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Abstract

Program slicing is a technique for program analysis and transformation with
many di↵erent applications such as program debugging, program specialisation,
and parallelisation. The system dependence graph (SDG), the most commonly
used data structure for program slicing, has been extended in several ways to
manage exception handling constructs. In this paper, however, we show that
the presence of exception-handling constructs can make even the extended SDG
produce incorrect and incomplete slices. To solve this situation, we survey the
current state of the art and merge and extend di↵erent approaches (that treat
throws, try-catch, etc.) to produce a version of the SDG that is able to manage
all of them, that always produces complete slices, and that increases its precision
keeping the same time complexity. An interesting side result is the discovering
of a new kind of control dependence: conditional control dependence, which is
needed to properly represent catch statements.

Keywords: program slicing, exception handling, system dependence graph,
conditional control dependence

1. Introduction

Program slicing [15] is a technique for program analysis and transformation
whose main objective is to extract a slice from a program: the set of state-
ments that a↵ect a specific set of variables v at a given program statement s,
called a slicing criterion (denoted as hs, vi). Program slicing has many practi-
cal applications such as debugging [3], program specialization [11], and software
maintenance [6], among others. Modern program slicers include mechanisms
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1 public void f() {

2 try {

3 g();

4 }catch (Exception e) {}

5 g();

6 }

7

8 public void g() {

9 throw new Exception();

10 }

(a) Original program

public void f() {

try {

g();

}

g();

}

public void g() {

throw new Exception();

}

(b) Allen and Horwitz’s slice

1public void f() {

2try {

3g();

4}catch (Exception e) {}

5g();

6}

7

8public void g() {

9throw new Exception();

10}

(c) The correct slice

Figure 1: Java program that throws two exceptions but captures only the first one.

to handle specific features of programming languages such as non-terminating
programs [13], arbitrary control flow [2], or exception handling [1]. Tradition-
ally, there are two main indicators used to measure the quality of a program
slice: completeness and correctness. A program slice is considered to be com-
plete when it contains all the statements that influence the value of the slicing
criterion. A program slice is considered to be correct when all the statements
included in the slice do influence the value of the slicing criterion.

In this work we focus on program slicing in presence of exception handling
constructs. In particular, we show that the current approaches to account for
exception handling can produce incomplete slices, and we propose a solution
to this problem. The most extended approach in the area of exception-aware
program slicing (and the basis used in most publications) is the one proposed by
Allen and Horwitz [1], which in turn extended Sinha’s proposal [14]. It supports
throw, try, catch, and finally instructions. Nevertheless, despite being valid for
some combinations of the aforementioned instructions, it does not completely
support all possible combinations, resulting in incomplete slices, as can be seen
in Example 1.

Example 1 (Incompleteness when slicing try-catch constructs in [1]).
Consider the Java program shown in Figure 1a, in which method f is the entry-
point. Two exceptions are thrown, one per call to g, but only the first one is
caught. If we pick line 9 as the slicing criterion (h9, ;i), then the slice should
consist only of the statements that are needed to execute line 9 twice (i.e., the
same number of times as in the original program). The slice produced by Allen
and Horwitz can be seen in Figure 1b. It removes the whole catch block, and
thus it is incomplete, as line 9 will only execute once, and then the program will
exit.

The source of this error is that in Allen and Horwitz’s approach catch blocks
are included only in a specific case: the slicing criterion is or requires a variable
defined inside the catch block. This only happens when a statement of the catch
block is included in the slice and, consequently, control dependences force the
catch itself to be included too. Unfortunately, this is insu�cient, since it does
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not capture the complex control dependences generated by catch blocks. This
counterexample shows that even empty catch blocks may be necessary in the
slice.

1.1. Contributions

In this paper we define an integral solution that merges together the current
program slicing extensions used to slice programs with exception-handling. This
is an important milestone in the area because there is not any survey that
relates the work done so far (some approaches focused on throw statements,
others on the try-catch, etc.). Therefore, our first contribution is an integrated
explanation of the di↵erent graphs and approaches proposed so far. We describe
how these graphs are constructed incorporating di↵erent ideas and approaches
all together. Moreover, as a second contribution, we present a counterexample
that shows di↵erent limitations of the current solution. In particular, we show
that none of the previous approaches can properly treat catch statements, which
sometimes leads to incorrect or incomplete results.

Our third and most important contribution is the definition of a new tech-
nique to solve the unveiled incompleteness problem. Our proposal includes in its
basis the ideas presented in previous models, and augments them with the defi-
nition of a new ternary dependence called conditional control dependence, mod-
elled with two new kind of arcs in the SDG. This new kind of control dependence
arises when try-catch structures are used, and accurately model the control de-
pendence relationships between catch statements and statements executed inside
the try block and after the try-catch structure. Our solution has been proven
complete for all possible try-catch scenarios resulting, to the best of our knowl-
edge, into the most accurate static analysis model of exception-handling aware
program slicing. Finally, our fourth contribution is the implementation of the
first slicer able to properly treat throws, try-catch, and exception sources (both
unconditional and conditional). This implementation has been released as free,
and has been empirically evaluated with a series of real examples that are also
described.

The rest of the paper is structured as follows: Section 2 recalls the back-
ground about program slicing with exception handling and introduces some
preliminary definitions. Section 3 analyses the cases in which a catch statement
could be included in a slice and defines conditional control dependence on that
basis. Section 4 describes how to represent programs with exceptions with arcs
representing the new dependence. Section 5 shows an algorithm to slice the new
program representation. Section 6 describes the implementation and empirical
evaluation. Section 8 presents the related work, and Section 9 summarizes our
results.

2. Background

To keep the paper self-contained, we first define the base concepts of slicing
criterion and static backward slice.
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Definition 1 (Slicing criterion). Given a program P , a slicing criterion for
P is a tuple hs, vi where s 2 P is a single statement and v is a subset of P ’s
variables.

Prior to the definition of static backward slice, we need to define what a
sequence of values of a slicing criterion is:

Definition 2 (Sequence of values). Let P be a program and hs, vi be a slic-
ing criterion for P . seq(P, s, v) is the sequence of values to which each variable
in v is evaluated each time the execution of P passes through s.

Note that in Definition 1 the variables in v may not appear in s, or v may be
empty. In the first case, the value of the variable is kept in the sequence, even
though it is not used in the statement. In the latter, no variable is evaluated,
so the sequence of values becomes a sequence of empty values, repeated the
number of times that program P executes s.

Definition 3 (Static backward slice). Given a program P and a slicing cri-
terion SC = hs, vi, S is a static backward slice of P with respect to SC if S
fulfils the following conditions:

• S is an executable program.

• S ✓ P : S is the result of removing zero or more statements from P .

• For any possible input, seq(P, s, v) is a prefix of seq(S, s, v).

2.1. Program slicing based on dependence graphs

The computation of a slice from a given program has been traditionally
performed as a graph-reachability problem using the system dependence graph
(SDG). The SDG is constructed starting from the control flow graph (CFG).
However, the presence of unconditional jumps in exception handling scenarios
(throw statements) makes the traditional control flow graph (CFG) unsuitable
to represent the flow of the program. For this reason, Ball and Horwitz [2]
proposed the augmented control flow graph (ACFG), which is able to manage
the presence of unconditional jumps. Then, Kumar and Horwitz [10] improved
the definition of control dependence to increase precision, defining the pseudo-
predicate dependence graph (PPDG). In [10] the SDG is built by using the ACFG
as the starting point to construct a PPDG, and finally a SDG:

ACFG ! PPDG ! SDG

We describe the SDG generation by showing how each one of these graphs
is built.
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2.2. Augmented control flow graph (ACFG)
The CFG contains a node for each statement of the program and two special

nodes Entry and Exit that respectively represent the start and end of the com-
putation. An arc (s1 ! s2) connects two statements s1 and s2 if there exists
an execution in which s2 is immediately executed after s1.

The CFG is often used to define control dependence, whose standard defini-
tion is the following:

Definition 4 (Control dependence). Let G be a CFG. Let n and m be nodes
in G. A node m post-dominates a node n in G if every directed path from n to
the Exit node passes through m. Node m is control dependent on node n if and
only if m post-dominates one but not all of n’s CFG successors.

However, Horwitz et al. [2] noted that the above definition is not correct in
presence of unconditional jumps. To solve the problem, they first identified the
class of unconditional jump statements (return, break, throw...) and called them
pseudo-predicates. A pseudo-predicate is a predicate where the true branch is
the destination of the unconditional jump and the false branch (called non-
executable branch) points to the statement that would execute if the statement
failed to jump. Then, they redefined the CFG as a new graph, the augmented
control flow graph (ACFG), that takes into account the pseudo-predicates.

Definition 5 (Augmented control flow graph (ACFG)). Given a proce-
dure P , which contains a list of statements s = {s1, . . . , sn}, the augmented con-
trol flow graph of P is a directed graph G = (N,A), where N = s [ {Enter ,Exit}
and A is a set of arcs of the form (a, b) | a, b 2 N . Nodes may be either
statements, predicates, pseudo-predicates, or exit nodes. Statements have one
outgoing arc; predicates have two, labeled true and false; pseudo-predicates are
like predicates, but their false arc is non-executable; and Exit has no outgoing
arcs. Each arc represents that the pair of instructions it connects can execute
sequentially in some execution of P . Non-executable arcs are the exception, as
their name implies. The start and end of the procedure are represented with the
Enter and Exit nodes.

The ACFG only has one source node, Enter, and one sink node, Exit. The
Enter node should be able to reach all other nodes, and the Exit node should
be reachable from all other nodes.

Example 2. Consider the fragment of code in Figure 2, which contains two
methods f and g where f calls g. Note that method g contains an unconditional
jump statement (break) in line 10.

Figure 3a shows the ACFG representation of method g. The arcs of the
ACFG are divided into executable arcs (solid) and non-executable arcs (dashed).

Note the representation of parameters: procedures with parameters, or that
use or modify global variables have formal-in assignments in the Enter node
(a = ain), so that variables defined outside the procedure’s body are defined in
the graph; and formal-out assignments in the Exit node (aout = a), so that
changes made in the procedure can be passed back to the caller.
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1 int f(int a, int b){

2 int sum = a + b;

3 int op = g(sum, b);

4 return op;

5 }

6 int g(int x, int y){

7 int i = 0;

8 while (i < x) {

9 if (i > y)

10 break;

11 y--;

12 i++;

13 }

14 return y;

15 }

Figure 2: Fragment of code with two methods using call-by-reference.

2.3. Pseudo-predicate program dependence graph (PPDG)

Once the ACFG has been built, two kinds of dependences are computed
from it, which combined form the pseudo-predicate program dependence graph
(PPDG) [10]. These dependences are data dependence and control dependence,
which is often defined in terms of postdominance:

Definition 6 (Postdominance [4]). Let G = (N,A) be an ACFG. b 2 N
postdominates a 2 N if and only if b is present on every possible path in G
from a to Exit.

Definition 7 (Control dependence in the presence of pseudo-predicates [10]).
Let P be a procedure, let G = (N,A) be its ACFG, and let G0 = (N,A0) be its
CFG. Given two nodes in the ACFG a, b 2 N , b is control dependent on a if
and only if b postdominates in G0 one but not all of {n | (a, n) 2 A, n 2 N} (a’s
successors in the ACFG).

Definition 8 (Data dependence [10]). Let G = (N,A) be an ACFG. b 2 N
is data dependent on a 2 N if and only if a defines a variable x, b uses x, and
there exists in G a path free from non-executable arcs from a to b where x is not
defined.

We can now formally define the PPDG.

Definition 9 (Pseudo-predicate program dependence graph). Given a pro-
cedure P and its associated ACFG G = (N,A), the pseudo-predicate program
dependence graph of P is a directed graph G0 = (N 0, A0), where N 0 = N \{Exit}
and A0 = Ac [ Ad, being Ac the set of control dependence arcs and Ad the set
of data dependence arcs.

Example 3. Consider again the code in Figure 2 and its ACFG shown in Fig-
ure 3a. Its associated PPDG is shown in Figure 3b. In this graph, in contrast to
the PDG, the break node controls the execution of statements y-- and i++ (be-
cause of the non-executable arc of the ACFG) since the execution of the break
prevents their execution.
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x = x_in
y = y_in

Enter g(x,y)

int i = 0

while(i < x)

if(i > y)

 T

return y

 F

Exit
y_out = y

y--
 F

break

 T

i++

 F  T

(a) ACFG of function g in Figure 2

x = x_in
y = y_in

Enter g(x,y)
y_out=y

int i = 0 while(i < x) return y

if(i > y)i++ y--

break

Control Arc
Data Arc

 
 

(b) PPDG of function g in Figure 2

Figure 3: ACFG and PPDG of function g in Figure 2.

It is important to note that, during the construction of the PPDG, the
Exit node is removed, and the formal-in and formal-out assignments are all
contained in the Enter node.

2.4. System Dependence Graph (SDG) and Slice Computation

After generating the PPDG, each formal-in and formal-out is split to its
own node, control dependent on the Enter node, including a formal-out node
for the result of the procedure. Each procedure call is unfolded into its own node,
and nodes are generated to represent the input and output, called actual-in

and actual-out. These are analogous to formal-in and formal-out. Then,
the nodes structure formed in each procedure call is connected to the corre-
sponding structure in the associated procedure definition through a new set of
(interprocedural) arcs. These arcs are divided into input (from call to definition)
and output (from definition to call) arcs and represent the information exchange
between them. They connect all the PPDGs to form a single graph: the SDG.
Finally, a new kind of arc called summary arc is added from actual-in nodes
to actual-out nodes in procedure calls when needed. These arcs are added to
procedure calls to illustrate data dependences inside the corresponding proce-
dure definitions and are necessary to accurately slice procedure calls in the SDG
with the algorithm proposed by Kumar and Horwitz in [10].

Once the SDG is built, the slicing algorithm can be used to compute the
backward slice. First of all, we locate the node that corresponds to the slicing
criterion and, starting from this node, all the arcs in the SDG are traversed
backwards in two sequential phases. During the first phase the traversal ignores
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output arcs, and during the second one, it ignores input arcs. In any of the
phases, when the traversal reaches a pseudo-predicate node di↵erent from the
slicing criterion by traversing a control arc, the algorithm prevents the traversal
to continue from this node. This process continues until no more arcs can be
traversed. When the whole process finishes, the nodes reached by the algorithm
form the so-called program slice1.

Control Arc
Data Arc
Input Arc

Output Arc
Summary Arc

 
 
 
 
 

Enter f(a,b)

a = a_in b = b_in

int sum = a + b int op = g(sum, b) return op

b_out = b

y_in = bx_in = sum

call g(sum, b)

b = y_out op = -ret_out-

Enter g(x,y)

y = y_inx = x_in

int i = 0 while(i < x) return y

y_out = y -ret_out- = y

y--if(i > y)i++

break

Figure 4: SDG of the code in Figure 2 and slice with respect to h4, {op}i.

Example 4. Consider the SDG of the code in Figure 2, represented in Figure 4.
The SDG represents both f and g. In the SDG, the PPDG of both method decla-
rations is augmented with the addition of formal nodes for each variable used/de-
fined inside the method. For example, in method g, the assignment nodes x =
x_in and y = y_in represent formal-in nodes while the assignment node y_out
= y represents a formal-out node. Analogously, method calls are augmented
with the corresponding actual nodes. In this case, x_in = sum and y_in = b

1The interested reader can consult the paper by Kumar and Horwitz ([10]) for further
explanations about the PPDG traversal.
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1 void main(int x) {

2 try {

3 throw new E();

4 } catch (E e) { }

5 log(x);

6 }

(a) The original program.

void main(int x) {

throw new E();

}

(b) The slice with criterion h3, ;i.

1void main(int x) {

2

3

4

5log(x);

6}

(c) The slice with criterion h5, ;i.

Figure 5: Slices of a code that throws and catches an exception

assignments in method call g(sum,b) represent the actual-in nodes while the b
= y_out assignment represents the actual-out node of the call. Then, actual
and formal nodes are linked with corresponding input/output arcs to represent
parameter passing. Finally, summary arcs are computed for the call arguments
and returned value. Once the SDG is built, the slicing algorithm defined in [10]
can be now applied. Consider variable op in line 4 as the slicing criterion, where
the node of the SDG representing its value is marked in bold. The corresponding
program slice is marked in the SDG of Figure 4 with grey nodes.

3. A new kind of dependence generated by catch statements

Example 1 reveals that the SDG proposed by Allen and Horwitz can generate
incomplete slices because catch blocks are not correctly represented. In this
section we explain the reason, showing that catch statements induce a kind of
dependence that is not captured in any of the described graphs. Furthermore,
we show that this kind of dependence cannot be captured by using traditional
control dependence, and a new definition is needed.

A catch block is a statement that is only relevant if the program execution
does not occur normally. For this reason, the control dependences they induce
are slightly di↵erent from the ones generated by other statements. Instead of
influencing other statements with their presence, it is their absence from the
slice what may lead to a non-desired behaviour. We can illustrate this with
the code in Figure 5, which shows that the catch statement is not part of the
slice even if the slicing criterion is a statement (line 3) inside the try-catch
that throws the exception captured in the catch block (see Figure 5b); or if
the slicing criterion is located after the catch statement (see Figure 5c). The
catch statement should only belong to the slice if a statement that throws the
captured exception belongs to the slice and also the catch statement a↵ects some
instruction that is also in the slice. These ideas are explained in the following
three di↵erent slicing scenarios, which allow us to analyse how does the presence
or absence of the catch statement in the slice a↵ects other statements:

1. Only the throw statement is part of the slice. There is no reason for
including the catch block in the slice if log(x) is not included in it. The
slice would be lines 1, 3, and 6 (Figure 5b).
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2. Only log(x) is part of the slice. If only log(x) is in the slice, although
the catch statement controls it, there is no possible statement inside the
try-catch block in the slice to raise an exception that the catch cap-
tures, and thus the inclusion or exclusion of the catch statement does not
influence the execution of log(x). The slice would be lines 1, 5, and 6
(Figure 5c).

3. Both the throw statement and log(x) are part of the slice. This
situation is the counterpart of the previous one. In this case, log(x) is
included in the slice, but there is also an exception source inside the try

block that is part of the slice. Thus, to preserve the normal execution of
the program and reach the log(x) statement, the catch block cannot be
omitted. The slice would be the whole program (Figure 5a).

These scenarios reveal the need for a new kind of control dependence that
works in a conditional way. The catch instruction controls log(x) and throw

new E() only if both of them are present in the slice (it controls both or none).
This is because the catch instruction controls log(x) only if an exception that it
can capture can be thrown, because the absence (rather than the presence) of the
catch would change the number of times that log(x) is executed. Similarly, the
catch instruction also controls the source of exceptions, but only when log(x)

is included in the slice. This fact makes the control dependence of catch blocks
completely di↵erent from any control dependence seen before. We call this new
control dependence conditional control dependence.

Definition 10 (Conditional control dependence). Let G = (N,A) be a
CFG and s1, s2, s3 2 N be nodes in G. s2, s3 is conditionally control dependent
on s1 if s1 is a catch statement, s2 throws an exception that s1 could capture,
and s3 is located outside s1’s body and there is a control-flow path from s1 to s3
in G.

4. Extending the SDG to make it exception-sensitive

In this section we introduce a procedure to build a SDG that contains con-
ditional control dependences, so that throw statements, try-catch statements,
exception sources (both conditional and unconditional), and procedures with
exceptions can be properly represented and sliced. We present our solution as
a set of modifications to the construction of the SDG described in Section 2.
We organize our modifications considering the di↵erent graphs used to build a
SDG: ACFG, PPDG, and finally SDG. In the following, to clearly di↵erentiate
between each version of the graph, our extended graphs are prefixed by ‘ES-’,
which stands for “exception-sensitive”, so the ACFG becomes the ES-ACFG,
the PPDG becomes the ES-PPDG, and the SDG becomes the ES-SDG.
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4.1. Modifications to the ACFG to create the ES-ACFG

In this section we compositionally describe how to construct any ES-ACFG:
we show the graph representation of each syntax construct individually, but
using a general representation that can be composed with the other constructs.

Like the ACFG, the ES-ACFG has three kinds of nodes: statements, which
have only one outgoing arc; predicates, which have two outgoing arcs labeled
true and false representing possible execution paths; and pseudo-predicates,
which have two outgoing arcs labeled true and false, where the false arc repre-
sents a non-executable step.

Most instructions of the ACFG keep their traditional representation, but
there are five constructs that need to be modified to properly account for excep-
tion handling: procedure declarations, procedure calls, and all those structures
that cause or catch exceptions (e.g., throw, try, and catch). The rest of this
subsection explains in detail these instructions and their correct representation.

Procedure declarations with exceptions. This case represent those func-
tions definitions that contain a potential source of exceptions, e.g., a throw
statement, a possible division by zero, or a call to other procedure that
may throw an exception. If the procedure contains exception sources, the
Exit node contained in the original ACFG is split into three nodes: normal
exit, exception exit, and Exit [1].

normal exit performs the function of the old Exit node, representing the
exit from the procedure when no exception is raised. It is represented
as a statement, whose arc is connected to Exit.

exception exit is the equivalent to normal exit, but it is only reached
by nodes that generate uncaught exceptions. As it happened with
normal exit, it is a statement whose arc is connected to Exit.

Exit is a sink node, to which the normal exit and exception exit nodes
are connected.

Figure 6 shows how this exit-node transformation is done showing the
di↵erence between an ACFG and an ES-ACFG when there is an exception
source in a function definition. Additionally, as it can be seen, when there
are formal-out associated to the function exit, they are moved to the
specialised exit nodes, for increased precision. It is worth mentioning that
nodes exception source and exception exit now include an assignment of
the thrown exception (which we call “active exception”, or ae for short)
to propagate this exception until it is caught.

Calls to procedure definitions that may throw exceptions. These calls
must be also redefined to di↵erentiate whether the procedure ended with
a normal execution (normal exit) or an exception was raised and uncaught
during the execution (exception exit). The treatment is analogous to the
one described for procedure definitions: with normal return and exception
return nodes. The following changes are necessary:
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last instruction

Exit
x_out = x
y_out = y

return

exception source
throw e

(a) ACFG procedure declaration with
exceptions )

return

last instruction

normal exit
x_out = x
y_out = y

exception source
throw e
ae = e

exception exit
x_out = x

ae_out = ae

Exit

(b) ES-ACFG procedure declaration with
exceptions

Figure 6: The ES-CFG uses two exit nodes (normal exit and exception exit) to di↵erentiate
normal and abrupt termination of a function.

The procedure call node is now a predicate, whose true arc is con-
nected to normal return and the false arc, to exception return.

Normal return is a pseudo-predicate, whose true arc is connected to the
following instruction, and its false arc is connected to the first instruc-
tion executed regardless of whether the normal return or exception
return is executed. The destination of this false arc is necessary due
to the new alternative execution path generated by the exception re-
turn. Adding the false arc to the first common instruction makes all
the nodes after the call that are exclusively in the normal execution
path dependent on the normal return of the call, which is the ex-
pected semantic behaviour. Note that a common node between both
paths always exists, and in the worst case scenario this node would
be the Exit node.

Exception return is a pseudo-predicate, whose true arc is connected
to the first catch node that may capture the thrown exception (or
otherwise to the exception exit of the procedure), and its false arc
is connected to the first node after the try-catch if it is contained in
one, or otherwise to the Exit node.

The two return nodes contain assignments for modified global variables
and parameters passed by reference. Figure 7b shows the di↵erence be-
tween the ACFG structure, where the behaviour is the same for both
normal and exception procedure execution, and the ES-ACFG structure
which di↵erentiates both possibilities resulting into di↵erent execution
paths. Note that both return nodes may not output the same variables,
as some may have not been modified when the exception is thrown.

Unconditional exception sources. These instructions are those whose exe-
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before

x_in  = a
y_in = b
f(a, b)

a = x_out
b = y_out

after procedure call

(a) ACFG of procedure call
with exceptions )

before

x_in  = a
y_in = b
f(a, b)

normal return
a = x_out
b = y_out

exception return
a = x_out

ae = ae_out

after procedure call

  T

first shared node

  F

catch (Exception e)
 e = ae

  T

after try-catch

  F

(b) ES-ACFG of procedure call with exceptions

Figure 7: The ES-CFG distinguishes between four paths to represent function calls that may
produce exceptions.

cution will always result on an exception being thrown or activated. They
have an execution flow similar to the return, break or continue uncon-
ditional jump statements. For this reason, they are represented in the
ES-ACFG as pseudo-predicates [1]. The true arc of the pseudo-predicate
will be connected to the first catch instruction that can capture it, or, in
case there is no catch able to capture it, to the exception exit node. The
false arc will be connected to the instruction that would be executed if the
pseudo-predicate failed to throw the exception, i.e., the next instruction
in the sequential order of the source code. Figure 8 shows an example
of how a throw instruction is represented both in the ACFG and in the
ES-ACFG.

throw new Exception()

after

before

(a) ACFG of an unconditional exception source )

throw new Exception()
ae = Exception

catch (Exception e)
e = ae

  T

after

  F

before

(b) ES-ACFG of an unconditional exception source

Figure 8: Representation of a throw statement in the ACFG and ES-ACFG.

Conditional exception sources. These instructions are the ones whose ex-
ecution may activate an exception at runtime depending on the values
given to variables during the execution, e.g., the operation a = 10 / x
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may generate a division by zero exception. This type of exception sources
has the same representation as unconditional sources, but instead of be-
ing pseudo-predicates, they are predicates; to account for the fact that the
exception really may or may not be thrown. Figure 9 shows an example,
displaying the di↵erence between the ACFG single path representation
and the ES-ACFG representation, where two paths are now generated
due to its predicate nature.

before

a = 10 / x;

after

(a) ACFG of a conditional exception source )

a = 10 / x;
ae = Exception

after

  T

catch (Exception e)
e = ae

  F

before

(b) ES-ACFG of a conditional exception source

Figure 9: Representation of a conditional exception source in the ACFG and ES-ACFG.

Exception catching structures. These structures are commonly called try-
catch structures. In the original ACFG these structures were never consid-
ered, so we need to provide a representation that account for their control
dependences correctly. The try-catch structure ES-ACFG representation
is divided into its two di↵erent components:

try The try block represents the container of a sequence of statements
where some of them may rise an exception. The way try blocks are
represented is analogous to the representation of procedure defini-
tions in [2]. They are considered pseudo-predicates, connecting their
true arc to the first instruction within its body, and their false non-
executable arc to the first instruction after the whole structure [1].
Thus, every instruction inside the try block is always controlled by
the try itself. A scheme of how the try block is represented in the
ES-ACFG is shown in Figure 10a.

catch Each catch block is represented as a predicate or a pseudo-predicate
depending on whether it captures or not all the exception sources
connected to it. This means that the same catch block in di↵erent
try-catch instructions can be represented in a di↵erent way. When all
the exception sources connected to the catch block are captured by it,
the block is represented as a pseudo-predicate, since the execution of
the false arc (which let the execution flow continue to the exception
exit) is non-executable (Figure 10b). On the other hand, when any of
the exception sources that reach the catch block may not be caught,
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the catch is represented as a predicate as both ES-ACFG paths can
be executed at runtime (Figure 10c).

before

try

statements

  T

after

  F

(a) try instruction

exception source

catch

body

  T

exception exit

  F

after_try

(b) catch pseudo-predicate

exception source

catch

body

  T

exception exit

  F

after_try

(c) catch predicate

Figure 10: Representation of a try-catch statement in the ES-ACFG.

4.2. Modifications to the PPDG to create the ES-PPDG

Once the ES-ACFG has been generated, the next step is to generate the
corresponding PPDG by computing control and flow dependences. These de-
pendences are computed in the same way as in [10] with a particular di↵erence:
while in the PDG construction shown in Section 2 formal-out assignments
were moved to the Enter node after removing the Exit node, in the PPDG,
formal-out assignments remain in the corresponding normal exit and excep-
tion exit nodes (see Figure 6b). The resulting PPDG is a graph whose control
dependences have slightly changed with respect to the original PPDG due to
the changes introduced in the ES-ACFG. Although the new dependences pro-
vide new control dependences related to exception handling, the graph is not
ready yet to deal with the conditional control dependence described in Section 3.
Hence, a control dependence treatment needs to be done over the graph to clas-
sify and complement the control dependence arcs of the PPDG to obtain the
ES-PPDG.

Algorithm 1 describes the process of adding conditional control dependence
arcs to a PPDG. Each dependence generates two arcs, and they are placed in two
sets: CC1 and CC2. This algorithm calls methods with descriptive names. For
instance, function stmtsInBlock, that receives a catch node as its argument,
returns a set with all the statements in its body; and tryStmtsOf(c) obtains
the statements in the try block of the given catch. The operator ⇤ in a set of
arcs (e.g., A⇤

c) represents its reflexive and transitive closure.
This algorithm analyses every catch node independently and divides its pro-

cessing into two steps: the first (lines 2-5) selects every control arc from a catch
node to a statement outside its body and converts it into a CC1 arc. The second
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Algorithm 1 PPDG transformation

Input: G := (N,A), Ac 2 A (control dependence)
Output: G0 := (N,A0)
1: Acc1 := ;, Acc2 := ;, A0

c := Ac

2: for all c 2 N | isCatch(c) do
3: for all (c, n) 2 Ac | n 62 stmtsInBlock(c) do
4: A0

c := A0
c \ (c, n)

5: Acc1 := Acc1 [ (c, n)

6: for all n 2 tryStmtsOf(c) do
7: if isExceptionSource(n) ^ (n, c) 2 A⇤

c then
8: if 9n0 | (n, n0) 2 A⇤

c ^ (n0, c) 2 A⇤
c ^ n 6= n0 6= c then

9: Acc2 := Acc2 [ (c, n)

10: A0 := (A \ Ac) [A0
c [Acc1 [Acc2

step (lines 6-9) generates CC2 arcs from the catch node to each exception source
in the try ’s body, if there is a path of control arcs from the exception source to
the catch node.

Note that conditional control dependence arcs (CC1 and CC2) are only
created when the code contains at least one catch statement. In the case that
no catch statement exists in the code, lines2-9 cannot be executed, and sets A0

c,
Acc1, and Acc2 reach line 10 with their initial value given in line 1, thus, A0 = A.
Therefore, the PPDG and the ES-PPDG are equal#JJJ: es cierto? when there
are no catch statements.

4.3. From ES-PPDGs to the final ES-SDG

The creation of the ES-SDG can be described as the union of all the ES-
PPDGs for each of the program’s procedures, where the additional interproce-
dural and summary dependences are generated. The creation of input, output,
and summary arcs is the same as in the SDG. The main di↵erence between the
standard SDG and the ES-SDG is the treatment of the di↵erent exit contexts.
Every ES-PPDG may have either none or two Exit nodes: normal exit and ex-
ception exit. For this reason, the ES-SDG uses an output arc to connect an exit
node in the declaration to its corresponding return node in the call. These can
be seen in Figure 11, where dotted arcs connect each exit to their corresponding
return counterparts.

5. Slicing conditional control dependence arcs

The ES-SDG introduces various structural changes and a new kind of arc:
the conditional control dependence arcs. Therefore, the slicing algorithm must
consider those changes. The new graph traversal is based on the slicing algo-
rithm proposed by Horwitz et al. in [7], modified later by the introduction of
the pseudo-predicates and the PPDG (see Algorithm 3 in [10]). In the ES-SDG,
the presence of conditional control dependence arcs requires the introduction of
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Enter f()

try g()

g()

normal returnexception return

catch (Exception e)

Enter g()

exception exit

exception return normal return

normal exit

throw new Exception()

exception exit normal exit

Control Arc
Data Arc
Input Arc

Output Arc
CC1 Arc
CC2 Arc

 
 
 
 
 
 

Figure 11: The ES-SDG associated to the program in Example 1. The slicing criterion is
represented with a bold node, and the central square separates the nodes that belong to g

(inside) from the nodes that belong to f (outside).

some extra limitations on their traversal, to correctly represent its conditional
nature:

1. If a node n is reached via a conditional control dependence arc of type
t, it will not be included in the slice unless it has also been reached by
another conditional control dependence arc of type t0, such that t 6= t0. In
that case, n’s incoming arcs are not traversed, except if n is (also) reached
during the slice traversal via another non-conditional arc (normal control,
data, etc.).

2. Conditional arcs of type CC1 are transitive, even when the intermediate
node is not included in the slice. For example, given a !CC1 b !CC1 c,
if c is in the slice, a and b are both reachable via a conditional arc of type
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CC1, even when b is not in the slice. It is fundamental to mention that this
transitive traversal is exclusively done at the end of each traversal phase
and starts from any node in the slice. Each transitive traversal path ends
when (i) it reaches a node that has only been reached by a CC2 arc (in
this case, the node is included in the slice); or (ii) it reaches a node that
was already included in the slice only by conditional arcs. This kind of
transitivity is new in the SDG, and is required for cases where there is an
exception source nested in more than one level of try-catch structures.

Algorithm 2 illustrates how restrictions 1 and 2 are included to the PPDG
slicing algorithm described in [10]. Function Slice represents the slicing pro-
cess in two phases, function Traverse performs the actual traversal of the
graph in each phase, traversing the graph backwards and ignoring the set of
arc types given in parameter IgnoredTypes, and function AddTransitiveCC

implements the transitive traversal of CC1 arcs described in restriction 2. The
algorithm defines sets CC1R and CC2R, which represent those nodes that have
been reached by CC1 and CC2 arcs respectively. Additionally, another set
CCExclusive is defined to store those nodes included in the slice exclusively by
conditional control dependences. During the traversal, when we reach a node,
the node is added to the set PendingNodes. The elements in PendingNodes are
extracted one by one during the traversal and the algorithm analyses them to
apply restriction 1 when necessary. Then, all the incoming arcs of the extracted
node are considered in the traversal. For each arc, if the arcType is contained in
the list of IgnoredTypes (lines 12-13) or the pair {n, arcType} does not respect
the PPDG traversal restriction (lines 14-15) the arc is ignored and the traversal
continues by extracting the source node of the arc m. In case the arc type is
CC1 or CC2 , the node m is stored in the corresponding CC1R or CC2R sets
respectively (lines 18-21). After adding the node to the corresponding set, the
algorithm checks whether it is contained in both sets, adding the node to the
slice (line 25). Additionally, if the node has not been reached and added to
the slice before, it is also added to the CCExclusive set (lines 22-24). In case
the arc type is not conditional control, m is included in the slice and in the
PendingNodes set (lines 27-30). Moreover, if m was previously in the slice after
being reached exclusively by arcs CC1 and CC2 , then it is removed from the
CCExclusive set (line 30). Finally after traversing all possible arcs, the traver-
sal tries to include transitive dependences of CC1 arcs by a call to procedure
AddTransitiveCC (line 31).

Function AddTransitiveCC considers all the nodes reached by a CC1 arc
during the execution of the while loop in function Traverse. For all these
nodes, the function checks whether they have been included in the slice only by
conditional control dependences, i.e., they are in the CCExclusive set (line 36).
If they are not in the CCExclusive set, the incoming CC1 arcs are traversed
iteratively adding to the slice those reached node that have also been reached
by CC2 arcs (lines 37-42).

The complexity of the new traversal algorithm remains linear with respect to
the number of nodes and arcs in the ES-SDG. This is because the changes to the
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algorithm are to stop the traversal when certain conditions are met; therefore
lowering the amount of nodes reached. Additionally, each condition check can
be made in constant time, and thus slicing remains linear. Example 5 shows the
ES-SDG and the traversal of the slicing algorithm for the code of Example 1.

Algorithm 2 Slicing Algorithm for the ES-SDG

Input: A ES-SDG G and the slicing criterion node nsc .
Output: The set of nodes that compose the slice S of G w.r.t. nsc .
Initialization: CC1R := ;,CC2R := ;,CCExclusive := ;.

1: function Slice(G,nsc)
2: S0 := {nsc}
3: S1 := Traverse(G,S0, nsc , {Output})
4: S := Traverse(G,S1, nsc , {Input})
5: return S

6: function Traverse(G,N, nsc , IgnoredTypes)
7: PendingNodes := N
8: while PendingNodes 6= ; do
9: select some n 2 PendingNodes

10: PendingNodes := PendingNodes \ n
11: for all arc 2 getIncomingArcs(n) do
12: if arcType 2 IgnoredTypes then
13: continue
14: if isPseudoPredicate(n) ^ n 6= nsc ^ arcType = Control then
15: continue
16: m := getSourceNode(arc)
17: if arcType = CC1 _ arcType = CC2 then
18: if arcType = CC1 then
19: CC1R := CC1R [m
20: else
21: CC2R := CC2R [m
22: if m 2 CC1R ^ m 2 CC2R then
23: if m 62 N then
24: CCExclusive := CCExclusive [m
25: N := N [m
26: else
27: N := N [m
28: PendingNodes := PendingNodes [m
29: if m 2 CCExclusive then
30: CCExclusive := CCExclusive \ m

31: N := AddTransitiveCC(G,N)
32: return N
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33: function AddTransitiveCC(G,N)
34: CC1Pending := CC1R
35: for all n 2 CC1Pending do
36: if n 62 CCExclusive then
37: for all arc 2 getIncomingCC1Arcs(n) do
38: m := getSourceNode(arc)
39: if m 2 CC2R then
40: N := N [m
41: continue
42: CC1Pending := CC1Pending [m

43: return N

Example 5. If we apply Algorithm 2 to the problem shown in Example 1, we
obtain the ES-SDG slice shown in Figure 11. In this graph, the slicing criterion
h9, ;i produces the slice composed of the grey nodes. The slice is computed as
follows: First, the Enter g() node is included from the slicing criterion, which
in turn includes both calls to procedure g. The first call causes the inclusion of
the try and Enter f() nodes. Finally, thanks to the conditional arcs, the catch
node is included, producing the expected slice in which the exceptions generated
by g’s first call may be caught and g’s second call may be executed.

6. Empirical Evaluation

In order to determine the degree to which the incompleteness of previous ap-
proaches has a↵ected exception-handling constructs in program slicing, we have
implemented the ES-SDG in a program slicer for Java. In order to perform a
fair comparison, we implemented previous approaches to program slicing with
exceptions. Our Java program slicer has been used as a baseline for both im-
plementations, such that both have the same handling of objects, jumps, loops
and other constructs unrelated to exception handling.

The slicer can be found in a public git repository2, and it contains two
approaches to exception-sensitive programs slicing: Allen and Horwitz’s [1]
(AllenSDG.java) and our own (ESSDG.java). The whole implementation con-
tains 11K lines of code, and it is available under a free software license.

We strictly followed the Georges et al.’s methodology [5]. We executed each
graph generation and slice repeatedly. From each sequence of executions we
extracted all the windows of 10 measurements where steady-state was reached,
i.e., where the coe�cient of variation (CoV, the standard deviation divided by
the mean) of the 10 iterations is under 0.01. If no such window could be found,
we selected the window of 10 measurements with the lowest CoV. The extracted
windows were used to compute the average time to perform the given operation
(build the graph or slice it).

2
https://mist.dsic.upv.es/git/program-slicing/SDG
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Table 1: Mean times required to generate and slice each SDG implementation.

Program SC G (AllenSDG) G (ES-SDG) S (AllenSDG) S (ES-SDG)
B1.java h28, ;i 17.256ms 18.977ms 897µs (5)#SSS: 5?#JJJ: 5? 1180µs
B2.java h14, ;i 13.068ms 13.266ms 796µs 1130µs
B3.java h28, ;i 12.814ms 13.297ms 501µs 798µs
B4.java h11, ;i 4.795ms 4.818ms 144µs 167µs
B5.java h18, ;i 13.947ms 14.133ms 71µs 73µs
B6.java h25, ;i 13.565ms 13.947ms 912µs 1219µs
B7.java h11, ;i 3.095ms 3.168ms 105µs 122µs
B8.java h18, ;i 5.584ms 5.598ms 128µs 200µs
B9.java h9, ;i 2.629ms 2.660ms 111µs 124µs
Total 9.689ms 9.940ms 407µs 557µs

The results of the experiments can be seen in Table 1, where each row shows
a specific benchmark (file and slicing criterion). The first two columns (Program
and SC ) identify each benchmark by filename and slicing criterion. The follow-
ing two columns (G (AllenSDG) and G (ES-SDG)) show the time required to
generate the graph (in ms). Finally, the last two columns (S (AllenSDG) and
S (ES-SDG)) display the time required to slice the graph (in µs).

The changes between approaches are not significant enough to alter the time
required to generate or slice the graph significantly. Although the generation of
the ES-SDG introduces a performance downgrade, the slowdown introduced is
incidental. On the other hand, the main benefit of using the ES-SDG is achieved:
the slices generated are now complete, but that comes at a slight increase in
the time of slicing. The time required by the ES-SDG is 20 to 25% longer
than AllenSDG. This is due to the additional conditions and the extra catch
nodes reached. Overall, the cost is low enough, given that most applications of
program slicing strictly require slices to be complete.

7. Completeness of the ES-SDG

Given a program P and a slicing criterion C, a static backward slice of P
with respect to C must contain all statements in P that may influence (in some
execution) C (a precise definition of slice can be found in Definition 3). The
following theorem states that the slices produced by Algorithm 2 are always
static backward slices, thus it is complete.

Theorem 1 (Completeness). Let P be a program and G = (N,A) its associ-
ated ES-CFG. Let node nsc 2 N be the node associated with the slicing criterion
hs, vi. Slice(G,nsc) is a static backward slice with respect to hs, vi.

The proof of this theorem requires to consider all possible combinations of
slicing criterion point, execution path, and kind of exceptions raised (captured
or not by catches). Therefore, it has been moved to Appendix A. This result
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is particularly relevant because it is the first proof of completeness for a variant
of the SDG to treat exceptions. Previous approaches, like [1] or [8], based their
completeness proofs in the fact that the PDG is automatically computed from
the CFG and thus, slices computed over a PDG are complete #JJJ: No entiendo
la frase anterior ni la siguiente. However, their models introduced modifications
in the way throw and catch statements (and the impact of their presence) are
represented in the CFG intra and interprocedurally, mainly based on a “rea-
sonable” modification in line with previous models used to treat unconditional
jumps [10]. The lack of completeness proofs in previous approaches has pro-
duced a chain of successive improvements to incrementally cover di↵erent cases
of incorrectness or incompleteness. In addition to collecting some key ideas used
in those previous works, we have defined a new type of dependence that is not
considered in the original PDG, together with the introduction of some PDG
edges (CC2) that are not generated by the classic control algorithms. For these
two reasons, we consider a completeness proof to be mandatory. In fact, this
proof states that our approach finally covers all cases (uncovered in previous
approaches), thus ensuring completeness.

8. Related work

We have already explained in Section 2 the evolution of the SDG to treat
exceptions with the definition of the ACFG and the PPDG. Here, we want
to complement by commenting some approaches that have been a milestone
in this area and that have inspired our work or are related to it. One of the
most relevant initial approaches to exception-aware program slicing was Allen
and Horwitz [1], which took advantage of the existing representation of un-
conditional jumps to represent exception-causing instructions, such as throw.
Regarding exception-catching constructs, they simulated the real control flow
and added non-executable control flow to generate the extra dependences they
needed inside try-catch blocks. Unfortunately, they failed to account for the
conditional nature of catch statements. They did not consider the possibility of
an exception escaping from the catch block and, thus, they did not represent the
control dependence between this kind of catch statements and the code placed
immediately after them.

Later, Jiang et al. [8] described a solution for C++. catch nodes are rep-
resented similar to an if-else chain, each trying to capture the exception before
deferring onto the next catch or propagating it to the calling method. They also
were aware of the necessity of representing data dependences from procedure
calls to catch nodes, but did not generalize that concept to all exception sources
and usages. Other approaches include Prabhu et al. [12], which centered around
the exception system of C++, and its specific quirks and design choices; and
Jie et al. [9], which combined object orientation and exception handling. Jie et
al. focused on the object-oriented side, rather than on the exception side, for
which they used an approach similar to Jiang et al.’s or Allen and Horwitz’s.
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9. Conclusions

Program slicing is a powerful software analysis technique, powered by the
system dependence graph, a directed graph that represents instructions and
their dependences. In this paper, we introduce a new approach for program
slicing with exception handling, merging the results of previous publications,
extending those results, and creating a general algorithm that is valid for most
programming languages with exception handling.

We have presented a counterexample to the current state of the art, which
reveals a problem of incompleteness present in the literature; and we have pro-
posed a solution, which we have proven complete. This solution also improves
the precision of the slices by using a new notion of control dependence called
conditional control dependence, which allows for the conditional inclusion of
catch statements only when there is a statement that requires an exception to
be caught, and at the same time, there exists a source of exceptions. Thus,
we limit the inclusion of try-catch instructions and exception sources to the
minimum necessary to generate complete slices.
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The following appendix has been included to ease the reviewers’ reading but,
due to its length, it will be published as a separated technical report. Appendix
A includes the proof of Theorem 1.

Appendix A. Completeness proof of Theorem 1

Theorem 1 (Completeness). Let P be a program and G = (N,A) its associ-
ated ES-CFG. Let node nsc 2 N be the node associated with the slicing criterion
hs, vi. Slice(G,nsc) is a static backward slice with respect to hs, vi.

Proof 1. #JJJ: Lo de proof 1 queda fatal. Quitarlo. Assuming that the SDG
is already capable of producing slices for programs that do not contain exception-
handling constructs, we only need to prove that the additions made do not mod-
ify the behaviour regarding other instructions, and that the behaviour related
to exception-generating and handling constructs produces static backward slices
(Definition 3). We prove the Theorem by induction on the size of the program.

Base case: We first consider the case when only one single try-catch block ap-
pears in the code, and make a case analysis to show that the slice produced
is valid. For this, we study all possible places where the slicing criterion
can be placed (inside the try block, at the catch instruction, inside the
catch block, after the catch block...) and we also consider all possible
situations that can happen depending on the exceptions raised (captured
or not captured by each catch). This case is proved in Section Appendix
A.1, where all possible combinations of a single exception source (either
unconditional, conditional or a procedure call) with an exception-catching
mechanism (or lack of it) are considered.

Induction hypothesis: We assume as the induction hypothesis that all the
slices produced are valid (they fulfil the conditions in Definition 3) with a
program with n nested try-catch blocks.

Inductive case: Finally, we prove the inductive case, when n + 1 try-catch
blocks are nested in any of the possible combinations mentioned. This
is proven in Section Appendix A.2 with another exhaustive case analy-
sis for all cases where the inner try-catch could contain any number of
try-catch structures. Each combination is composed of three parts: the
original code, the ES-SDG, and all the possible slices.

As both the inductive and the base case are proven, we can assert that all
combinations of exception-related instructions are handled properly by the ES-
SDG, being Algorithm 2 complete: it produces static backward slices in all cases.

Appendix A.1. Exception sources and simple exception-catching structures

Throughout the rest of the proof, we introduce instructions before and after
each exception causing or catching exceptions, and they are labeled Sn, where
n is a unique identifier in that procedure. They a↵ect neither control nor data
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1 void f() {

2 S1;

3 throw new Exception();

4 }

5

6 void g() {

7 S1;

8 try {

9 S2;

10 throw new Exception();

11 } catch (Exception e) {

12 S3;

13 }

14 S4;

15 }

16

17 Exception ex;

18 void h() {

19 S1;

20 try {

21 S2;

22 throw ex;

23 } catch (Exception e) {

24 S3;

25 }

26 S4;

27 }

Figure A.12: Three procedures which throw an exception unconditionally, with no exception
handling (f), complete exception handling (g), and partial exception handling (h).

flow, and their purpose is to display the e↵ects of exception-related instructions
in normal instructions.

There are three kinds of exception sources: conditional, unconditional and
procedures through which exceptions propagate. On the other hand, we can
consider three distinct cases: the exceptions generated are not caught (there
is no try-catch), they are partially caught (the try-catch lets some through
and catches some), or they are completely caught (the try-catch captures all
of them). If we combine both, there are nine distinct possibilities to consider.

In each case, we consider and describe all possible slices given the following
slicing criteria: all nodes are possible statements, but we will consider that the
set of variables is always the empty set, as the problem of exception handling is
orthogonal to data dependence: the only relevant variable is the active excep-
tion, but it cannot be selected as criterion, as it is not a variable defined in the
program.

Appendix A.1.1. Unconditional exception source.
In this section we study the di↵erent possibilities produced by a single un-

conditional exception source, e.g. a throw statement. As any code after an
unconditional exception source is dead code, we will not place there a Sn in-
struction. Cases 1, 2, and 3 display the behaviour of unconditional exception
sources.

Case 1 (Unconditional exception source, exception not handled). Consider
procedure f, declared in lines 1-4 of Figure A.12. It contains a single uncondi-
tional exception source, and no exception-catching instructions. Now consider
its corresponding ES-SDG, shown in Figure A.13. If the slicing criterion is ei-
ther statement in the program (S1 or throw), only that statement and the Enter
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Enter f

S1 throw

exception exit normal exit

Figure A.13: ES-SDG corresponding to procedure f in Figure A.12

node is included in the slice. If the exception exit is reached via interprocedural
arcs, S1 will not be included, as it is unnecessary for the slice. Finally, if nor-
mal exit is included in the slice, only the throw statement will be included. This
can seem like an error in the ES-SDG, but normal exit is dead code (code that
will never be executed), therefore all nodes that include (only) normal return
and therefore normal exit are also dead code, and therefore the initial CFG is
invalid.

Case 2 (Unconditional exception source, exception completely caught).
Consider procedure g, declared in lines 6-15 of Figure A.12. It contains a sin-
gle unconditional exception source, and a try-catch instruction which catches
all exceptions produced by the source. Now consider its corresponding ES-SDG,
shown in Figure A.14. Let’s now consider which nodes should be included for
each slicing criterion:

• S1 or S2: the S statement and the Enter node are included. In the second
case, try is also included. This will require a post-processing to either
extract S2 and remove try, or add a catch block; such that the slice is
compilable.

• throw: because there is no instruction after the try-catch included in the
slice, there is no need to include catch in it. As such, the slice consists
of Enter, try and throw. A similar post-processing of the slice as in the
previous item is needed to make the slice compilable.

• catch: in order to execute catch the same number of times, all exception
sources should be included. And so it is, with the slice consisting of Enter,
try, throw and catch. The Sn statements are unnecessary because the
a↵ect neither control nor data flow.

• S3: to execute an instruction in the catch’s body, we need to include the
catch itself, plus all its dependencies (see previous item). The resulting
slice is the one in the previous item, plus S3.
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Enter g

S3 S4 normal exit

S1try

S2throw

catch

exception exit

Figure A.14: ES-SDG corresponding to procedure g in Figure A.12

• S4: because the catch captures all exceptions produced within try, the
whole try-catch has no influence on instructions that come after it.
Whether or not an exception is thrown, S4 will be executed. Therefore,
no node a↵ects S4, and the slice is Enter and S4.

• Normal exit behaves similarly to S4, because the only normal exit in the
procedure comes immediately after it.

• Exception exit does not include any other node. This is because it is a
“dead node”, as no exceptions may escape the try-catch. However, if
for other reasons the exception source is included, the catch node will be
included via conditional arcs.

Case 3 (Unconditional exception source, exception partially caught).
Consider procedure h, declared in lines 17-27 of Figure A.12. It contains a sin-
gle unconditional exception source, and a try-catch instruction which catches
only some exceptions produced by the source. Now consider its corresponding
ES-SDG, shown in Figure A.15. Let’s now consider the slices produced when
each node is selected as the slicing criterion, considering that, except for S4,
normal exit and exception exit; all other nodes have no extra incoming arcs
with respect to Case 2, and therefore the slices are equal. The slices that change
are as follows:

• S4: because the exception may not be caught, there are control dependen-
cies from throw and try, which means that the inclusion of the catch is
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Enter h

ex = ex_in S1try

S2throw

catch

S3 S4exception exit normal exit

Figure A.15: ES-SDG corresponding to procedure h in Figure A.12

also necessary. In the end, the slice is the whole try-catch except for S2
and S3.

• Normal exit: exactly the same as S4, but with normal exit in the slice
instead of it.

• Exception exit: compared to Case 2, it now has a data dependency from
throw, which means that the whole try-catch (except for S2 and S3) is
included in the slice.

Appendix A.1.2. Conditional exception source.
In this section, we study the di↵erent possibilities produced by a single con-

ditional exception source, e.g., a division where the divisor may be 0. The main
two di↵erences with unconditional exception sources are the fact that statements
placed after it are no longer dead code and the change from pseudo-predicate
to predicate, which lowers the number of control dependence arcs drawn (but
not the actual dependences). As with unconditional exception sources, we place
Sn-type instructions to analyse the behaviour at all possible points relative to
the exception generation and capture. Cases 4, 5, and 6 display the behaviour
of conditional exception sources.

Case 4 (Conditional exception source, exception not handled). Consider
procedure f, declared in lines 1-5 on Figure A.16. It contains a single condi-
tional exception source, and no exception-capturing instructions. Now consider
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1 void f() {

2 S1;

3 log(10 / 0);

4 S2;

5 }

6
7 void g() {

8 S1;

9 try {

10 S2;

11 log(10 / 0);

12 S3;

13 } catch (Exception e) {

14 S4;

15 }

16 S5;

17 }

18
19 void h() {

20 S1;

21 try {

22 S2;

23 log(10 / 0);

24 S3;

25 } catch (Exception e) { // TODO: not leaky!

26 S4;

27 }

28 S5;

29 }

Figure A.16: Three procedures which throw an exception conditionally, with no exception
handling (f), complete exception handling (g), and partial exception handling (h).

Enter f

S1 10 / 0

S2 exception exit normal exit

Figure A.17: ES-SDG corresponding to procedure f in Figure A.16

its corresponding ES-SDG, shown in Figure A.17. Let us consider each node as
the slicing criterion and see the resulting slice:

• Enter: no other node is included.

• S1 or 10 / 0: only the slicing criterion and the Enter are included. In
the case of S1, the exception source has no e↵ect on it.

• S2 or exception exit: Enter and the exception source are included in the
slice, on top of the slicing criterion. The execution of the exception source
is relevant to the execution or lack thereof of either slicing criterion, so it
must be included.

• Normal exit: compared to Case 1, in which the exception source was un-
conditional, normal exit is no longer considered “dead code”, and therefore
is a valid slicing criterion which produces valid slices, which in this case
includes Enter, the exception source and the slicing criterion.
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Enter g

log(10 / 0)

S1 try

S2

S4

S3 catch

S5 exception exit normal exit

Figure A.18: ES-SDG corresponding to procedure g in Figure A.16

Case 5 (Conditional exception source, exception completely caught).
Consider procedure g, declared in lines 6-17 on Figure A.16. It contains a sin-
gle conditional exception source, which is captured every time by its surrounding
try-catch. Now consider its corresponding ES-SDG, shown in Figure A.18.
When compared to unconditional exceptions, it is again very similar to the cor-
responding Case 2 and Figure A.14: it has fewer arcs due to the exception source
being a predicate and not a pseudo-predicate, and it has an additional node (S3).
Notice how the addition has converted S3 and S4 in the unconditional case to
S4 and S5 in the conditional case.

Regarding the slices produced, they are the same for all nodes, except the
newly introduced S3; whose slice would include Enter, try, the exception source
and itself.

#CCC: The slices are identical, I think it’s better to refer back to Case 2
than to repeat everything again. #JJJ: I agree

Case 6 (Conditional exception source, exception partially caught). Consider
procedure h, declared in lines 19-29 on Figure A.16. It contains a single condi-
tional exception source, which is partially captured by its surrounding try-catch.
Now consider its corresponding ES-SDG, shown in Figure A.19. As with the
previous example (Case 5), there are many similarities with its unconditional
exception counterpart (Case 3): there are fewer control dependence arcs due to
the conversion from pseudo-predicate to predicate, and there is an additional Sn
node (S3). Again, the addition converts S3 and S4 to S4 and S5.
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Enter h

log(10 / 0)

try S1

S2

S5 exception exit normal exit

S3catch

S4

Figure A.19: ES-SDG corresponding to procedure h in Figure A.16

The slices produced by this graph are identical to those described in Case 3;
and the slice of the newly introduced S3: Enter, try, the exception source and
itself. #CCC: Same comment as Case 5. #JJJ: I agree

Appendix A.1.3. Procedures that throw exceptions.
In this section, we study the di↵erent possibilities produced by a procedure

call that may or not produce an exception. The handling is more complex, as the
presence of exception return and normal return generate more variety. In spite
of this, the dependencies generated are generally the same: the structures where
exception sources are needed are the same; the representation of the exception
is more granular. As with previous sections, we place Sn-type instructions,
which behave in the control flow graph like statements, in order to be able
to simulate and select all possible slicing criteria w.r.t. a procedure that may
produce exceptions. Cases 7, 8, and 9 display the behaviour of procedure calls
that may throw exceptions.

Case 7 (Procedure that may throw exceptions, exception not handled).
Consider procedure f, declared in lines 6-10 on Figure A.20. It contains a call
to a procedure that may produce exceptions, mayFail, which in turn is declared
in lines 1-4 on the aforementioned figure. Now consider its corresponding ES-
SDG, shown in Figure A.21. The call arc is represented with a dashed edge,
and the return arcs are represented with dotted edges. Here are all nodes and
the slices produced if they were selected as the slicing criterion:

• Enter: the resulting slice contains only itself.
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1 void mayFail() {

2 if (cond)

3 throw new Exception();

4 }

5

6 void f() {

7 S1;

8 mayFail();

9 S2;

10 }

11

12 void g() {

13 S1;

14 try {

15 S2;

16 mayFail();

17 S3;

18 } catch (Exception e) {

19 S4;

20 }

21 S5;

22 }

23

24 void h() {

25 S1;

26 try {

27 S2;

28 mayFail();

29 S3;

30 } catch (IOException e) {

31 S4;

32 }

33 S5;

34 }

Figure A.20: Three procedures in which a procedure that may throw an exception is called,
with no exception handling (f), complete exception handling (g), and partial exception han-
dling (h). The called procedure’s code is displayed at the top (mayFail).

• S1 or mayFail(): the resulting slice contains Enter and the slicing crite-
rion.

• Normal return or exception return: the slice contains the corresponding
exit node from the mayFail procedure definition, throw, if, Enter may-
Fail, mayFail(), Enter and the slicing criterion.

• Exception exit: the slice contains the same nodes as exception return’s
slice, plus the exception exit itself.

• Normal exit or S2: the slice contains the same nodes as normal return’s
slice, plus the slicing criterion.

Case 8 (Procedure that may throw exceptions, exceptions completely caught).
Consider procedure g, declared in lines 12-22 on Figure A.20. It contains a call
to a procedure that may produce exceptions, mayFail, which in turn is declared
in lines 1-4 on the aforementioned figure. Now consider its corresponding ES-
SDG, shown in Figure A.22. The call arc is represented with a dashed edge,
and the return arcs are represented with dotted edges. Here are all nodes and
the slices produced if they were selected as the slicing criterion:

• Enter: the resulting slice contains only itself.

• S1 or try: the slice contains the slicing criterion and Enter.

• S2 or mayFail(): the slice contains the slicing criterion, Enter and try.
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Enter f

mayFail() S1

normal return exception return

normal exit exception exit

Enter mayFail()

S2

if

normal exit exception exit

throw

Figure A.21: ES-SDG corresponding to procedure f in Figure A.20

• Normal return or exception return: the slice contains the correspond-
ing exit node from the mayFail procedure definition, throw, if, Enter
mayFail, mayFail(), Enter and the slicing criterion.

• S3: the slice contains the nodes of normal return’s slice and the slicing
criterion itself.

• catch: the slice contains the nodes of exception return’s slice and the
slicing criterion.

• S4: the slice contains the nodes of catch’s slice and the slicing criterion.

• S5 or normal exit: the slice contains the slicing criterion and Enter. It
does not need any node from the try-catch, as all exceptions produced
are captured. If for any reason an exception source (either mayFail() or
exception return) is included, then the catch node would also be included,
by virtue of the conditional control flow.

• Exception exit: no node is included in the slice, because there is no ex-
ception may reach this node. The only case where additional nodes will be
included is when an exception source is present, and therefore the catch
node would be needed.
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Enter g

S1

S2 mayFail()

S5 normal exit

try

S4

S3

normal return exception return

Enter mayFail()

catch

exception exit

if

normal exit exception exit

throw

Figure A.22: ES-SDG corresponding to procedure g in Figure A.20

Case 9 (Procedure that may throw exceptions, exceptions partially caught).
Consider procedure h, declared in lines 24-34 on Figure A.20. It contains a call
to a procedure that may produce exceptions, mayFail, which in turn is declared
in lines 1-4 on the aforementioned figure. Now consider its corresponding ES-
SDG, shown in Figure A.23. The call arc is represented with a dashed edge,
and the return arcs are represented with dotted edges. Here are all nodes and
the slices produced if they were selected as the slicing criterion:

• S5, exception exit or normal exit: the slice contains Enter, try, mayFail(),
the complete procedure declaration of mayFail, normal return, exception
return, catch and the slicing criterion. In the case of exception exit,
notice how the data dependency of the “active exception” picks up the ex-
ception return node, and otherwise the slice would include nothing more
than exception exit.

• All other nodes behave in the same way as in Case 8.
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Enter h

S1

S2 mayFail()

try

S3

S4S5

normal return exception return

normal exit

Enter mayFail()

catch

exception exit

if

normal exit exception exit

throw

Figure A.23: ES-SDG corresponding to procedure h in Figure A.20

Appendix A.2. Nested exception-catching structures

Consider a procedure with n try-catch instructions, all of them nested;
and assume that the ES-SDG is capable of producing valid slices. Now consider
the case where the outermost try-catch is surrounded by another try-catch,
creating a nested structure of n + 1 try-catch instructions. Each try-catch

may contain other additional instructions and exception sources apart from the
try-catch it holds, but it is not required to do so. In this section, we showcase
the six possible combinations that the n + 1st try-catch introduces in the
system.

Throughout this section, we label all exception sources from within the n
nested try-catch as the inner exception sources, and all exception sources
from within the additional try-catch (but not within the n inner blocks) as
the outer exception sources. Then, we consider where are these two kinds of
exception sources captured. In the case of inner exceptions, it can either be
in any of the inner catch blocks, in the outer catch block or nowhere in the
procedure–meaning they propagate through the call stack. In the case of outer
exceptions, due to them being outside the inner try-catch blocks, they cannot
be captured by inner catch blocks, so they can be captured by either the outer
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Case number 1 2 3 4 5 6
Where are inner
exceptions caught

inner outer none inner outer none

Where are outer
exceptions caught

outer outer outer none none none

Table A.2: All possible combinations for the location where inner and outer exception are
caught (either in inner catch blocks, outer catch nodes or none).

1 void nested() {

2 S1;

3 try {

4 S2;

5 try {

6 S3;

7 inner_source;

8 S4;

9 } catch (Inner i) {

10 S5;

11 }

12 S6;

13 outer_source;

14 S7;

15 } catch (Outer o) {

16 S8;

17 }

18 S9;

19 }

Figure A.24: A procedure with two exception sources in two nested try-catch blocks. In-
structions of the form Sn are statements that do not generate data or control dependencies.

catch block or nowhere in the procedure. Table A.2 shows the combination of
the two locations where inner and outer exceptions are captured, which results
in six di↵erent situations: six di↵erent ES-SDGs.

In each ES-SDG present, the code is the same, but the exceptions caught
at each level vary. A simplified pseudocode is used, in order to avoid changing
the catch and exception source’s type to reflect where each exception is cap-
tured. The pseudo-code for the procedure can be seen in Figure A.24, where
instructions labeled Sn are statements without any e↵ect on control or data de-
pendence; exception sources are displayed as inner_source and outer_source;
and catch instructions are labeled Inner and Outer to be distinguishable. The
following sections showcase the ES-SDG produced for each situation and the
slices that it results in.

Appendix A.2.1. Case 1.
Consider the case when the exceptions produced in each source are contained

at the same level; inner exception sources in the inner catch and outer exception
sources in the outer catch. The corresponding ES-SDG for this case is shown
in Figure A.25. The slices produced by selecting each node are the following:

Enter Only the slicing criterion is in the slice.

S1, try (outer), S9 or normal exit The slice consists of the Enter node and
the slicing criterion.
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enter main()

normal exit

inner
try

inner
source

outer
try

outer
source

S1

S2

S3

S6

S9exception exit

inner
catchS4

S5

outer
catch

S8

S7

Figure A.25: The ES-SDG corresponding to the code in Figure A.24, in the case 1 of Table A.2.

S2, try (inner), outer_source or S6 The slice consists of the Enter node,
the slicing criterion and the outer try node.

S3 or inner_source The slice consists of the Enter node, the slicing criterion
and both try nodes (inner and outer).

S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing
criterion.

S5 The slice consists of inner catch’s slice, plus the slicing criterion.

S7 or catch (outer) The slice consists of outer_source’s slice, plus the slic-
ing criterion.

S8 The slice consists of outer catch’s slice, plus the slicing criterion.
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enter main()

normal exit

inner
try

inner
source

outer
try S1

S2

S3
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outer
source S6

inner
catch
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S4

S5

S8

S7

Figure A.26: The ES-SDG corresponding to the code in Figure A.24, in the case 2 of Table A.2.

exception exit The slice consists of the slicing criterion, as no exception can
reach that node and therefore, it is a “dead node”.

It is also interesting to consider the case where, instead of selecting a slicing
criterion, we select an initial set of nodes in the slice and continue from there.
The first we could build would be to select both exception sources simultane-
ously. The result is that the inner catch is included, but not the outer one,
as there are no instructions after it that need to be executed. Another one is
selecting a statement after the try-catch (S9) and one of the exception sources.
The resulting slice in this case would include the corresponding catch (the inner
one for the inner source and the outer one for the outer source). Finally, if both
exception sources are included, plus S9, both catch statements are necessary;
and both are included in the slice via conditional arcs.
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Appendix A.2.2. Case 2.
Consider the case when the exceptions produced in the inner source are

captured either in the inner or outer catch; and the exceptions produced in the
outer source are captured in the outer catch. The corresponding ES-SDG for
this case is shown in Figure A.26. The slices produced by selecting each node
are the following:

Enter Only the slicing criterion is in the slice.

S1, try (outer), S9 or normal exit The slice consists of the Enter node and
the slicing criterion.

S2 or try (inner) The slice consists of the Enter node, the slicing criterion
and the outer try node.

S3 or inner_source The slice consists of the Enter node, the slicing criterion
and both try nodes (inner and outer).

S4, catch (inner), outer_source or S6 The slice consists of inner_source’s
slice, plus the slicing criterion.

S5 The slice consists of inner catch’s slice, plus the slicing criterion.

S7 or catch (outer) The slice consists of outer_source’s slice, plus the slic-
ing criterion.

S8 The slice consists of outer catch’s slice, plus the slicing criterion.

exception exit The slice consists of the slicing criterion, as no exception can
reach that node and therefore, it is a “dead node”.

Notice how the control dependency arcs reflect the fact that inner_source’s
exception is not completely captured by the inner catch, and therefore, the
instructions that follow it are dependent on inner_source’s execution. In the
case of S4, S6 and outer_source, the control dependence from inner_source

and the conditional arcs are the reason for the inclusion of catch.

Appendix A.2.3. Case 3.
Consider the case when the exceptions produced in the inner source are par-

tially captured either in the inner or outer catch; and the exceptions produced
in the outer source are captured in the outer catch. The corresponding ES-
SDG for this case is shown in Figure A.26. The slices produced by selecting
each node are the following:

Enter Only the slicing criterion is in the slice.

S1 or try (outer) The slice consists of the Enter node and the slicing crite-
rion.
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enter main()

inner
try
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outer
try S1
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normal exitexception exit
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Figure A.27: The ES-SDG corresponding to the code in Figure A.24, in the case 3 of Table A.2.

S2 or try (inner) The slice consists of the Enter node, the slicing criterion
and the outer try node.

S3 or inner_source The slice consists of the Enter node, the slicing criterion
and both try nodes (inner and outer).

S4, catch (inner), outer_source or S6 The slice consists of inner_source’s
slice, plus the slicing criterion.

S5 The slice consists of inner catch’s slice, plus the slicing criterion.

S7, catch (outer), S9 or normal exit The slice consists of outer_source’s
slice, plus the slicing criterion.

S8 The slice consists of outer catch’s slice, plus the slicing criterion.

exception exit The slice consists of exception exit, both catch nodes, inner_source,
both try nodes and Enter.

In the case of exception exit, notice how (1) the inclusion of catch nodes is
via conditional arcs, (2) the inclusion of the inner catch is performed thanks to
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Figure A.28: The ES-SDG corresponding to the code in Figure A.24, in the case 4 of Table A.2.

the transitivity of conditional arcs, and (3) the outer_source is not included,
as it is completely captured by the outer catch, which means that it cannot
produce an exception that reaches exception exit. The same exercise of selecting
multiple nodes can be performed, but most of them pick inner_source almost
immediately, due to its exceptions never being completely captured.

Appendix A.2.4. Case 4.
Consider the case when the exceptions produced in the inner source are

captured in the inner catch, and the exceptions produced in the outer source
are not completely captured. The corresponding ES-SDG for this case is shown
in Figure A.28. The slices produced by selecting each node as the slicing criterion
are the following:

Enter Only the slicing criterion is in the slice.

S1 or try (outer) The slice consists of the Enter node and the slicing crite-
rion.
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S2, try (inner), outer_source or S6 The slice consists of the Enter node,
the slicing criterion and the outer try node.

S3 or inner_source The slice consists of the Enter node, the slicing criterion
and both try nodes (inner and outer).

S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing
criterion.

S5 The slice consists of inner catch’s slice, plus the slicing criterion.

S7 or catch (outer) The slice consists of outer_source’s slice, plus the slic-
ing criterion.

S8, S9, normal exit or exception exit The slice consists of outer catch’s
slice, plus the slicing criterion.

Observe how the data dependency that reaches exception exit is the reason
for the inclusion of the appropriate exception source. Additionally, notice how
the inner catch will only be included when (i) the inner exception source and
(ii) any instruction after the inner try-catch are simultaneously present in the
slice; with (ii) being any of S6, outer_source, S7, outer catch, S8, S9 or any
of the exit nodes.

Appendix A.2.5. Case 5.
Consider the case when the exceptions produced in the inner source are

completely caught in the outer catch, and those produced in the outer source
are not completely captured. The corresponding ES-SDG for this case is shown
in Figure A.29. The slices produced by selecting each node as the slicing criterion
are the following:

Enter Only the slicing criterion is in the slice.

S1 or try (outer) The slice consists of the Enter node and the slicing crite-
rion.

S2 or try (inner) The slice consists of the Enter node, the slicing criterion
and the outer try node.

S3 or inner_source The slice consists of the Enter node, the slicing criterion
and both try nodes (inner and outer).

S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing
criterion.

S5, outer_source or S6 The slice consists of inner catch’s slice, plus the slic-
ing criterion.

S7 or catch (outer) The slice consists of outer_source’s slice, plus the slic-
ing criterion.
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Figure A.29: The ES-SDG corresponding to the code in Figure A.24, in the case 5 of Table A.2.

S8, S9, normal exit or exception exit The slice consists of outer catch’s
slice, plus the slicing criterion.

Similarly to the previous case (4), the inclusion of exception exit is done via
data dependencies. Notice how there is no data dependence between the inner
source and exception exit, because the value thrown there cannot reach the exit,
as it is completely captured by the outer catch.

Appendix A.2.6. Case 6.
Consider the case when the exceptions produced in the inner and outer

sources are not completely caught in any catch. The corresponding ES-SDG
for this case is shown in Figure A.30. The slices produced by selecting each
node as the slicing criterion are the following:

Enter Only the slicing criterion is in the slice.
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Figure A.30: The ES-SDG corresponding to the code in Figure A.24, in the case 6 of Table A.2.

S1 or try (outer) The slice consists of the Enter node and the slicing crite-
rion.

S2 or try (inner) The slice consists of the Enter node, the slicing criterion
and the outer try node.

S3 or inner_source The slice consists of the Enter node, the slicing criterion
and both try nodes (inner and outer).

S4 or catch (inner) The slice consists of inner_source’s slice, plus the slicing
criterion.

S5, outer_source or S6 The slice consists of inner catch’s slice, plus the slic-
ing criterion.
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S7 or catch (outer) The slice consists of outer_source’s slice, plus the slic-
ing criterion.

S8, S9, normal exit or exception exit The slice consists of outer catch’s
slice, plus the slicing criterion.

Notice that the only di↵erence between the ES-SDG for Case 6 (Figure A.30)
and Case 5 (Figure A.29) is the addition of the data dependence between the
inner exception source and exception exit.
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