean expression)
| Bool ∧Bool | ¬Bool
| EV = EV | EV 6= EV

Figure 7: Syntax of CSP speci�cations

Pre�xing (→) It speci�es that the compound object CO must happen before process P . Compound
objects represent events and communications.

Internal choice (u) The system chooses non-deterministically to execute one of the two processes P or Q.

External choice (2) It is similar to internal choice but the choice comes from the external environment
(e.g., the user).

Conditional choice (≮ Bool ≯) It is a choice that depends on a condition, i.e., it is equivalent to
if Bool then P else Q.

11

(Sequential composition ;) It speci�es a sequence of two processes. If the �rst one (successfully) �nishes,
the second can start.

Synchronized parallelism (||
{EVn}

) Both processes are executed in parallel with a set {EVn} of synchronized

events. In absence of synchronizations both processes can execute in any order. Whenever a
synchronized event a ∈ {EVn} happens in one of the processes it must also happen in the other at
the same time. Whenever the set of synchronized events is not speci�ed, it is assumed that processes
are synchronized in all common events. A particular case of parallel execution is interleaving where
no synchronizations exist (i.e., {EVn} = ∅). It is often denoted with the operator |||.

Hiding (\) Process P is executed with a set of hidden events {EVn}. Hidden events are not observable
from outside the process, and thus, they cannot synchronize with other processes.

Renaming ([[<]]) Process P is executed with a set of renamed events speci�ed with the total mapping <.
An event a renamed as b behaves internally as a but it is observable as b from outside the process.

Skip (SKIP) It is a process that successfully �nishes. It allows us to continue the next sequential process
if any.

Stop (STOP) Synonymous with deadlock. It is a process that �nishes and it does not allow the next
sequential process to continue if any.

The domain Σ of events contains basic symbols such as a that can be compounded to produce com-
munications:

Input (?) It is used to receive a message from another process. For instance, if A ⊆ Σ is any set of events
and, for each x ∈ A, we have de�ned a process P (x), then c?x : A→ P (x) de�nes the process which
accepts any element a of A and then behaves like the appropriate P (a).

Output (!) It is complementary to the input. In this case, c!x is used to send message x.

We allow events that have been constructed out of any �nite number of parts using the in�x dot `.' (which
is assumed to be associative), e.g., c.a.

We now recall the standard operational semantics of CSP as de�ned by A.W. Roscoe [43]. It is
presented in Figure 8 as a logical inference system. A state of the semantics is a process to be evaluated
called the control. The inference system starts with an initial state, and the rules of the semantics are
used to infer how this state evolves. When no rules can be applied to the current state, the computation
�nishes. The rules of the semantics change the states of the computation due to the occurrence of
events. The set of possible events is Σ ∪ {τ,X}. Events in Σ = {a, b, . . .} are visible from the external
environment, and can only happen with its co-operation (e.g., actions of the user). The special event τ
cannot be observed from outside the system and it is an internal event that happens automatically as
de�ned by the semantics. X is a special event representing the successful termination of a process. We
use the special symbol Ω to denote any process that successfully terminated.

In order to perform computations, we construct an initial state (e.g., MAIN) and (non-deterministically)
apply the rules of Figure 8. The intuitive meaning of each rule is the following:

((Parameterized) Process Call) In a process call, the call is unfolded and the right-hand side of process N
becomes the new control. In a parameterized process call, the behavior is the same, but in this case
we use function subs(an, xn, rhs(N)) to substitute the appropriate part of an for each identi�er in
rhs(N) bound by xn. This equals rhs(N) if there are no identi�ers bound.

(Pre�xing) When event co occurs, process P becomes the new control. The only way communications
are introduced into the operational semantics is via the pre�xing operation co→ P . In general, co
may be a compound object, perhaps involving much computation to work out what it represents.
The pre�x co may represent a range of possible communications and bind one or more identi�ers
in P . comms(co) is the set of communications described by co. We deal only with closed terms:

12

(Process Call) (Parameterized Process Call)

N
τ−→ rhs(N) N(an)

τ−→ subs(an, xn, rhs(N))

where N(xn) = rhs(N) ∈ S
with xn ∈ ΣV ∧ an ∈ Σ

(Pre�xing) (SKIP)

(co→ P)
a−→ subs(a, co, P)

a ∈ comms(co)
SKIP

X−→ Ω

(Internal Choice 1) (Internal Choice 2)

(P uQ)
τ−→ P (P uQ)

τ−→ Q

(External Choice 1) (External Choice 2)

P
τ−→ P ′

(P 2 Q)
τ−→ (P ′ 2 Q)

Q
τ−→ Q′

(P 2 Q)
τ−→ (P 2 Q′)

(External Choice 3) (External Choice 4)

P
e−→ P ′

(P 2 Q)
e−→ P ′

e ∈ Σ ∪ {X}
Q

e−→ Q′

(P 2 Q)
e−→ Q′

e ∈ Σ ∪ {X}

(Conditional Choice 1) (Conditional Choice 2)

(P ≮ Bool ≯ Q)
τ−→ P

if Bool = true
(P ≮ Bool ≯ Q)

τ−→ Q
if Bool = false

(Sequential Composition 1) (Sequential Composition 2)

P
e−→ P ′

(P ;Q)
e−→ (P ′;Q)

e ∈ Σ ∪ {τ}
P

X−→ Ω

(P ;Q)
τ−→ Q

(Synchronized Parallelism 1) (Synchronized Parallelism 2)

P
e′−→ P ′

(P ||
X

Q)
e−→ (P ′ ||

X

Q)

(e = e′ ∈ Σ\X) ∨
(e = τ ∧ e′ ∈ {τ,X})

Q
e′−→ Q′

(P ||
X

Q)
e−→ (P ||

X

Q′)

(e = e′ ∈ Σ\X) ∨
(e = τ ∧ e′ ∈ {τ,X})

(Synchronized Parallelism 3) (Synchronized Parallelism 4)

P
a−→ P ′ Q

a−→ Q′

(P ||
X

Q)
a−→ (P ′ ||

X

Q′)
a ∈ X

(Ω||
X

Ω)
X−→ Ω

(Hiding 1) (Hiding 2)

P
a−→ P ′

(P\B)
τ−→ (P ′\B)

a ∈ B
P

e−→ P ′

(P\B)
e−→ (P ′\B)

(e ∈ Σ∧e 6∈ B) ∨ (e = τ)

(Hiding 3)

P
X−→ Ω

(P\B)
X−→ Ω

(Renaming 1) (Renaming 2)

P
e′−→ P ′

(P [[<]])
e−→ (P ′[[<]])

(e, e′ ∈ Σ ∧ e′ < e) ∨
(e = e′ = τ)

P
X−→ Ω

(P [[<]])
X−→ Ω

Figure 8: CSP's operational semantics

processes with no free identi�ers. Using this, it is possible to handle most of the situations that
can arise, making sure that each identi�er has been substituted by a concrete value by the time we
need to know it.

(SKIP) After SKIP, the only possible event isX, which denotes the successful termination of the (sub)com-
putation with the special symbol Ω. There is no rule for Ω (neither for STOP), hence, this (sub)com-

13

putation has �nished.

(Internal Choice 1 and 2) The system, with the occurrence of the internal event τ , (non-deterministically)
selects one of the two processes P or Q which is the new control.

(External Choice 1, 2, 3 and 4) The occurrence of τ develops one of the branches. The occurrence of an
event e 6= τ is used to select one of the two processes P or Q and the control changes according to
the event.

(Conditional Choice 1 and 2) The condition Bool is evaluated. If it is true, process P is put in the control,
if it is false, process Q is.

(Sequential Composition 1) In P ;Q, P can evolve to P ′ with any event except X. Hence, the control
becomes P ′;Q.

(Sequential Composition 2) When P successfully �nishes (with event X), Q can start. Note that X is
hidden from outside the whole process becoming τ .

(Synchronized Parallelism 1 and 2) When an event e 6∈ X or events τ or X occur in a branch, the corre-
sponding process (either P or Q) evolves accordingly. Note that X is hidden from outside the whole
process becoming τ .

(Synchronized Parallelism 3) When a visible event a ∈ X happens, it is required that both processes
synchronize, P and Q are executed at the same time and the control becomes P ′ ||

X

Q′.

(Synchronized Parallelism 4) When both processes have successfully terminated the control becomes Ω
and the event X is visible from outside.

(Hiding 1 and Hiding 2) When event a ∈ B (B ⊆ Σ) occurs in P , it is hidden, and thus changed to τ
so that it is not observable from outside P . Contrarily, when event a 6∈ B occurs in P , it behaves
normally.

(Hiding 3) When P �nishes (X happens), the control becomes Ω.

(Renaming 1) Whenever an event a happens in P , it is renamed to b (a < b) so that, externally, only b
is visible. Renaming has no e�ect on events renamed to themselves (a < a), τ and X.

(Renaming 2) When P �nishes (X happens), the control becomes Ω.

We illustrate the semantics with the following example.

Example 3. Consider the next CSP speci�cation:

MAIN = (b→ STOP) [[b < a]] ‖
{a}

(P 2 (b→ STOP))

P = (a→ SKIP) ; STOP

If we use MAIN as the initial state to execute the semantics, we get the computation shown in Figure 9
where the �nal state is STOP [[b < a]] ‖

{a}
STOP. This computation corresponds to the execution of the left

branch of the choice (i.e., P) and thus event a occurs forcing a synchronization between both processes.
Each rewriting step is labeled with the applied rule, and the example should be read from top to bottom.

14

(Process Call)
MAIN

τ−→ ((b→ STOP)[[b < a]] ‖
{a}

(P2(b→ STOP)))

(Synchronized
Parallelism 2)

(External Choice 1)

(Process Call)
P

τ−→ (a→ SKIP); STOP

(P2(b→ STOP))
τ−→ (((a→ SKIP); STOP)2(b→ STOP))

(b→ STOP)[[b < a]] ‖
{a}

(P2(b→ STOP)))
τ−→ State1

where State1 =(b→ STOP)[[b < a]] ‖
{a}

(((a→ SKIP); STOP)2(b→ STOP))

(Synchronized
Parallelism 3)

Der1 Der2

State1
a−→ (STOP[[b < a]] ‖

{a}
(SKIP; STOP))

where Der1 =(Renaming 1)

(Pre�xing)
(b→ STOP)

b−→ STOP

(b→ STOP)[[b < a]]
a−→ STOP[[b < a]]

Der2 = (External Choice 3)

(Sequential Composition 1)

(Pre�xing)
(a→ SKIP)

a−→ SKIP

((a→ SKIP); STOP)
a−→ (SKIP; STOP)

(((a→ SKIP); STOP)2(b→ STOP))
a−→ (SKIP; STOP)

(Synchronized
Parallelism 2)

(Sequential Composition 2)

(SKIP)
SKIP

X−→ Ω

(SKIP; STOP)
τ−→ STOP

(STOP[[b < a]] ‖
{a}

(SKIP; STOP))
τ−→ (STOP[[b < a]] ‖

{a}
STOP)

Figure 9: A computation with the operational semantics from Fig. 8

5. TRACKING COMPUTATIONS

In this section, we provide a de�nition of a CSP track. Firstly, we introduce some notation that will
be used throughout the paper.

A track is formed by the sequence of expressions that are evaluated during an execution. These
expressions are conveniently connected to form a graph. However, several program analysis techniques
such as program slicing make use of the locations of program expressions, and thus, this notion of track is
insu�cient for them. Therefore, we want our tracks to also store the location of each literal (i.e., events,
operators and process names) in the speci�cation so that the track can be used to know what portions of
the source code have been executed and in what order. Note that this means that tracks contain dynamic
and static information, i.e., the actual value of a term (with variable substitution according to the dynamic
information available at execution time) is stored in the track. Additionally, the corresponding position
of this term in the speci�cation is also stored.

The inclusion of source positions in the track implies an additional level of complexity in the semantics,
but the bene�ts of providing tracks with this additional information are clear and, for some applications,
essential. Therefore, we use labels (that we call speci�cation positions) to uniquely identify each literal
in a speci�cation. This roughly corresponds to nodes in the CSP speci�cation's abstract syntax tree.
We de�ne a function Pos to obtain the speci�cation position of an element of a CSP speci�cation. It is
de�ned over nodes of the abstract syntax tree of this CSP speci�cation. Formally,

De�nition 1. (Speci�cation position) A speci�cation position is a pair (N,w) where N ∈ N and w is a
chain of natural numbers separated by dots n1.n2.n3...nm. We use Λ to denote the empty chain. We let
Pos(t) denote the speci�cation position of a term t. Each (parameterized) process de�nition N = P or
N(xn) = P of a CSP speci�cation is labeled with speci�cation positions. The speci�cation position of its
left-hand side is respectively Pos(N) = (N, 0) or Pos(N(xn)) = (N(xn), 0).
The right-hand side is labeled with the call AddSpPos(P, (N,Λ)); where function AddSpPos is de�ned as
shown in Figure 10.

15

AddSpPos(P, (N,w)) =



P(N,w) if P ∈ N
P(N,w)(xn) if P ∈ N ∧ xn ∈ ΣV

STOP(N,w) if P = STOP

SKIP(N,w) if P = SKIP

co(N,w.1) →(N,w) AddSpPos(Q, (N,w.2)) if P = co→ Q

AddSpPos(Q, (N,w.1))\(N,w)B if P = Q\B
AddSpPos(Q, (N,w.1))[[<]](N,w) if P = Q[[<]]

AddSpPos(Q, (N,w.1)) op(N,w) AddSpPos(R, (N,w.2)) if P = Q op R
∀ op ∈ {u,2,≮≯, ||, ; }

Figure 10: De�ntion of function AddSpPos

Example 4. Consider the following CSP speci�cation where terms are labeled with their associated spec-
i�cation positions (they are underlined) so that labels are unique:

MAIN(MAIN,0) = P(a)(MAIN,1) ‖
{b}

(MAIN,Λ)(b(MAIN,2.1)→(MAIN,2)STOP(MAIN,2.2))

P(x)(P,0) = (x(P,1.1)→(P,1)SKIP(P,1.2)) ≮x = c≯(P,Λ)(b(P,2.1)→(P,2)SKIP(P,2.2))

In the following, speci�cation positions will be represented with greek letters (α, β, . . .) and we will often
use indistinguishably a term and its corresponding speci�cation position when it is clear from the context
(e.g., in Example 4 we will refer to (MAIN, 2.1) as b).

In order to introduce the formal de�nition of track, we need �rst to de�ne the concept of control-�ow,
which refers to the order in which the terms of a CSP speci�cation are executed. Intuitively, the control
can pass from a speci�cation position α to a speci�cation position β i� an execution exists where α
is executed before β. This notion of control-�ow is similar to the control-�ow used in the control-�ow
graphs (CFG) [53] of imperative programming. We have adapted the same idea to CSP where choices
and parallel composition appear; and in a similar way to the CFG, we use this de�nition to draw control
arcs in our tracks. Formally,

De�nition 2. (Static control-�ow) Given a CSP speci�cation S and two speci�cation positions α, β in
S, we say that the control can pass from α to β, denoted by α ⇒ β, i� one of the following conditions
holds:

i) α = N ∧ β = first((N,Λ)) with N = rhs(N) ∈ S ∨ α = N(xn) ∧ β = first((N(xn),Λ)) with
N(xn) = rhs(N(xn)) ∈ S

ii) α ∈ {u,2,≮≯, ||} ∧ β ∈ {first(α.1),first(α.2)}

iii) α ∈ {→, ; } ∧ β = first(α.2)

iv) α = β.1 ∧ β =→

v) α ∈ last(β.1) ∧ β = ;

vi) α ∈ {\, [[]]} ∧ β = first(α.1)

where first(γ) is the speci�cation position of the subprocess denoted by γ which must be executed �rst:

first(γ) =

 γ.1 if γ = →
first(γ.1) if γ = ;
γ otherwise

16

and last(γ) is the set of all possible successful termination points of the subprocess denoted by γ:

last(γ) =



{γ} if γ = SKIP

∅ if γ = STOP ∨
(γ = || ∧ (last(γ.1) = ∅ ∨ last(γ.2) = ∅))

last(γ.1) ∪ last(γ.2) if γ ∈ {u,2,≮≯} ∨
(γ = || ∧ last(γ.1) 6= ∅ ∧ last(γ.2) 6= ∅)

last(γ.1) if γ ∈ {\, [[]]}
last(γ.2) if γ ∈ {→, ; }
last((N,Λ)) if γ = N

last((N(xn),Λ)) if γ = N(xn)

For instance, in Example 4 we can observe how the control can pass from a speci�cation position
to another one. For instance, we have (P,Λ) ⇒ (P, 1.1) and (P,Λ) ⇒ (P, 2.1) due to rule ii). And
(MAIN, 2.1)⇒ (MAIN, 2) due to rule iv); (MAIN, 2)⇒ (MAIN, 2.2) due to rule iii) and (MAIN, 1)⇒ (P,Λ) due
to rule i).

We also need to de�ne the notions of rewriting step and derivation.

De�nition 3. (Rewriting Step, Derivation) Given a CSP process P , a rewriting step for P , denoted by

P
Θ
 P ′, is the transformation of P into P ′ by using a rule of the CSP semantics. Therefore, P

Θ
 P ′ i�

a rule of the form
Θ

P
e−→ P ′

is applicable, where e ∈ Σ ∪ {τ,X} and Θ contains 0, 1 or 2 rewriting steps

that can be executed in any order. Given a CSP process P0, we say that the sequence P0
Θ0 . . .

Θn Pn+1,

n ≥ 0, is a derivation of P0 i� ∀ i, 0 ≤ i ≤ n, Pi
Θi Pi+1 is a rewriting step. We say that the derivation

is complete i� there is no possible rewriting step for Pn+1. We say that the derivation has successfully
�nished i� Pn+1 is Ω.

For instance, one (possible) complete derivation of Example 4 is:

MAIN
(PC)

P(a) ‖
{b}

(b→ STOP)

(SP1)

((a→ SKIP) ≮ a = c ≯ (b→ SKIP)) ‖
{b}

(b→ STOP)

(SP1)

(b→ SKIP) ‖
{b}

(b→ STOP)

(SP3)

SKIP ‖
{b}

STOP

where the rules applied in each rewriting step (ignoring subderivations) are (Process Call), (Synchronized
Parallelism 1) and (Synchronized Parallelism 3) (abbrev. (PC), (SP1) and (SP3), respectively). Observe that
this derivation has not successfully �nished.

Function last of De�nition 2 can be used to determine the last speci�cation position in a derivation.
However, this function computes all possible �nal speci�cation positions, and a particular derivation only
reaches some of them. Therefore, we will use in the following a modi�ed version of last called last ′

whose behavior is exactly the same as last except in the case of choices where only one of the branches
is selected.

For each derivation (P u Q Θ
 P) or (P ≮ Bool ≯ Q

Θ
 P) or (P 2 Q

Θ0 . . .
Θn P ′, n ≥ 0 such that

P
Θ′0 . . .

Θ′m P ′,m ≥ 0), we have that last ′(P uQ)=last ′(P ≮Bool≯ Q)=last ′(P 2 Q)=last′(P).

Similarly, for each derivation (P u Q Θ
 Q) or (P ≮ Bool ≯ Q

Θ
 Q) or (P 2 Q

Θ0 . . .
Θn Q′, n ≥ 0 such

that Q
Θ′0 . . .

Θ′m Q′,m ≥ 0), we have that last ′(P uQ)=last ′(P ≮Bool≯ Q)=last ′(P 2 Q)=last′(Q).

17

Note that, while last is static, last ′ is dynamic. It is de�ned in the context of a particular derivation which
implies one particular way of resolving any non-determinism. The same happens with the de�nition of
control-�ow. Control-�ow is de�ned statically and says whether the control can pass from α to β in some
derivation. However, the track is a dynamic structure produced for a particular derivation. Therefore,
we produce a dynamic version of the de�nition of control-�ow which is de�ned for a particular derivation.

De�nition 4. (Dynamic control-�ow) Let S be a CSP speci�cation and D a derivation in S. Given two
speci�cation positions α, β in S, we say that the control can dynamically pass from α to β, denoted by

αV β, i� the control can pass from α to β (α⇒ β) in derivation D. For each P Θ
 P ′ ∈ D and for all

rewriting steps in Θ, we have that:

1. if P is a pre�xing (co → Q) or a sequential composition (Q;R), then Pos(co) V Pos(→) or
∀p ∈ last ′(Q), Pos(p)V Pos(;) respectively,

2. if P ⇒ first(P ′′) where P ′′
Θ′

 P ′′′ ∈ Θ, then Pos(P)V Pos(first(P ′′)),

3. if P ⇒ first(P ′), then Pos(P)V Pos(first(P ′)).

MAIN
(PC)

P(a) ‖
{b}

(b→ STOP)

(SP1)

((a→ SKIP) ≮ a = c ≯ (b→ SKIP)) ‖
{b}

(b→ STOP)

(SP1)

(b→ SKIP) ‖
{b}

(b→ STOP)

(SP3)

SKIP ‖
{b}

STOP

(SP1)

Ω ‖
{b}

STOP

(SP2)

Ω ‖
{b}
⊥

(a) Derivation with the extended semantics

(b) Track

Figure 11: Derivation and track associated with the speci�ca-
tion of Example 4

Clauses 1, 2 and 3 de�ne the cases in which
the control passes between two speci�cation po-
sitions in a given derivation. In clause 1,
if we have a pre�xing in the control then Θ
is empty and the rewriting step applied is of
the form

(co→ P)
a−→ subs(a, co, P)

with a ∈

comms(co). In this case, clause 1 guarantees that
the control can dynamically pass from co to →;
and clause 3 guarantees that the control can dy-
namically pass from→ to subs(a, co, P). However,
sometimes Θ is not empty, and the rewriting step

is of the form
P ′′

e′−→ P ′′′

P
e−→ P ′

. Here, clause 2 ensures

that the control can dynamically pass from P to
P ′′; and clause 3 ensures that the control can dy-
namically pass from P to P ′ and from P ′′ to P ′′′.
For instance, it is possible to have a rewriting step
to evaluate process P 2 P ′. Clearly, the control
can pass from 2 to both P and P ′ (2 ⇒ P and
2⇒ P ′), but in the rewriting step the control will
only pass to one of them (2V P or 2V P ′). In
this case, clauses 2 and 3 are used.

We are now in a position to formally de�ne the concept of track of a derivation.

De�nition 5. (Track) Given a CSP speci�cation S, and a derivation D in S, the track of D is a graph
G = (N,Ec, Es) where N is a set of nodes uniquely identi�ed with a natural number and that are labeled
with speci�cation positions (l(n) refers to the label of node n), and arcs are divided into two groups:

• control-�ow arcs (Ec) are a set of one-way arcs (denoted with 7→) representing the control-�ow
between two nodes, and

• synchronization arcs (Es) are a set of two-way arcs (denoted with e) representing the synchroniza-
tion of two (event) nodes;

and

1. Ec contains a control-�ow arc a 7→ a′ i� aV a′ with respect to D, and

18

2. Es contains a synchronization arc a e a′ for each synchronization occurring in D where a and a′

are the nodes of the synchronized events.

The only nodes in N are the nodes induced by Ec and Es.

Example 5. Consider again the speci�cation of Example 4. Figure 11(a) shows a derivation computed
with our extended semantics that will be explained in detail in the next section. The track associated with
this derivation is shown in Figure 11(b). In the example, we see that the track is a connected and directed
graph. Apart from the control-�ow arcs, there is one synchronization arc between nodes (MAIN, 2.1) and
(P, 2.1) representing the synchronization of event b. To illustrate the inclusion of arcs in De�nition 5,
we see that the arc between node 7 and node 8 is introduced according to clause 1 of De�nition 4; the arc
between node 1 and node 7 is introduced according to clause 2 of De�nition 4; the arc between node 3 and
node 4 is introduced according to clause 3 of De�nition 4 because, in the subderivation of (SP1), there is

a rewriting step (Conditional Choice 2) ((a→ SKIP) ≮ a = c ≯ (b→ SKIP))
τ−→ (b→ SKIP)

and first(b → SKIP) = b; similarly, the arc between nodes 5 and 6 is introduced according to clause 3 of
De�nition 4 because, in the subderivations of (SP3), there is a rewriting step (Pre�xing)

(b→ SKIP)
b−→ (SKIP)

and first(SKIP) = SKIP; and the synchronization arc between nodes 4 and 7 is introduced according to
clause 2 of De�nition 5.

The trace associated with the derivation in Figure 11(a) is 〈b〉. Therefore, note that the track is much
more informative: it shows the exact processes that have been evaluated with an explicit causality relation;
and, in addition, it shows the speci�cation positions that have been evaluated and in what order.

6. INSTRUMENTING THE SEMANTICS FOR TRACKING

The generation of tracks in CSP introduces new challenges such as non-deterministic execution of
processes, deadlocks, non-terminating processes and synchronizations. In this work, we design a solution
that overcomes these di�culties. Firstly, we generate tracks with an augmented semantics which is
conservative with respect to the standard operational semantics. Therefore, the evaluation of the semantic
rules follows the standard order producing the standard trace. Moreover, the semantics generates the
track incrementally, step by step. Therefore, in�nite computations can be tracked until they are stopped.
Hence, it is not needed to actually �nish a computation to get the track of the subcomputations performed.

Example 6. In the following CSP speci�cation two non-terminating processes run in parallel and syn-
chronize in�nitely.

MAIN(MAIN,0) = P(MAIN,1) ‖
{a}

(MAIN,Λ)Q(MAIN,2)

P(P,0) = a(P,1)→(P,Λ)Q(P,2)

Q(Q,0) = a(Q,1)→(Q,Λ)b(Q,2.1)→(Q,2)P(Q,2.2)

Because the computation is in�nite, the track (shown in Figure 12) is also in�nite.

Figure 12: Track of the program in Example 6

19

In the standard semantics there does not exist a rule for process STOP, and thus it produces a deadlock.
Contrarily, the augmented semantics includes a special rule to handle STOP. This rule allows us to perform
one additional step to generate the part of the track that represents this deadlock. This additional step
does not in�uence the other rules of the semantics, thus it remains conservative.

This section introduces an instrumented operational semantics of CSP which generates as a side-e�ect
the tracks associated with the computations performed with the semantics. The tracking semantics is
shown in Figure 13 and Figure 14, where we assume that every term in the program has been labeled with
its speci�cation position (denoted by a subscript, e.g., Pα). In this semantics, a state is a tuple (P,G,m),
where P is the process to be evaluated (the control), G is a directed graph (i.e., the track built so far)
and m is a numeric reference to the current node in G. Concretely, m references the node in G where the
speci�cation position of the control P must be stored. Reference m is a fresh8 reference generated to add
new nodes to G. The basic idea of the graph construction is to record the current control with the current
reference in every step by connecting it to its parent. We use the notation G[m 7→

n
(α, t)] to introduce

in G a node labeled with term t and its speci�cation position α; with reference m and with successor n
(a fresh reference). t is part of the expression that is being evaluated, and it usually contains variables
that have been substituted by their corresponding values. For the sake of simplicity, whenever t does
not contain variables, we just omit t because it can be directly inferred from the speci�cation position.
Hence, in these cases we just use G[m 7→

n
α]. Successor arrows are denoted by m 7→

n
which means that

node n is the successor of node m.
Together with the events that �re the rules of the semantics, there is an associated set ∆. This

set contains references to nodes that may be synchronized. In particular, every time an event in Σ
happens during the computation, its reference is stored in the set ∆ of the current state. Therefore,
when a synchronized parallelism is evaluated, all the events that must be synchronized are in ∆. We use
the special symbol ⊥ to denote any process that is deadlocked. In order to perform computations, we
construct an initial state (e.g., (MAIN(MAIN,0), ∅, 0)) and (non-deterministically) apply the rules of Figure
13 and Figure 14. When the execution has �nished or has been interrupted, the semantics has produced
the track of the computation performed so far.

An explanation for each rule of the semantics follows:

((Parameterized) Process Call) The called process N is unfolded, node m is added to the graph with
speci�cation position α and successor n (a fresh reference). The new process in the control is
rhs(N). The set ∆ of events to be synchronized is put to ∅ since no event in Σ has been �red.
Parameterized process call is completely analogous, but in this case (as in the standard semantics)
we need to replace all variables appearing in the right hand side of the process (rhs(N)) by their
corresponding values which are the parameters an of N .

(Pre�xing) This rule adds nodes m (the pre�x) and n (the pre�xing operator) to the graph. In the new
state, n becomes the parent reference and the fresh reference p represents the current reference.
The new control is P with the corresponding substitution as in the standard semantics. The set
∆ is {m} to record the node associated to event a that must be synchronized when required by
(Synchronized Parallelism 3).

(SKIP and STOP) Whenever one of these rules is applied, the subcomputation �nishes because Ω (for
rule SKIP) and ⊥ (for rule STOP) are put in the control, and these special symbols have no associated
rule. A node with the SKIP (respectively STOP) speci�cation position is added to the graph.

(Internal Choice 1 and 2) The choice operator is added to the graph, and the (non-deterministically) se-
lected branch is put into the control with the fresh reference n as the successor of the choice
operator.

(External Choice 1, 2, 3 and 4) An external choice is able to develop both branches while τ events happen
(rules 1 and 2), until an event in Σ∪{X} occurs (rules 3 and 4). This means that the semantics can

8We assume that fresh references are numeric and generated incrementally.

20

(Process Call)

(Nα,G,m)
(τ,∅)−−−→ (rhs(N),G[m 7→

n
α], n)

(Parameterized
Process Call)

(Nα(an),G,m)
(τ,∅)−−−→ (subs(an, xn, rhs(N)),G[m 7→

n
(α,N(an))], n)

where N(xn) = rhs(N) ∈ S with xn ∈ ΣV ∧ an ∈ Σ

(Pre�xing)

(coα →β P,G,m)
(a,{m})−−−−−−→ (subs(a, co, P),G′, p)

a ∈ comms(co)

where G′ = G[m 7→
n

(α, subs(a, co, co)), n 7→
p
β]

(SKIP)

(SKIPα,G,m)
(X,∅)−−−−→ (Ω,G[m 7→

n
α], n)

(STOP)

(STOPα,G,m)
(τ,∅)−−−→ (⊥,G[m 7→

n
α], n)

(Internal
Choice 1)

(P uα Q,G,m)
(τ,∅)−−−→ (P,G[m 7→

n
α], n)

(Internal
Choice 2)

(P uα Q,G,m)
(τ,∅)−−−→ (Q,G[m 7→

n
α], n)

(External
Choice 1)

(P1,G′, n′)
(τ,∅)−−−→ (P ′,G′′, n′′)

(P1 �(α,n1,n2)P2,G,m)
(τ,∅)−−−→ (P ′ �(α,n′′,n2)P2,G′′,m)

where (G′, n′) = FirstEval(G, n1,m, (α,�))

(External
Choice 2)

(P2,G′, n′)
(τ,∅)−−−→ (P ′,G′′, n′′)

(P1 �(α,n1,n2)P2,G,m)
(τ,∅)−−−→ (P1 �(α,n1,n

′′)P
′,G′′,m)

where (G′, n′) = FirstEval(G, n2,m, (α,�))

(External
Choice 3)

(P1,G′, n′)
(e,∆)−−−−→ (P ′,G′′, n′′)

(P1 �(α,n1,n2)P2,G,m)
(e,∆)−−−−→ (P ′,G′′, n′′)

e ∈ Σ ∪ {X}

where (G′, n′) = FirstEval(G, n1,m, (α,�))

(External
Choice 4)

(P2,G′, n′)
(e,∆)−−−−→ (P ′,G′′, n′′)

(P1 �(α,n1,n2)P2,G,m)
(e,∆)−−−−→ (P ′,G′′, n′′)

e ∈ Σ ∪ {X}

where (G′, n′) = FirstEval(G, n2,m, (α,�))

(Conditional
Choice 1)

(P ≮ Bool ≯α Q,G,m)
(τ,∅)−−−→ (P,G[m 7→

n
(α,≮ true ≯)], n)

if Bool = true

(Conditional
Choice 2)

(P ≮ Bool ≯α Q,G,m)
(τ,∅)−−−→ (Q,G[m 7→

n
(α,≮ false ≯)], n)

if Bool = false

Figure 13: An instrumented operational semantics to generate CSP tracks

add nodes to both branches of the track alternatively, and thus, it needs to store the next reference
to use in every branch of the choice. This is done by labeling choice operators with a tuple of
the form (α, n1, n2) where α is the speci�cation position of the choice operator; and n1 and n2 are
respectively the references to be used in the left and right branches of the choice, and they are
initialized to •, a symbol used to express that the branch has not been evaluated yet. Therefore,
the �rst time a branch is evaluated, we generate a new reference for this branch. For this purpose,
function FirstEval is used:

FirstEval(G, n,m, (α, t)) =

{
(G[m 7→

p
(α, t)], p) if n = •

(G, n) otherwise

This function checks whether this is the �rst time that the branch is evaluated (this only happens
when the reference of this branch is empty, i.e., n = •). In this case, the choice operator is added

21

(Sequential
Composition 1)

(P,G,m)
(e,∆)−−−−→ (P ′,G′,m′)

(P ;Q,G,m)
(e,∆)−−−−→ (P ′;Q,G′,m′)

e ∈ Σ ∪ {τ}

(Sequential
Composition 2)

(P,G,m)
(X,∅)−−−−→ (Ω,G′, n)

(P ;αQ,G,m)
(τ,∅)−−−→ (Q,G′[n 7→

p
α], p)

(Synchronized

Parallelism 1)
(P1,G′, n′)

(e′,∆)−−−−→ (P ′,G′′, n′′)

(P1 ‖
X

(α,n1,n2)P2,G,m)
(e,∆)−−−−→ (P ′ ‖

X
(α,n′′,n2)P2,G′′,m)

(e = e′ ∈ Σ\X)
∨ (e = τ ∧ e′ ∈ {τ,X})

where (G′, n′) = FirstEval(G, n1,m, (α, ‖
X

))

(Synchronized

Parallelism 2)
(P2,G′, n′)

(e′,∆)−−−−→ (P ′,G′′, n′′)

(P1 ‖
X

(α,n1,n2)P2,G,m)
(e,∆)−−−−→ (P1 ‖

X
(α,n1,n

′′)P
′,G′′,m)

(e = e′ ∈ Σ\X)
∨ (e = τ ∧ e′ ∈ {τ,X})

where (G′, n′) = FirstEval(G, n2,m, (α, ‖
X

))

(Synchronized
Parallelism 3)

RewritingStep1 RewritingStep2

(P1 ‖
X

(α,n1,n2)P2,G,m)
(a,∆1∪∆2)
−−−−−−−−→ (P ′1 ‖

X
(α,n′′1 ,n

′′
2)P

′
2,G′′,m)

a ∈ X

where G′′ = G′′1 ∪ G
′′
2 ∪ {s1

a
e s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2}

∧ RewritingStep1 = (P1,G′1, n
′
1)

(a,∆1)
−−−−−→ (P ′1,G

′′
1 , n

′′
1)

∧ (G′1, n
′
1) = FirstEval(G, n1,m, (α, ‖

X

))

∧ RewritingStep2 = (P2,G′2, n
′
2)

(a,∆2)
−−−−−→ (P ′2,G

′′
2 , n

′′
2)

∧ (G′2, n
′
2) = FirstEval(G, n2,m, (α, ‖

X

))

(Synchronized
Parallelism 4)

(Ω‖
X

(α,n1,n2)Ω,G,m)
(X,∅)−−−−→ (Ω,G′, r)

where G′ = G[{p 7→
r
| p 7→

q
∈ G where q ∈ {n1, n2}}]

(Hiding 1)
(P,G′, n)

(a,∆)−−−−→ (P ′,G′′, n′)

(P\αB,G,m)
(τ,∅)−−−→ (P ′\•B,G′′, n′)

a ∈ B

(Hiding 2)
(P,G′, n)

(e,∆)−−−−→ (P ′,G′′, n′)

(P\αB,G,m)
(e,∆)−−−−→ (P ′\•B,G′′, n′)

(e ∈ Σ ∧ e 6∈ B) ∨ (e = τ)

(Hiding 3)
(P,G′, n)

(X,∅)−−−−→ (Ω,G′′, n′)

(P\αB,G,m)
(X,∅)−−−−→ (Ω,G′′, n′)

(G′, n) = FirstEvalHR(G, (α, \B),m)

(Renaming 1)
(P,G′, n)

(e′,∆)−−−−→ (P ′,G′′, n′)

(P [[<]]α,G,m)
(e,∆)−−−−→ (P ′[[<]]•,G′′, n′)

(e, e′ ∈ Σ ∧ e′ < e) ∨
(e = e′ = τ)

(Renaming 2)
(P,G′, n)

(X,∅)−−−−→ (Ω,G′′, n′)

(P [[<]]α,G,m)
(X,∅)−−−−→ (Ω,G′′, n′)

(G′, n) = FirstEvalHR(G, (α, [[<]]),m)

Figure 14: An instrumented operational semantics to generate CSP tracks (cont.)

22

to G. For instance, consider the following CSP speci�cation:

MAIN = P � SKIP

P = SKIP

A call to process MAIN will leave P � SKIP in the control of a rewriting step (External Choice 1) like the
following:

(EC1)

(Process Call)

(P,G′, 2)
(τ,∅)−−−→ (SKIP,G′′ = G′[2 7→

3
(MAIN, 1)], 3)

(P �
((MAIN,Λ),•,•) SKIP,G, 1)

(τ,∅)−−−→ (SKIP �
((MAIN,Λ),3,•) SKIP,G′′, 1)

where FirstEval(G, •, 1, ((MAIN,Λ),�)) = (G′ = G[1 7→
2

((MAIN,Λ),�)], 2).

Observe that, in the left control, the choice operator is labeled with ((MAIN,Λ), •, •). Therefore, it
is evaluated for the �rst time, and thus, node 1 7→

2
((MAIN,Λ),�) is added to G by FirstEval. Note

that 1 refers to the choice operator and 2 refers to the �rst node of the left branch (P). Note also
that, in the right control, the left • is replaced by the corresponding reference 3. We continue the
evaluation with the following rewriting step (External Choice 3):

(EC3)

(SKIP)

(SKIP,G′′, 3)
(X,∅)−−−−→ (Ω,G′′′ = G′′[3 7→

4
(MAIN, 1)], 4)

(SKIP �
((MAIN,Λ),3,•) SKIP,G′′, 1)

(X,∅)−−−−→ (Ω,G′′, 4)

where FirstEval(G′′, 3, 3, ((MAIN,Λ),�)) = (G′′, 3).

In this case, FirstEval does not modify the graph (G′′) because the left branch was already eval-
uated. This is known because the left reference of the choice operator is not a •.

(Conditional Choice 1 and 2) It is completely analogous to (Internal Choice) but the selection of the branch
is deterministic and comes from the evaluation of the condition.

(Sequential Composition 1 and 2) The �rst rule is used to evolve process P until it is �nished. P is evolved
to P ′ which is put into the control. When P successfully �nishes (it becomes Ω), X happens. Then,
(Sequential Composition 2) is used and Q is put into the control. The sequential composition operator
; is added to the graph with successor p that is the reference to be used in the �rst node added in
the subderivation associated with Q.

(Synchronized Parallelism 1 and 2) In a synchronized parallel composition, both parallel processes can be
intertwiningly executed until a synchronized event is found. Therefore, nodes from both processes
can be added interwoven to the graph. Hence, each parallelism operator is labeled with a tuple of
the form (α, n1, n2) as it happens with external choices.

These rules develop the branches of the parallelism until they are �nished or until they must synchronize.
In order to introduce the parallelism operator into the graph, function FirstEval is used, as in the
external choice rules. For instance, consider the �rst rewriting step (Synchronized Parallelism 1) of Figure
15. The parallelism operator in the rewriting step State 1 is labeled with ((MAIN,Λ), •, •). Therefore, it
is evaluated for the �rst time, and thus, in the left-hand side state of the rewriting step (Parameterized

Process Call), node 1 7→
2

(MAIN,Λ) is added to G. Note that 1 refers to the parallelism operator and 2 refers

to P(a), which is the �rst position in the left branch.

(Synchronized Parallelism 3) This rule is used to synchronize the parallel processes. In this case, both
branches must perform a rewriting step with the same visible event. Each branch derivation has a
non-empty set of references to events (∆1, ∆2) to be synchronized (note that this is a set because

23

events belong to (possibly many nested) parallelisms). Observe that synchronized events can be
pairwise di�erent due to the occurrence of renaming. All references in the sets ∆1 and ∆2 are

mutually linked with synchronization arcs (
a
e). Both sets are �nally joined to form the new set of

synchronized events.

(Synchronized Parallelism 4) It is used when none of the parallel processes can proceed because they al-
ready successfully �nished. In this case, the control becomes Ω indicating the successful termination
of the synchronized parallelism. In the new state, the new (fresh) reference is r. This rule also adds
to the graph the arcs from all the parents of the last references of each branch (n1 and n2) to r.
Here, we use the notation p 7→

r
to add an arc from p to r. Note that the fact of generating the next

reference in each rule allows (Synchronized Parallelism 4) to connect the �nal node of both branches
to the next node. This simpli�es other rules such as (Sequential Composition) that already has the
reference of the node ready.

(Hiding 1, 2 and 3) (Hiding 1) is used to hide an event in P that belongs to the hiding set B. Events are
hidden with τ . Because the event is hidden, it should not be synchronized by other rules; therefore,
the set ∆ is put to ∅. If the event does not belong to B then (Hiding 2) is used, and thus, it remains
observable from outside. In both cases, the speci�cation position of the hiding operator is replaced
by • (in the next state of the semantics, not in the speci�cation) meaning that it has been already
evaluated. This is used to ensure that the hiding operator is only added to the graph once. For
this purpose, function FirstEvalHR is used:

FirstEvalHR(G, (α, t),m) =

{
(G[m 7→

n
(α, t)], n) if α 6= •

(G,m) otherwise

Function FirstEvalHR checks the speci�cation position of the hiding operator. If it is not •, then
it is the �rst time that it is evaluated and thus it is added to the graph. (Hiding 3) is used to �nish
the process by placing Ω in the control and performing X.

(Renaming 1 and 2) It is completely analogous to the previous case, but here the event is not hidden, but
replaced by another event in mapping <. Note in (Renaming 1) that, contrarily to (Hiding 1), the set
∆ is passed down from the top rewriting step. This is done because an event a happened that has
been added to ∆ and it must be synchronized if required by another rule. Due to the renaming,
other rules see a as b, so, if they try to synchronize b, they will use the reference of a included in ∆.

We illustrate this semantics with a simple example.

Example 7. Consider again the speci�cation in Example 4. Figure 11(a) shows one possible derivation
(excluding subderivations) for this example. Note that the underlined part corresponds to the additional
rewriting steps performed by the tracking semantics. This derivation corresponds to the execution of the
instrumented semantics with the initial state (MAIN(MAIN,0), ∅, 0) shown in Figure 15. Here, for clarity,
each computation step is labeled with the applied rule; in each state, G denotes the current graph. This
computation corresponds to the execution of the right branch of the conditional choice (i.e., b → SKIP).
The �nal state is (Ω ‖

{b}
((MAIN,Λ),10,11)⊥,G′, 1). The �nal track G′ computed for this execution is depicted in

Figure 11(b) where we can see that nodes are numbered with the references generated by the instrumented
semantics. Note that nodes 10 and 11 were prepared by the semantics (arcs to them were produced) but
never used because the subcomputations were stopped in STOP. Note also that the track contains all the
parts of the speci�cation executed by the semantics.

7. CORRECTNESS

In this section we prove the correctness of the tracking semantics by showing that (i) the computations
performed by the tracking semantics are equivalent to the computations performed by the standard

24

(Process Call)

(MAIN, ∅, 0)
(τ,∅)−−−→ State 1

where

State 1 = (P(a) ‖
{b}

((MAIN,Λ),•,•)(b→ STOP),G[0 7→
1

(MAIN, 0)], 1)

(SP 1)

(PPC)

(P(a),G[1 7→
2

(MAIN,Λ)], 2)
(τ,∅)−−−→ ((a→ SKIP) ≮ a = c ≯ (b→ SKIP),G[2 7→

3
((MAIN, 1), P(a))], 3)

State 1
(τ,∅)−−−→ State 2

where State 2 = (((a→ SKIP) ≮ a = c ≯ (b→ SKIP)) ‖
{b}

((MAIN,Λ),3,•)(b→ STOP),G′, 1)

(SP 1)

(CC 2)

((a→ SKIP) ≮ a = c ≯ (b→ SKIP),G, 3)
(τ,∅)−−−→ (b→ SKIP,G[3 7→

4
((P,Λ),≮ false ≯)], 4)

State 2
(τ,∅)−−−→ State 3

where State 3 = ((b→ SKIP) ‖
{b}

((MAIN,Λ),4,•)(b→ STOP),G′, 1)

(SP 3)
L R

State 3
(b,{4,7})−−−−−−→ State 4

where

L = (Pre�xing)

(b→ SKIP,G, 4)
(b,{4})−−−−−→ (SKIP,G[4 7→

5
(P, 2.1), 5 7→

6
(P, 2)], 6)

R = (Pre�xing)

(b→ STOP,G[1 7→
7

(MAIN,Λ)], 7)
(b,{7})−−−−−→ (STOP,G[7 7→

8
(MAIN, 2.1), 8 7→

9
(MAIN, 2)], 9)

and State 4 = (SKIP ‖
{b}

((MAIN,Λ),6,9)STOP,G′ ∪ {4
b
e 7}, 1)

(SP 1)

(SKIP)

(SKIP,G, 6)
(τ,∅)−−−→ (Ω,G[6 7→

10
(P, 2.2)], 10)

State 4
(τ,∅)−−−→ State 5

where State 5 = (Ω ‖
{b}

((MAIN,Λ),10,9)STOP,G′, 1)

(SP 2)

(STOP)

(STOP,G, 9)
(τ,∅)−−−→ (⊥,G[9 7→

11
(MAIN, 2.2)], 11)

State 5
(τ,∅)−−−→ State 6

where State 6 = (Ω ‖
{b}

((MAIN,Λ),10,11)⊥,G′, 1)

Figure 15: An example of computation with the tracking semantics in Fig. 13 and Fig. 14

semantics; and (ii) the graph produced by the tracking semantics is the track of the derivation. We also
prove that the trace of a derivation can be automatically extracted from the track of this derivation. The
proofs of these technical results can be found in Appendix A.

The �rst theorem shows that the computations performed with the tracking semantics are all and
only the computations performed with the standard semantics. The only di�erence between them from
an operational point of view is that the tracking semantics needs to perform one step when a STOP is
evaluated (to add its speci�cation position to the track) and then stops, while the standard semantics
stops without performing any additional step.

We need �rst to de�ne the concept of derivation strategy that is used to assure that the derivations
with both semantics make the same decisions during a computation.

De�nition 6 (Derivation strategy). A derivation strategy Ψ is a deterministic function that given a
process to be evaluated (a control), and given an operational semantics O, it returns one rule in O to
apply. We denote with DΨ a derivation that uses the derivation strategy Ψ to deterministically select an
appropriate rule in each step of the derivation.

Note that both the standard semantics (see Figure 8) and the tracking semantics (see Figure 13 and
Figure 14) use the same control in all rules (except for STOP). Therefore, given a process P both semantics
using the same derivation strategy will produce derivations with exactly the same number of rewriting
steps (except for STOP), and the same sequences of controls.

25

We de�ne now the conservativeness theorem.

Theorem 1 (Conservativeness). Let S be a CSP speci�cation, P a process in S, and DΨ and D′Ψ the
derivations of P performed using the same derivation strategy Ψ with the standard semantics of CSP and
with the tracking semantics, respectively. Then, the sequence of rules applied in DΨ and D′Ψ is exactly the
same except that D′Ψ performs one rewriting step more than DΨ for each (sub)computation that �nishes
with STOP.

The second theorem states the correctness of the tracking semantics by ensuring that the graph
produced is the track of the computation.

Theorem 2 (Semantics correctness). Let S be a CSP speci�cation, D a derivation of S performed
with the tracking semantics, and G the graph produced by D. Then, G is the track associated with D.

Our last result states that the trace of a derivation can be extracted from its associated track. To
prove it, we de�ne �rst an order on the event nodes of a track that corresponds to the order in which
they were generated by the tracking semantics.

De�nition 7. (Event node order) Given a track G = (N,Ec, Es) and nodesm,n ∈ N such that l(m), l(n) ∈
Σ, m is smaller than n, represented by m� n i� m′ < n′ where (m,m′), (n, n′) ∈ Ec.

Intuitively, an event node m is smaller than an event node n if and only if the successor of m has a
reference smaller than the reference of the successor of n. The following lemma is also necessary to prove
that the order in which events occur in a derivation is directly related with the order of De�nition 7. In
the following we consider an augmented version of derivation D which includes the event �red by the

application of the rule. So, we can represent derivation D as P1
Θ1
e1
. . .

Θj

ej
Pj+1.

Theorem 3 (Track correctness). Let S be a CSP speci�cation, D a derivation of S produced by the
sequence of events (i.e., the trace) T = e1, . . . , em, and G the track associated with D. Then, there exists
a function f that extracts the trace T from the track G, i.e., f(G) = T .

8. IMPLEMENTATION

We have developed a tool called CSP-Tracker that implements a CSP interpreter with a tracker and
a slicer. The interpreter executes a CSP speci�cation and simultaneously produces the track associated
with the performed derivation. Then, the user can specify a slicing criterion and the slice is automatically
computed. CSP-Tracker incorporates mechanisms to produce coloured graphs that represent the tracks
in a very intuitive way. CSP-Tracker implements the instrumented semantics in Figure 14, and thus it
can generate the track of a (partial) derivation until it �nishes or is stopped. In CSP-Tracker, both the
tracking and slicing processes are completely automatic. Once the user has loaded a CSP speci�cation,
they can (automatically) produce a derivation and the tool internally generates the associated track.
Then, the tool asks for the number of occurrence of the slicing criterion they are interested in. This
information is enough to generate the slice. Both the track and the trace, and also the slice, can be
stored in a �le, or displayed in the screen by generating Graphviz 9 graphs. Figure 16 shows a screenshot
of an interface of the tool showing the track and the trace of the speci�cation in Example 1.

8.1. Architecture of CSP-Tracker

The information collected by CSP-Tracker is dynamic, and thus the subsequent analyses performed
are very precise. We would like to allow the user to combine this information with other analyses that
already exist for CSP. Therefore, we have integrated CSP-Tracker with another tool called SOC [31]
able to perform di�erent static analyses such as static slicing. Both tools are complementary (SOC

9http://www.graphviz.org/

26

Figure 16: Track of a CSP speci�cation produced by CSP-Tracker

generates static information while tracks provide dynamic information), and together can be useful, e.g.,
in debugging and program comprehension.

While SOC was implemented in Prolog, CSP-Tracker has been implemented in Erlang10. The election
of Erlang was very conscious because Erlang is one of the most e�cient languages for the use of multiple
threads and parallelism [56, 13]; and it provides concurrent capabilities that enhance the execution of
CSP speci�cations with the use of e�cient message passing. In particular, with Erlang we can use truly
concurrent processes to implement interleaving and synchronized parallelism.

All modules except the parser and the graph generator were implemented in Erlang. The CSP parser
translates CSP to a Prolog representation that can be used by SOC. This parser is part of ProB [29, 30]
which is one of the most extended IDE for CSP. Once CSP is translated to Prolog, we use a Prolog
module to translate the resulting code to an Erlang structure. This last step does not imply any semantic
transformation. This is just a change in the syntactic representation that is almost straightforward
because the syntax of Erlang was initially based on Prolog, so there are many similarities between them.

10http://www.erlang.org/

27

Figure 17: CSP-Tracker's Architecture

Figure 17 summarizes the internal architecture of CSP-Tracker. In the �gure, the dark rectangles
represent modules that are described in the following:

• ProB's CSP parser: It translates a CSP speci�cation into a Prolog representation. This Prolog
structure acts as an intermediate language that is used by SOC to perform complementary static
analyses. This module is in charge of assigning speci�cation positions. While in the theoretical
framework (for the sake of simplicity) we use natural numbers to represent speci�cation positions,
in the implementation we use lines and columns to identify literals which is much more convenient
and useful for the programmer. This can be observed in Figure 18. For instance, node 5 with literal
b has the speci�cation position from (4,10) to (4,11); which means that b appears in the source
code between columns 10 and 11 of line 4.

• Compiler Prolog-Erlang: It produces an Erlang representation equivalent to the Prolog structure.

• scheduler: This module initializes the other modules. First, it loads the Erlang code produced
and then it creates all the Erlang processes needed by the tool. Finally, it starts the execution of
the initial CSP process (by default MAIN) to generate the track. Once the track has been generated,
it traverses the track from the slicing criterion to extract the slice.

• codeserver: This module speci�es a process that runs uninterruptedly during the generation of the
track. It behaves as a server that stores all the information about the code of the CSP processes.
It waits for requests and serves them. A request is in fact a message that contains a process call.
Then, codeserver returns a message containing the right hand side of the called process with the
parameters substituted by the actual values of the arguments in the call.

• printer: This module also speci�es a process that runs uninterruptedly and acts as a server. In
this case, the requests contain information that should be used to print the trace of the execution
or to generate the part of the track that represents the ongoing execution. To graphically show
tracks, we use Graphviz.

• csp_process: This module creates one Erlang process for each CSP process in the speci�cation.
All created processes run in parallel and synchronize via message passing when needed. Each of
these processes interacts with codeserver and printer to perform process calls and generate the
graph when required. For instance, the execution of a pre�xing a → P calls printer to print a in
the shell, and then calls codeserver to create a new process that represents P.

• csp_parsing: This module is basically a library with common functionality for the other modules.

• csp_slicer: This module is in charge of mapping the slicing criterion to the track (i.e., identifying
the corresponding node), and then traversing the track backwards from the slicing criterion to

28

collect the slice. How the programmer speci�es the slicing criterion was one of the problems we
faced. Given a CSP code, specifying the slicing criterion (i.e., one speci�c term, and a number)
can be awkward for the programmer whether it is speci�ed with speci�cation positions or with line
and column. We �nally found a very easy solution that avoids the problem of manually identifying
terms in the speci�cation. The programmer can specify a slicing criterion by just placing a fresh
channel (called slice) in the point of interest. Then, the tool asks for the desired occurrence of
events of this channel. This is simple, and very powerful and expressive, because it allows the
programmer to specify more than one point of interest, thus potentially focussing on any number
of events of interest.

• csp_slicer_output: This module extracts a slice from the nodes collected in the track. The slice
is composed of all speci�cation positions of the nodes collected. This is useful for debugging, but
useless, e.g., for program specialization, because these speci�cation positions alone would produce a
syntactically incorrect speci�cation. Therefore, this module also replaces the gaps in the speci�ca-
tion by STOP. Hence, two outputs are possible: (i) a non-executable part of the speci�cation useful
for debugging, or also (ii) a well-formed CSP speci�cation able to produce the same computation
until the slicing criterion is reached.

8.2. Using CSP-Tracker

CSP-Tracker is publicly available including its source code as a GitHub repository:

https://github.com/mistupv/csp_tracker

There is also a web interface useful to test the tool. It can be found at:

http://kaz.dsic.upv.es/csp_tracker.html

This section shows the use of CSP-Tracker's web interface with three illustrative scenarios. The �rst
scenario shows a speci�cation that successfully �nishes, the second scenario shows the case where the
program is deadlocked and the third shows the case where the program produces an in�nite computation.

0 .- MAIN
from (0,0) to (0,0)

1 .- [|{|a,b|}|]
from (4,33) to (4,44)

2 .- []
from (4,48) to (4,50)

3 .- [[b <- a]]
from (4,21) to (4,31)

4 .- P
from (4,46) to (4,47)

5 .- b
from (4,10) to (4,11)

7 .- a
from (6,6) to (6,7)

6 .- ->
from (4,12) to (4,14)

9 .- SKIP
from (4,15) to (4,19)

8 .- ->
from (6,8) to (6,10)

10 .- SKIP
from (6,11) to (6,15)

11 .- ;
from (6,17) to (6,18)

12 .- SKIP
from (6,19) to (6,23)

Figure 18: A track generated by CSP-Tracker

In the �rst scenario, we consider a simple mod-
i�cation of Example 3, where all STOP terms have
been replaced by SKIP. This change makes the pro-
cess �nish successfully. We just load the �rst ex-
ample and press the button Generate Track:

Creating the Erlang representation of the CSP file...
...
Created.

-> START_TRACE

tau -> Call to process MAIN
tau -> Call to process P

a
tau
tau
tick

<- FINISH_TRACE

Once the execution is �nished, a �le track.pdf
is produced containing the track associated to the
execution of the CSP speci�cation. The track gen-
erated by CSP-Tracker for this example is shown
in Figure 18.

During the execution, the trace produced is
shown in the Log window. In the previous case,
this trace was formed by both the internal and
the external events �red by the semantics. This is

29

interesting for a programmer that wants to anal-
yse the behavior of CSP from a semantic point of
view. However, the conventional programmer is
only interested in the usual trace, only formed by
external events. This can be obtained by uncheck-
ing the option Show internal events?:

-> START_TRACE

a

<- FINISH_TRACE

Our second scenario is Example 1, that produces a deadlock. In this case, the tool automatically
detects the deadlock and produces the trace until the deadlock happens. We have the following trace:

-> START_TRACE

a.s1
b.s2
b.s0
a.s1
b.s2
notvalid

<- STOPPED_TRACE (deadlock)

Our third scenario is Example 6 that produces an in�nite loop. However, this is not a problem for
the tracker, that can still run the speci�cation and generate the track until it is stopped or a timeout is
reached. We have the following trace:

-> START_TRACE

a
b
...
a
b

Timeout.

8.2.1. Selecting computations

CSP-Tracker uses the standard CSP semantics to produce computations. This means that compu-
tations are non-deterministic by construction. However, the user may be interested in some particular
execution that she/he wants to reproduce (e.g., because it is buggy, or just to produce a slice and study
one particular interleaving). There exist techniques to select a concrete computation using techniques
such as forcing a path (see, e.g., [51]). One of them is to create a parallel synchronization of two pro-
cesses: (i) a deterministic process that can only execute the desired trace (for instance, TRACE = a -> b

-> SKIP), and (ii) the process that we want to behave as that trace.

Example 8. Consider again the non-deterministic CSP speci�cation of the FSM in Figure 1:

channel a, b, s0, s1, s2

FSM0 = s0 -> (a -> FSM1 [] b -> FSM2)

FSM1 = s1 -> (a -> FSM1 [] b -> FSM2)

FSM2 = s2 -> (a -> FSM0 [] b -> FSM0)

By just adding the following two lines:

MAIN = (FSM0 ||
{s0,s1,s2,a,b}

TRACE)

TRACE = s0 -> b -> s2 -> a -> s0 -> SKIP

the speci�cation becomes deterministic and it always produces the same trace: 〈s0, b, s2, a, s0〉

30

9. EMPIRICAL EVALUATION

Once we have theoretically proved the correctness of the technique, in this section we conduct a
series of experiments in order to evaluate the scalability of our implementation (CSP-Tracker). CSP-
Tracker is an augmented CSP interpreter instrumented for tracking and, thus, it introduces an overhead
in the computations when generating tracks. In the following, we evaluate the time needed to generate
a collection of tracks, and the size of these tracks, to provide a precise and quantitative idea of the
performance of the execution and track generation in practice.

For the evaluation, we selected a set of heterogeneous benchmarks from public CSP repositories.
All of them have been previously used to test other CSP tools and techniques. The benchmarks have
been collected from di�erent repositories and articles ensuring that they (together) cover all the syntax,
and also that they have a wide range of possible executions (�nite executions and in�nite executions
with both �nite and in�nite nested parallelism). The source code of the benchmarks can be found at:
https://github.com/mistupv/csp_tracker/tree/master/benchmarks. In each benchmark, we have included
a header describing it and providing details about the authors and a reference to its source.

In order to evaluate the performance of our tool, we strictly followed the methodology proposed in
[16, 50]. All benchmarks were executed in the same hardware con�guration: Intel R© Xeon R© Processor
E5504 (4 cores, 4M Cache, 2.00 GHz) with 16GB RAM. During the execution of the benchmarks all
processes of the system except CSP-Tracker were stopped to avoid interference of external programs. Each
benchmark was repeatedly executed 1001 times producing di�erent derivations due to non-determinism.

As we can have in�nite executions (e.g. livelock processes) we need a way to automatically stop them.
For this reason, we use a timeout of 2 seconds. This threshold was selected, both in the experiments and
in the web interface, because it is enough to produce long tracks composed of more than 1500 nodes.
The good scalability of the tool permits to generate long Erlang computations composed of many parallel
process in 2 seconds. In the web interface the threshold is also needed for security reasons, so that our
server cannot be attacked with demands for in�nite or very long computations. In the experiments,
the threshold is useful to compare the track produced by di�erent speci�cations (with di�erent levels of
complexity, number of parallel processes, and synchronizations, etc.) executed exactly the same time.

To ensure real independence, the �rst iteration was always discarded (to avoid in�uence of dynamically
loaded libraries persisting in physical memory, data persisting in the disk cache, etc.). Thus, we obtained
1000 statistical values. Then, we computed the 0.99 con�dence interval across the computed values from
the di�erent 1000 executions.

This process was repeated for the 10 benchmarks, and it produced the set of measures shown in
Table 1. We computed both the arithmetic and the harmonic mean to study the e�ect of statistical
dispersion, which was su�ciently low as to use the arithmetic mean in our table results.

In the tables, we use the notation [a b c] that represents a symmetric 0.99 con�dence interval between
a and c with center in b. Each column in the tables has the following meaning: Benchmark is the
name of the benchmark. CSP2Erlang is the time needed to compile the CSP program to an equivalent
Erlang program, Generate track is the time needed to generate a track from the execution of the Erlang
program (with a timeout of 2 seconds), and Total is the sum of the previous two measures. It represents
the total amount of time needed by CSP-Tracker to produce the track from the execution of a CSP
benchmark. #Nodes is the number of nodes that form the track. #Control Edges is the number of
control edges that form the track. #Sync. Edges is the number of synchronization edges that form the
track. Memory Size is the size in the hard disk of the track generated (stored as a .dot �le). Times are
measured in milliseconds and memory sizes are represented in Kilobytes.

In the tables we can see that generating a track is a very e�cient task (less than 25 ms. in all cases).
Of course, the total time depends on how long the computation is, but compilation from CSP to Erlang is
one order of magnitud less than track generation in those cases where the threshold is reached. Regarding
column Memory Size we can see that it is as an average lower than 85 KB, memory consumption is small
even for big tracks (big number of nodes, and control and synchronization edges).

To study the trend rate of the track growth, we performed experiments with bigger timeouts and
progressively measured the size of the track until we had enough data to approximate the cost function.
This is shown in Figure 19(a). This �gure shows a very similar growing rate for the three examples

31

Table 1: Benchmark results showing CSP-Tracker performance
Benchmark CSP2Erlang (ms) Generate Track (ms) Total (ms)

ABP.csp [201.87 202.91 203.94] [2005.99 2006.34 2006.70] [2208.16 2209.25 2210.34]
ATM.csp [314.66 315.97 317.28] [314.19 374.21 434.23] [630.17 690.18 750.19]
Buses.csp [125.52 126.30 127.09] [0.88 0.89 0.89] [126.40 127.19 127.97]
CPU.csp [181.06 181.82 182.59] [8.85 8.92 8.98] [189.97 190.74 191.51]
Disk.csp [185.86 186.89 187.92] [23.12 23.21 23.29] [209.07 210.10 211.13]
Loop.csp [126.19 127.09 127.98] [2006.55 2006.90 2007.26] [2133.02 2133.99 2134.96]
Oven.csp [203.84 204.82 205.79] [33.98 37.10 40.22] [238.64 241.92 245.20]
ProdCons.csp [127.77 128.55 129.33] [2006.54 2006.88 2007.22] [2134.59 2135.43 2136.27]
ReadWrite.csp [143.40 144.26 145.12] [2005.10 2005.45 2005.80] [2148.76 2149.71 2150.65]
Traffic.csp [158.56 159.43 160.29] [6.43 6.93 7.42] [165.34 166.35 167.36]

Average [176.87 177.80 178.73] [841.16 847.68 854.20] [1018.41 1025.49 1019.76]

(a) Execution time results

Benchmark #Nodes #Control Edges #Sync. Edges

ABP.csp [1505.61 1506.17 1506.73] [1130.49 1130.91 1131.33] [172.61 172.72 172.84]
ATM.csp [364.09 405.64 447.19] [242.64 269.10 295.57] [58.10 65.57 73.04]
Buses.csp [22.00 22.00 22.00] [15.00 15.00 15.00] [3.00 3.00 3.00]
CPU.csp [87.43 87.76 88.09] [62.02 62.23 62.44] [9.21 9.27 9.33]
Disk.csp [148.50 148.74 148.98] [101.68 101.83 101.98] [21.91 21.95 22.00]
Loop.csp [1537.53 1538.34 1539.14] [924.11 924.59 925.08] [305.94 306.10 306.27]
Oven.csp [157.16 163.37 169.59] [109.56 113.59 117.63] [53.12 55.74 58.35]
ProdCons.csp [1535.43 1536.09 1536.75] [922.38 922.77 923.17] [305.70 305.84 305.98]
ReadWrite.csp [1475.85 1476.56 1477.28] [1030.85 1031.45 1032.06] [221.62 221.89 222.16]
Traffic.csp [61.18 64.37 67.56] [43.01 45.01 47.01] [4.72 5.12 5.52]

Average [689.478 694.90 700.33] [458.17 461.65 465.13] [115.59 116.72 117.85]

(b) Track size results

Benchmark Memory Size (Kbytes)

ABP.csp [172.98 173.05 173.11]
ATM.csp [42.61 47.56 52.51]
Buses.csp [2.43 2.43 2.43]
CPU.csp [9.59 9.63 9.67]
Disk.csp [16.72 16.74 16.77]
Loop.csp [191.42 191.53 191.63]
Oven.csp [20.03 20.86 21.69]
ProdCons.csp [189.44 189.53 189.61]
ReadWrite.csp [171.57 171.66 171.76]
Traffic.csp [6.44 6.79 70.30]

Average [82.32 82.98 83.63]

(c) Memory size results

shown. As in the other experiments, in the three cases the result shown is the average of repeating the
experiment 1000 times.

The function described in the �gure is y = x1/2, which corresponds to a polynomial (sublinear) cost.
Therefore, if we measure the relation between the size of the graph and the runtime (which corresponds
to the track generation speed), we get Figure 19(b). In this case, the function obtained is similar to
y = x−1/2. The interpretation of these �gures is that the generation of the track slows down (less nodes
are generated by unit of time) as the system becomes more complex (i.e., with more processes, more
synchronizations, etc.).

The interested reader has available the web interface (http://kaz.dsic.upv.es/csp_tracker) with
several already prepared examples to test the tool and its performance.

10. CONCLUSIONS

This work introduces the �rst semantics of CSP instrumented for tracking. Tracks contain the com-
plete trace of an execution enhanced with additional information about source positions. Moreover, tracks
are graphs that explicitly show what events happen sequentially, and what events happen in parallel. One
of the results of this article (Theorem 3) allows us to extract a trace from a track. Therefore, our instru-
mented semantics is interesting because it can serve as a reference mark to de�ne and prove properties of
analyses based on both, traces and tracks. The execution of the tracking semantics produces (as a side
e�ect) the track of the computation. This track is generated step by step by the semantics, and thus, it

32

(a) Track size with respect to runtime

(b) Track growth rate with respect to runtime

Figure 19: Trend rate of the track growth

can be also used to produce a track of an in�nite computation until it is stopped. The generated track can
be useful not only for tracking computations but for debugging and program comprehension. Because our
tracks include the speci�cation positions associated with the expressions appearing in them, they could
be used to analyse what parts of the program are actually executed (and in what order) in a particular
computation. Also, this information allows a track viewer tool to highlight the parts of the code that
are executed at each step. On the practical side, we have implemented a tool called CSP-Tracker able
to automatically generate the tracks of a CSP speci�cation. It also includes the �rst dynamic slicer for
CSP. It is based on tracks, and it allows the programmer to select a (set of) point in the speci�cation or
in the track, and automatically extract the part of the speci�cation needed to reach this point.

33

References

[1] Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.): Communicating Sequential Processes. LNCS, vol.
3525. Springer, Heidelberg (2005)

[2] Brassel, B., Hanus, M., Huch, F., Vidal, G.: A Semantics for Tracing Declarative Multi-paradigm
Programs. In: Moggi, E., Warren, D.S. (eds.), 6th ACM SIGPLAN Int'l Conf. on Principles and
Practice of Declarative Programming (PPDP'04), pp. 179�190. ACM, New York, NY, USA (2004)

[3] Broadfoot, G.H., Hopcroft, P.J.: A Paradigm Shift in Software Development. In: Proceedings of
Embedded World Conference, Nuremberg (2012)

[4] Brown, N.C.C. and Smith, M.L.: Representation and Implementation of CSP and VCR Traces. In:
Welch, P.H., Stepney et al. (eds.) The thirty-�rst Communicating Process Architectures Conference
(CPA'08), Concurrent Systems Engineering Series, vol. 66, pp. 329�345. (2008)

[5] Brückner, I., Wehrheim, H.: Slicing an Integrated Formal Method for Veri�cation. In: Lau, K.K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 360�374. Springer, Heidelberg (2005)

[6] Brückner, I., Wehrheim, H.: Slicing CSP-OZ Speci�cations for Veri�cation. Technical report,
SFB/TR 14 AVACS (2005) Accessible via http://www.avacs.org/

[7] Callahan, D. and Sublok, J.: Static Analysis of Low-level Synchronization. In: 1988 ACM SIGPLAN
and SIGOPS workshop on Parallel and Distributed Debugging (PADD'88), pp. 100�111. ACM (1988)

[8] Carter, J.D., Gardner, W.B.: A Formal CSP Framework for Message-Passing HPC Programming. In:
IEEE Canada 19th Annual Canadian Conference on Electrical and Computer Engineering (CCECE
2006), pp. 944-948. (2006)

[9] Carvalho, G., Falcão, D., Mota, A., Sampaio, A.: A Process Algebra Based Strategy for Gener-
ating Test Vectors from SCR Speci�cations. In: 15th Brazilian Symposium on Formal Methods:
Foundations and Applications (SBMF'12). LNCS, vol. 7498, pp. 67�82. Springer, Heidelberg (2012)

[10] Chitil, O.: A Semantics for Tracing. In: Arts, T., Mohnen, M. (eds.) 13th Int'l Workshop on
Implementation of Functional Languages (IFL'01), pp. 249�254. Ericsson CSL (2001)

[11] Chitil, O., Runciman, C., Wallace, M.: Transforming Haskell for Tracing. In: Peña, R., Arts, T.
(eds.) IFL 2002, Revised Selected Papers. LNCS, vol. 2670, pp. 165�181. Springer, Heidelberg (2003)

[12] Chitil, O., Lou, Y.: Structure and Properties of Traces for Functional Programs. Electronic Notes
in Theoretical Computer Science (ENTCS). 176(1), 39�63 (2007)

[13] Diaz, J., Muñoz-Caro, C., Niño, A. A Survey of Parallel Programming Models and Tools in the Multi
and Many-Core Era. IEEE Trans. on Parallel and Distributed Systems. 23(8), 1369�1386 (2012)

[14] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The Program Dependence Graph and its Use in Opti-
mization. ACM Transactions on Programming Languages and Systems. 9(3), 319�349 (1987)

[15] Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 � A Modern Model
Checker for CSP. In: Tools and Algorithms for the Construction and Analysis of Systems. LNCS,
vol.8413, pp. 187�201. Springer, Heidelberg (2014)

[16] Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java Performance Evaluation. In:
Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications (OOPSLA'07), pp. 57�76. ACM, NY, USA (2009)

[17] Goswami, D. and Mall, R.: Fast Slicing of Concurrent Programs. In: Banerjee, P., Prasanna, V.K.
and Sinha, B.P. (eds.) 6th Int'l Conf. on High Performance Computing (HiPC'99). LNCS, vol. 1745,
pp. 38�42. Springer, Heildeberg (1999)

34

[18] Gruian, F., Schoeberl, M.: Hardware support for CSP on a Java chip multiprocessor. Microprocessors
and Microsystems - Embedded Hardware Design. 37(4-5), 472�481 (2013)

[19] Gunter, E.L., Yasmeen, A., Gunter, C.A., Nguyen, A.: Specifying and Analyzing Work�ows for Auto-
mated Identi�cation and Data Capture. In: 42nd Hawaii Int'l Conf. on System Sciences (HICSS'09),
pp. 1�11. IEEE Computer Society (2009)

[20] Hall, R.J.: Automatic Extraction of Executable Program Subsets by Simultaneous Dynamic Program
Slicing. Automated Software Engineering. 2(1), 33�53. Kluwer Academic Publishers (1995)

[21] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle River, NJ, USA
(1985)

[22] Jeong, H.Y., Hong, B.H.: CSP Based E-Learning Model in Cloud Computing Environment. In: T.-h.
Kim et al. (eds.) Computer Applications for Graphics, Grid Computing, and Industrial Environment
(GDC/IESH/CGAG'12), CCIS, vol. 351, pp. 110�117. Springer, Heildeberg (2012)

[23] Jeong, H.Y., Hong, B.H.: CSP Based Relation Structure for Social Network Service. In: T.-h.
Kim et al. (eds.) Computer Applications for Software Engineering, Disaster Recovery, and Business
Continuity (ASEA/DRBC'12), CCIS, vol. 340, pp. 163�170. Springer, Heildeberg (2012)

[24] Kavi, K.M., Sheldon, F.T., Shirazi, B., Hurson, A.R.: Reliability analysis of CSP speci�cations using
Petri nets and Markov processes. In: 28th Annual Hawaii Int'l Conf. on System Sciences (HICSS'95),
vol. 2 (Software Technology), pp. 516�524. IEEE Computer Society, Washington, DC, USA (1995)

[25] Krinke, J.: Context-Sensitive Slicing of Concurrent Programs. ACM SIGSOFT Software Engineering
Notes. 28(5) (2003)

[26] Krinke, J.: Barrier Slicing and Chopping. In: 3rd IEEE Int'l Workshop on Source Code Analysis
and Manipulation (SCAM'03), pp. 81�87. IEEE Computer Society, Washington, DC, USA (2003)

[27] Ladkin, P., Simons, B.: Static Deadlock Analysis for CSP-Type Communications. Responsive Com-
puter Systems (Chapter 5), Kluwer Academic Publishers (1995)

[28] Lecomte, T., Burdy, L., Leuschel, M.: Formally Checking Large Data Sets in the Railways. CoRR
abs/1210.6815 (2012)

[29] Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method. Journal of Software
Tools for Technology Transfer. 10(2), 185�203 (2008)

[30] Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property veri�cation for large scale B
models with ProB. Formal Aspects of Computing. 23(6), 683�709 (2011)

[31] Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: SOC: a Slicer for CSP Speci�cations. In:
Puebla, G., Vidal, G. (eds.) 2009 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
based Program Manipulation (PEPM'09), pp. 165�168. ACM, New York, NY, USA (2009)

[32] Leuschel, M., Llorens, M., Oliver, J., Silva, J., Tamarit, S.: Static Slicing of Explicitly Synchronized
Languages. Information and Computation. 214, 10�46 (2012)

[33] Li, J., He, J., Zhu, H., Pu, G.: Modeling and Verifying Web Services Choreography Using Process
Algebra. In: 31st IEEE Software Engineering Workshop (SEW'07), pp. 256�268. IEEE Computer
Society (2007)

[34] Li, L., Gunter, E.L., Mansky, W.: Symbolic Semantics for CSP. Computer Science Research and
Tech Reports (2013)

[35] Llorens, M., Oliver, J., Silva, J., Tamarit, S.: A Tracking Semantics for CSP. In: 10th Int'l Conf.
on Mathematics of Program Construction (MPC 2010). LNCS, vol. 6120, pp. 248�270. Springer,
Heildeberg (2010)

35

[36] Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In: Mar-
garia, T., Ste�en, B. (eds.), Second Int'l Workshop Tools and Algorithms for Construction and
Analysis of Systems (TACAS'96). LNCS, vol. 1055, pp. 147�166. Springer, Heidelberg (1996)

[37] McInnes, A.I: Modeling and Analysis of TinyOS Sensor Node Firmware: a CSP Approach. ACM
Trans. on Embedded Computing Systems, vol. 12(1), pp. 5:1�5:23. ACM, New York, USA (2011).

[38] Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Berlin (1980)

[39] Milner, R.: Communication and Concurrency. Prentice Hall (1989)

[40] Moran, M., Heather, J., Schneider, S.: Verifying Anonymity in Voting Systems Using CSP. Formal
Aspects of Computing, pp. 1�36. Springer-Verlag (2012)

[41] O'Halloran, C.: Session II-A: Veri�cation and Validation/High-Assurance Systems Acceptance-Based
Assurance. In: 26th IEEE/ACM Int'l Conf. on Automated Software Engineering (ASE'01), pp. 63.
IEEE Computer Society (2001)

[42] Palikareva, H., Ouaknine. J., Roscoe, A.W.: SAT-solving in CSP trace re�nement. Science of Com-
puter Programming. 77, 10�11 (2012)

[43] Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River, NJ,
USA (2005)

[44] Roscoe, A.W.: The pursuit of bu�er tolerance. Unpublished manuscript (2005) Obtainable from
web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publications/106.pdf

[45] Roscoe, A.W.: Con�uence thanks to extensional determinism. In: Proceedings of Bertinoro meeting
on Concurrency, BRICS 2005. Revised version, publication reference ENTCS 1336 (2006)

[46] Roscoe, A.W.: Understanding Concurrent Systems. Springer-Verlag, London (2010)

[47] Saifhashemi, A., Beerel, P. A.: High Level Modeling of Channel-Based Asynchronous Circuits Using
Verilog. In: The 28th Communicating Process Architectures Conf. (CPA'05), pp. 275�288. IOS Press
(2005)

[48] Silva, J.: A vocabulary of program slicing-based techniques. ACM Computing Surveys. 44(3)-num.12
(2012)

[49] Smith, M.L. Focusing on traces to link VCR and CSP. In: East, J.M., Welch, P., Duce, D., and
Green, M. (eds.), The 27th Communicating Process Architectures Conference (CPA'04), pp. 353�
360. IOS Press (2004)

[50] Souilah, I., Francalanza, A., Sassone, V.: A Formal Model of Provenance in Distributed Systems. In:
First Works. on Theory and Practice of Provenance (TAPP'09), pp. 1�11. USENIX Assoc. (2009)

[51] Taylor R.N., Levine D.L., Kelly C.D.: Structural testing of concurrent programs. IEEE Transactions
on Software Engineering. 18(3), 206�215 (1992)

[52] The Go Project. Language Design FAQ: Why build concurrency on the ideas of CSP? https:

//golang.org/doc/faq#csp. Retrieved on March 2016.

[53] Tip, F.: A survey of program slicing techniques. Journal of Programming Languages. 3, 121�189
(1995)

[54] Wang, X.: Maximal Con�uent Processes. In: Application and Theory of Petri Nets. LNCS vol. 7347,
pp. 188�207. Springer, Heidelberg (2012)

[55] Weiser, M.D.: Program Slicing. IEEE Transactions on Software Engineering. 10(4), 352�357 (1984)

[56] Zhao, X., Jamali, N.: Supporting Deadline Constrained Distributed Computations on Grids. In:
12th IEEE/ACM Int'l Conf. on Grid Computing (GRID'11), pp. 165�172. IEEE Computer Society
(2011)

36

Note for the reviewers: The following appendix has been only included to ease the reviewing process,
and it will not be part of the �nal paper. In case of acceptance, this appendix will be published as a
technical report so that the interested reader will have public access to it.

Appendix A. Proofs of Technical Results. CORRECTNESS.

In this section we prove the correctness of the tracking semantics by showing that (i) the computations
performed by the tracking semantics are equivalent to the computations performed by the standard
semantics; and (ii) the graph produced by the tracking semantics is the track of the derivation. We also
prove that the trace of a derivation can be automatically extracted from the track of this derivation.

The �rst theorem shows that the computations performed with the tracking semantics are all and
only the computations performed with the standard semantics. The only di�erence between them from
an operational point of view is that the tracking semantics needs to perform one step when a STOP is
evaluated (to add its speci�cation position to the track) and then stops, while the standard semantics
stops without performing any additional step.

We need �rst to de�ne the concept of derivation strategy that is used to assure that the derivations
with both semantics make the same decisions during a computation.

De�nition 6. (Derivation strategy) A derivation strategy Ψ is a deterministic function that given a
process to be evaluated (a control), and given an operational semantics O, it returns one rule in O to
apply. We denote with DΨ a derivation that uses the derivation strategy Ψ to deterministically select an
appropriate rule in each step of the derivation.

Note that both the standard semantics (see Figure 8) and the tracking semantics (see Figure 13 and
Figure 14) use the same control in all rules (except for STOP). Therefore, given a process P both semantics
using the same derivation strategy will produce derivations with exactly the same number of rewriting
steps (except for STOP), and the same sequences of controls.

We de�ne now the conservativeness theorem.

Theorem 1 (Conservativeness). Let S be a CSP speci�cation, P a process in S, and DΨ and D′Ψ the
derivations of P performed using the same derivation strategy Ψ with the standard semantics of CSP and
with the tracking semantics, respectively. Then, the sequence of rules applied in DΨ and D′Ψ is exactly the
same except that D′Ψ performs one rewriting step more than DΨ for each (sub)computation that �nishes
with STOP.

Proof. Firstly, rule (STOP) of the tracking semantics is the only rule that is not present in the standard
semantics. When a STOP is reached in a derivation, the standard semantics stops the (sub)computation
because no rule is applicable. In the tracking semantics, when a STOP is reached in a derivation, the only
rule applicable is (STOP) which performs τ and puts ⊥ in the control:

(STOPα,G,m)
(τ,∅)−−−→ (⊥,G[m 7→

n
α], n)

Then, the (sub)computation is stopped because no rule is applicable for ⊥. Therefore, when the control
in the derivation is STOP, the tracking semantics performs one additional rewriting step with rule (STOP).

The claim follows from the fact that both semantics have exactly the same number of rules except for
rule (STOP), and these rules have the same control in all the states of the rules (thus the tracking semantics
is a conservative extension of the standard semantics). Therefore, all derivations in both semantics have
exactly the same number of steps and they are composed of the same sequences of rewriting steps except
for (sub)derivations �nishing with STOP where the tracking semantics performs one rewriting step more
(applying rule (STOP)).

The second theorem states the correctness of the tracking semantics by ensuring that the graph
produced is the track of the computation. To prove this theorem, the following lemmas are used.

37

Lemma 1. Let S be a CSP speci�cation, D a complete derivation of S performed with the tracking
semantics, and G the graph produced by D. Then, for each pre�xing (co → P) in the control of the left
state of a rewriting step in D, we have that Pos(co) and Pos(→) are nodes of G and Pos(→) is the
successor of Pos(co).

Proof. If a pre�xing co→ P is in the control of the left state of a rewriting step, following the tracking
semantics, only the rule (Pre�xing) can be applied. By de�nition of this rule (see Figure 14), m is the
reference of the current node in G. Rule (Pre�xing) adds two new nodes to the graph: n and p. The
node m is labeled with the speci�cation position of complex object co and has successor n. The node
n is labeled with the speci�cation position of operator → and has parent m and successor p (a fresh
reference). Therefore, we have that Pos(co) and Pos(→) are nodes of G and Pos(→) is the successor of
Pos(co).

Lemma 2. Let S be a CSP speci�cation and D a derivation of S performed with the tracking semantics.

Then, it holds that last ′(R) = last ′(R′) for each rewriting step R
Θ
 R′ in D with R′ 6= Ω and R′ 6= ⊥.

Proof. We prove this lemma by induction on the length of Θ. In the base case, Θ is empty, and thus
only the rules (Process Call), (Pre�xing), (Internal Choice 1 and 2), (Conditional Choice 1 and 2) and (Synchronized

Parallelism 4) can be applied. In all cases, the lemma holds trivially by the de�nition of last ′. We assume as
the induction hypothesis that the lemma holds for a non-empty Θi with i > 0 rewriting steps; and prove

that the lemma also holds for a Θi+1 with i + 1 rewriting steps. We can assume that Θi+1 = R
Θ′

 R′,
thus, we have to prove that the lemma holds for any possible R and R′. The possible cases are the
following:

(External Choice 1 and 2) This case is trivial because the speci�cation positions of R and R′ are the same.
Hence, last ′(R) = last ′(R′).

(External Choice 3 and 4) Both cases are similar. Thus, we only discuss (External Choice 3). In the case of
(External Choice 3), last ′(P1 � P2) = last ′(P1). This rule puts P ′ in the control, and we know by the
induction hypothesis that last ′(P1) = last ′(P ′) and, thus, the lemma holds.

(Sequential Composition 1) This case is analogous to (External Choice 1 and 2).

(Sequential Composition 2) last ′(P ;Q) = last ′(Q). Therefore the lemma holds trivially by the de�nition of
last ′.

(Synchronized Parallelism 1, 2 and 3) It is the same case as (External Choice 1 and 2).

(Hiding 1 and 2) This case is similar to (External Choice 1 and 2). Note that the loss of the speci�cation
position (it is • in R′) is only used as a �ag to add nodes to the graph; but it does not have any
in�uence on the derivation.

(Renaming 1) It is completely analogous to the previous case.

Lemma 3. Let S be a CSP speci�cation, D a complete derivation of S performed with the tracking
semantics, and G the graph produced by D. Then, for each sequential composition (P ;Q) in the control
of the left state of a rewriting step in D, we have that last′(P) and Pos(;) are nodes of G and Pos(;) is
the successor of all the elements of the set last′(P) whenever P has successfully �nished.

Proof. If a sequential composition (P ;Q) is in the left state of the control of a rewriting step, following the
tracking semantics, only the rules (Sequential Composition 1) and (Sequential Composition 2) can be applied.
(Sequential Composition 1) is only used to evolve process P until it is �nished. The application of this rule
is only possible with any event except X, remaining the sequential composition operator in the control.
(Sequential Composition 2) can only be used when X happens and thus Ω is left in the control.

Therefore, when P has successfully �nished evolving to Ω and with n as the new reference, (Sequential
Composition 2) is applied. This rule adds to the graph a new node n labeled with the speci�cation position
of ; that has successor p (a fresh reference). Therefore, we have that Pos(;) is a node of G and Pos(;) is

38

the successor of the node m. Then, we have to prove that last′(P) is a set of nodes of the graph added
before P successfully �nished with reference n and its successor is p.

We prove this claim by induction on the length of the derivation P
Θ0 . . .

Θn Ω, n ≥ 0. The base case
happens when the last rewriting step of the derivation is done leaving Ω in the control.

Only these rules can be used:

(SKIP) In this case, m 7→
n
SKIP is added to G and n is the new reference. Because last ′(SKIP) = {SKIP},

therefore, the claim follows.

(External Choice 3) Here, last ′(P1 � P2) = last ′(P1). This rule puts P ′ in the control which is Ω by the
conditions of the lemma. Therefore, there must be at least one SKIP, which is last ′(P), at the top
of Θn because we know that the derivation successfully �nishes and thus Θn is �nite.

(External Choice 4) It is analogous to the previous case, but here last ′(P1 � P2) = last ′(P2).

(Synchronized Parallelism 4) last ′(P1 || P2) = last ′(P1) ∪ last ′(P2). The parents of the last nodes of P1 and
P2 are connected to the new reference r. Therefore the claim follows.

(Hiding 3) In this case, because last ′(P\B) = last ′(P) and P is put in the control of the left state in the
rewriting step of the precondition which must be reduced to Ω performing X, the claim follows by
the recursive application of one of these six rules.

(Renaming 2) It is completely analogous to the previous case.

The induction hypothesis states that for all rewriting step R
Θ
 R′, R′ 6= Ω in the derivation

Q
Θ0 . . .

Θn Ω, n ≥ 0 where P
Θ′

 Q ∈ D, last ′(P) is put in the control of a further rewriting step of
the derivation together with its reference.

Then, we prove that this also holds for the previous rewriting step R0
Θ′′

 R. Only the rules that do
not perform X could be applied (because X puts Ω in the control of the right state and now, we are not
considering the �nal rewriting step).

(STOP) This rule could not be applied because it puts ⊥ in the control. There is no rule for ⊥ thus, if
applied, P could not successfully �nished.

(Process Call), (Pre�xing), (Internal Choice 1 and 2) and (Conditional Choice 1 and 2) In these rules R is put in the
control of the �nal state together with its reference. We know by Lemma 2 that last ′(R0) = last ′(R)
thus, the claim follows by the induction hypothesis.

(External Choice 1 and 2) Both rules keep the process in the control and the same references, thus the claim
follows by the induction hypothesis.

(External Choice 3 and 4) In this case, last ′(P1 � P2) = last ′(P1). This rule puts P ′ in the control, and we
know by Lemma 2 that last ′(P1) = last ′(P ′), thus the lemma holds by the induction hypothesis.

(Sequential Composition 1 and 2) We know that P successfully �nished, thus (Sequential Composition 1) is
applied a number of times before (Sequential Composition 2), that puts Q in the control. We know
that last ′(P ;Q) = last ′(Q) thus, the claim holds by the induction hypothesis.

(Synchronized Parallelism 4) last ′(P1||P2) = last ′(P1) ∪ last ′(P2). The parents of the last nodes of P1 and
P2 are connected to the new reference r. Therefore the claim follows.

(Hiding 3) In this case, because last ′(P\B) = last ′(P) and P is put in the control of the condition state
which must be reduced to Ω performing X, the claim follows by the recursive application of one of
these rules.

(Renaming 2) It is completely analogous to the previous case.

In the following lemma, for the sake of clarity, we use an extended notion of rewriting step where each
state is represented with a pair that includes the process to be evaluated and the reference to the current

node in the graph. Extended rewriting steps are represented with (P,m)
Θ
 (P ′,m′).

39

Lemma 4. Let S be a CSP speci�cation, D a complete derivation of S performed with the tracking
semantics, and G the graph produced by D. Then, for each extended rewriting step in D of the form

(P,m)
Θ
 (P ′,m′) which is not associated with (Synchronized Parallelism 4) we have that a node for first(P)

is added to G with reference m.

Proof. We prove the lemma for each rule.

(SKIP), (STOP), (Pre�xing), (Process Call), (Parameterized Process Call), (Internal Choice 1 and 2) and (Conditional

Choice 1 and 2) A node for first(P) (in these rules, α) is added to G with reference m.

(External Choice 1, 2, 3 and 4) and (Synchronized Parallelism 1, 2 and 3) In these rules, the node associated with
first(P) (α here) could be included or not, depending on whether it has been included by another
rewriting step. If it is already included, it is due to the speci�cation position of the previous
expression in the control is the same as P , and its associated rewriting step or another one has
added it. Otherwise, function FirstEval is called and it includes the node for P with reference m,
since n is equal to •.

(Hiding 1, 2 and 3) and (Renaming 1 and 2) The proof for these rules is similar to the one for rules of external
choice and synchronized parallelism, but here function FirstEvalHR(G, (α, \B),m) is called and it
adds to G the node for P with reference m because the label α is distinct from •.

(Sequential Composition 1 and 2) In both rules, the node for first(P) is included by a rewriting step in Θ.
All possible rewriting steps must apply one of these previous rules, and thus, the claim recursively
follows.

Lemma 5. Let S be a CSP speci�cation, D a complete derivation of S performed with the tracking

semantics, and G the graph produced by D. Then, for each rewriting step in D of the form Ri
Θi Ri+1

we have that:

1. Ec contains an arc Pos(Ri) 7→ Pos(first(R′)) where R′
Θ′

 R′′ ∈ Θi and Ri ⇒ first(R′), and

2. if Ri ⇒ first(Ri+1) then Ec contains an arc Pos(Ri) 7→ Pos(first(Ri+1)).

Proof. We prove each claim separately:

1. Firstly, we know that Θ cannot be empty. Therefore, rules (SKIP), (STOP), (Process Call), (Pre�xing),
(Internal Choice 1 and 2), (Conditional Choice 1 and 2) and (Synchronized Parallelism 4) could not be applied.
Moreover, (Sequential Composition) could never be applied because if Ri is of the form P ;Q, then
the unique possible case is that Pos(P ;Q)⇒ Pos(Q) (by De�nition 2). And Q can only be in the
control of the right state; hence, Q cannot appear in Θ. Then the only applicable rules are (External

Choice) or (Synchronized Parallelism).

Let us consider extended rewriting steps (R′,m′)
Θ′

 (R′′,m′′) ∈ Θi. First, we have to prove that a
node with the speci�cation position of Ri is included in the graph and the reference of its successor
node is put in each m′ of Θi. In rules (External Choice) and (Synchronized Parallelism) it is done using
function FirstEval. The references associated with the selected branches of the operator must be
•, i.e., the branches have not been developed until now in the derivation. Otherwise, by De�nition
2, there is no possible control �ow between Ri and R

′. In this case, if the corresponding reference
is •, then FirstEval adds to G the speci�cation position of Ri and the reference of the successor
node is put in all possible m′.

2. In this case, Ri cannot be neither a SKIP nor a STOP, because Pos(Ri) 6⇒ Pos(Ri+1) (Ω or ⊥,
respectively) by De�nition 2. Process Ri cannot be a parallelism because Pos(Ri) 6⇒ Pos(Ri+1)
(itself or Ω).

If Ri is an external choice we have two possibilities. If we apply (External Choice 1 or 2) then Ri and
Ri+1 have the same speci�cation position and thus, by De�nition 2, no control �ow is possible. If
we apply (External Choice 3 or 4) the control cannot pass from Ri to Ri+1, because Ri+1 is di�erent to
first(Ri.1) or first(Ri.2). This is due to the fact that the nodes associated with these positions have

40

necessarily been added to G by the rewriting step Θi or by a previous rewriting step on derivation
D. Therefore, process Ri must be a process call, a pre�xing, an internal choice, a conditional choice
or a sequential composition. If it is a sequential composition, rule (Sequential Composition 1) cannot
be applied because in this case Ri and Ri+1 have the same speci�cation position. Therefore, only
(Sequential Composition 2) can be applied.

We now prove that the application of any of remaining rules (Process Call), (Pre�xing), (Internal Choice
1 and 2), (Conditional Choice 1 and 2), and (Sequential Composition 2) satis�es the property.

Let (Ri, ni)
Θi (Ri+1, ni+1) be an extended rewriting step. In all the rules, a node labeled α is added

to G (except in (Pre�xing) where is β) and the position of its successor is placed as ni+1. Furthermore,
we know by Lemma 4 that a node for Pos(first(Ri+1)) is included in the next rewriting step in

the derivation (Ri+1, ni+1)
Θi+1
 (Ri+2, ni+2) having associated position ni+1. Note here again that

Lemma 4 excludes rule (Synchronized Parallelism 4) but in this case both branches must be already in
G by a previous application of (Synchronized Parallelism 1, 2 or 3).

Lemma 6. Let S be a CSP speci�cation, D a derivation of S performed with the tracking semantics,
and G the graph produced by D. Then, there exists a synchronization arc (ae a′) in G for each synchro-
nization in D where a and a′ are the nodes of the synchronized events.

Proof. We prove this lemma by induction on the length of the derivation D = R0
Θ0 R1

Θ1 . . .
Θn Rn+1.

We can assume that the derivation starts with the initial con�guration (MAIN(MAIN,0), ∅, 0), thus in the base
case, the only rule applicable is (Process Call) or (Parameterized Process Call) and hence no synchronization
is possible. We assume as the induction hypothesis that there exists a synchronization arc (ae a′) ∈ G
for each synchronization in R0

Θ0 . . .
Θi−1
 Ri with 0 < i ≤ n and prove that the lemma also holds for the

next rewriting step Ri
Θi Ri+1.

Firstly, only (Synchronized Parallelism 3) allows the synchronization of events. Therefore, only if Ri is a
synchronizing parallelism, or if a (Synchronized Parallelism 3) is applied in Θi, (a e a′) ∈ G. Then, let us
consider the case where

Θi is the application of rule (Synchronized Parallelism 3). This proof is also valid in
the case where (Synchronized Parallelism 3) is applied in Θi. We have the following rewriting step:

RewritingStep1 RewritingStep2

(P1 ‖
X

(α,n1,n2)P2,G,m)
(a,∆1∪∆2)−−−−−−−→ (P ′1 ‖

X
(α,n′′1 ,n

′′
2)P

′
2,G′′,m)

with a ∈ X

and where G′′ = G′′1 ∪ G′′2 ∪ {s1
a
e s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2}

∧ RewritingStep1 = (P1,G′1, n′1)
(a,∆1)−−−−→ (P ′1,G′′1 , n′′1)

∧ (G′1, n′1) = FirstEval(G, n1,m, (α, ‖
X

))

∧ RewritingStep2 = (P2,G′2, n′2)
(a,∆2)−−−−→ (P ′2,G′′2 , n′′2)

∧ (G′2, n′2) = FirstEval(G, n2,m, (α, ‖
X

))

Because (Pre�xing) is the only rule that performs an event a without further conditions, we know that P1

must be a pre�xing operator or a process containing a pre�xing operator whose pre�x is a, i.e., we know
that the rule applied in RewritingStep1 is �red with an event a; and we know that all the rules of the
semantics except (Pre�xing) need to �re another rule with an event a as a condition. Therefore, at the
top of the condition rules, there must be a (Pre�xing). The same happens with P2. Hence, two pre�xing
rules (one for P1 and one for P2) have been �red as a condition of this rule.

In addition, the new graph G′′ contains the synchronization set {s1
a
e s2 | s1 ∈ ∆1 ∧ s2 ∈ ∆2}

where ∆1 and ∆2 are the sets of references to the events that must synchronize in RewritingStep1 and
RewritingStep2, respectively.

41

Hence, we have to prove that all and only the references to event a (that must synchronize in
RewritingStep1) are in ∆1. We prove this by showing that all references to the synchronized events
are propagated down by all rules from the (Pre�xing) in the top to the (Synchronized Parallelism 3). The
proof is analogous for RewritingStep2.

The possible rules applied in (P1,G′1, n′)
(a,∆1)−−−−→ (P ′1,G′′1 , n′′1) are:

(Pre�xing) In this case, the set ∆1 only contains the reference to event a.

(Synchronized Parallelism 3) In this case, the sets ∆1 and ∆2 are joined and propagated down.

(External Choice 3 and 4), (Sequential Composition 1), (Synchronized Parallelism 1 and 2), (Hiding 1 and 2), (Renaming

1) In these cases, the set ∆ is propagated down.

Therefore, all the synchronized events are in the set ∆1 and the claim follows.

Theorem 2 (Semantics correctness). Let S be a CSP speci�cation, D a derivation of S performed
with the tracking semantics, and G the graph produced by D. Then, G is the track associated with D.

Proof. In order to prove that G = (N,Ec, Es) is a track, we need to prove that it satis�es the properties

of De�nition 5. For each R
Θ
 R′ ∈ D and for all rewriting steps in Θ we have

1. Ec contains a control-�ow arc a 7→ a′ i� a V a′ with respect to D. This is ensured by the three
clauses of De�nition 4:

• by Lemma 1, if R is a pre�xing (a→ P), then Ec contains an arc Pos(a) 7→ Pos(→);

• by Lemma 3, if R is a sequential composition (Q;P), then Ec contains an arc ∀p ∈ last ′(Q),
Pos(p) 7→ Pos(;);

• by Lemma 5, if R ⇒ first(R′′) where R′′
Θ′

 R′′′ ∈ Θ, then Ec contains an arc
Pos(R) 7→ Pos(first(R′′)); and if R ⇒ first(R′) then Ec contains an arc
Pos(R) 7→ Pos(first(R′)); and

2. by Lemma 6, Es contains a synchronization arc a e a′ for each synchronization occurring in the
rewriting step where a and a′ are the synchronized events.

Moreover, we know that the only nodes in N are the nodes induced by Ec and Es because all the
nodes inserted in G are inserted by connecting the new node to the last inserted node (i.e., if the current
reference is m and the new fresh reference is n, then the new node is always inserted as G[m 7→

n
α]).

Hence, all nodes are related by control or synchronization arcs and thus the claim holds.

Our last result states that the trace of a derivation can be extracted from its associated track. To
prove it, we de�ne �rst an order on the event nodes of a track that corresponds to the order in which
they were generated by the tracking semantics.

De�nition 7. (Event node order) Given a track G = (N,Ec, Es) and nodesm,n ∈ N such that l(m), l(n) ∈
Σ, m is smaller than n, represented by m� n i� m′ < n′ where (m,m′), (n, n′) ∈ Ec.

Intuitively, an event node m is smaller than an event node n if and only if the successor of m has a
reference smaller than the reference of the successor of n. The following lemma is also necessary to prove
that the order in which events occur in a derivation is directly related with the order of De�nition 7. In
the following we consider an augmented version of derivation D which includes the event �red by the

application of the rule. So, we can represent derivation D as P1
Θ1
e1
. . .

Θj

ej
Pj+1.

Lemma 7. Given a derivation D = P1
Θ1
e1
. . .

Θj

ej

Pj+1 of the tracking semantics, and the track G =

(N,Ec, Es) produced by D, then ∀ei ∈ Σ, 1 ≤ i ≤ j,
• ∃n ∈ N such that l(n) = ei, and

• ∃(n, n′) ∈ Ec such that n′ = n+ 1.

42

Proof. In order to prove this lemma, we prove �rst that any rewriting step Pi
Θi
ei
Pi+1 in D, 1 ≤ i ≤ j,

with ei ∈ Σ is a pre�xing or it performs a pre�xing in Θi. This can be easily proved by showing that
the rewriting step is either a pre�xing (thus Θi = ∅), or Θi has a pre�xing as the top rewriting step. We
prove it by induction on the length of Θi.
In the base case, Θi = ∅. This case happens when the rule applied is a pre�xing, thus the claim follows
trivially. We assume as the induction hypothesis that the claim follows for a Θi with a depth of n. And
we prove the claim for a depth of n+ 1 by case analysis. The only possible rules applied in the rewriting
step at depth n of Θi are:

(External Choice 3 and 4), (Synchronized Parallelism 1 and 2), (Sequential Composition 1) and (Hiding 2) In these
rules the nth rewriting step of Θi contains a single rewriting step whose event is also ei. Moreover,
this rewriting step (the nth+1 rewriting step of Θi) must be a pre�xing, because it is the only
applicable rule with an event ei and with a Θ = ∅. Hence, the claim follows.

(Synchronized Parallelism 3) In this case, the nth+1 rewriting step of Θi is formed by two di�erent rewrit-
ing steps, and both of them must be a pre�xing whose associated event is being synchronized.
Otherwise, the depth of Θi would be greater than n+1 and, thus, the claim also follows in this case.

Now, both conditions hold trivially from the fact that the pre�xing rule adds n to N with label
l(n) = ei = α, and it also adds the pre�xing operator (→) to N as the successor of n.

Therefore, Lemma 7 ensures that the order of De�nition 7 corresponds to the order in which the
semantics generates the nodes, because each event is added to the graph together with a new fresh
reference for the pre�xing operator. Since references are generated incrementally, the occurrence of an
event e will generate a reference which is less than the reference generated with a posterior event e′. With
this order, we can easily de�ne a transformation to extract a trace from a track based on the following
proposition:

Proposition 1. Given a track G = (N,Ec, Es), the trace induced by G is the sequence of events T =
e1, . . . , em that labels the associated sequence of nodes T ′ = n1, . . . , nm (i.e., ∀ei ∈ T, ni ∈ T ′, 1 ≤ i ≤
m, l(ni) = ei and ei ∈ Σ) where:

1. ∀ni ∈ T ′, 0 < i < m, ni � ni+1.

2. ∀n ∈ N such that l(n) ∈ Σ, if (6 ∃n′ ∈ N | (n, n′) ∈ Es), then n ∈ T ′.
3. ∀n ∈ N such that l(n) ∈ Σ, if (∀n′ ∈ N | (n, n′) ∈ Es ∧ n′ � n), then n ∈ T ′.

Proof. We consider a derivation D = P1
Θ1
e′1

. . .
Θj

e′k

Pj+1. Note that e′1, . . . , e
′
k 6= e1, . . . , em because the

former contains events in {τ,X}. Then, we have that the trace is the subsequence of e′1, . . . , e′k that only
includes events of Σ. We will represent this subsequence with E = e′j , . . . , e

′
j′ with 0 ≤ j ≤ j′ ≤ k. Then,

we have to show that T = E . The proposition follows trivially from the fact that the sequence T follows
the order of nodes imposed by De�nition 7, and this order is the same order of the events that form the
sequence E as stated by Lemma 7.

Theorem 3 (Track correctness). Let S be a CSP speci�cation, D a derivation of S produced by the
sequence of events (i.e., the trace) T = e1, . . . , em, and G the track associated with D. Then, there exists
a function f that extracts the trace T from the track G, i.e., f(G) = T .

Proof. Proposition 1 allows to trivially de�ne a function f such that f(G) = T being G the track of a
derivation D, and being T the trace of the same derivation. For a track G = (N,Ec, Es) we have that

f((n : ns), Ec, Es) =

{
{f((ns), Ec, Es)} if (∃n′ ∈ N |(n, n′) ∈ Es ∧ n� n′)
(l(n) : f((ns), Ec, Es)) otherwise

where list (n : ns) corresponds to the set {n ∈ N | l(n) ∈ Σ} ordered with respect to order� of De�nition
7.

43

