
Program Slicing of Java Programs ⋆

Carlos Galindo, Sergio Pérez, Josep Silva∗

Valencian Research Institute for Artificial Intelligence (VRAIN)
Universitat Politècnica de València

Camino de Vera s/n
E-46022 Valencia, Spain

Abstract

Program slicing is a technique to extract the part of the program that can
affect the values computed at a given program point (known as the slicing cri-
terion). To represent programs, program slicing uses the System Dependence
Graph (SDG), for which several extensions like the Java System Dependence
Graph (JSysDG) or the Sub-Statement Linear Dependence Graph (SSLDG)
exist to deal with Java object-oriented programs. In this paper, we present
an incompleteness result proving that these graphs do not produce complete
slices in all cases, and specifically when some object variables are selected as
the slicing criterion. We first identify the source of the problem: the repre-
sentation of dependences between partial definitions of objects is ill-defined in
these approaches, leading to a loss of completeness in many cases. To solve
this limitation, we extend these representations with the addition of a specific
flow dependence for object type variables called object-flow dependence. This
extension provides a more accurate flow representation between object variables
and its data members and it allows us to obtain complete slices when an object
variable is selected as the slicing criterion.

Keywords: Program slicing, JSysDG, flow dependence, object-flow
dependence

⋆This work has been partially supported by the EU (FEDER) and the Spanish MCI/AEI
under grants TIN2016-76843-C4-1-R and PID2019-104735RB-C41, by the Generalitat Valen-
ciana under grant Prometeo/2019/098 (DeepTrust), and by TAILOR, a project funded by
EU Horizon 2020 research and innovation programme under GA No 952215. Sergio Pérez
was partially supported by Universitat Politècnica de València under FPI grant PAID-01-18.
Carlos Galindo was partially supported by the Spanish Ministerio de Universidades under
grant FPU20/03861.

∗Corresponding Author. Phone Number: (+34) 96 387 7007 (Ext. 73530)
Email addresses: cargaji@vrain.upv.es (Carlos Galindo), serperu@dsic.upv.es

(Sergio Pérez), jsilva@dsic.upv.es (Josep Silva)

Preprint submitted to Elsevier September 27, 2022

1. Introduction

Program representation is an important field in the program analysis re-
search area, and it is at the base of most program analysis and transformation
techniques. An accurate representation of the internal program dependences is
strongly associated with the quality, precision, and performance of many pro-
gram analysis techniques. In this paper, we introduce a program representation
for the analysis of object-oriented programs. Specifically, we propose a pro-
gram slicing technique for object-oriented programs based on our new program
representation.

Program slicing [1, 2] is a technique to extract from a program the set of
statements, the program slice [3], that affects the value of a variable v at a given
program point p (⟨p, v⟩), which is known as the slicing criterion [4]. Program
slicing is applied in many disciplines such as software maintenance [5], debugging
[6], and program specialization [7], among others.

Example 1.1 Consider the Java code snippet in Figure 1a, which contains a
program with two classes: A and Main. The latter contains a main method that
creates an instance of A.

1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(a) Java code

1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(b) Slice w.r.t. ⟨14,i⟩

Figure 1: Java code fragment and slice with respect to variable i at line 14.

If we observe that variable i at line 14 produces a wrong value, we can use
program slicing to compute the part of the program that may have influenced this
value, and thus may contain the bug. Figure 1b shows the slice (the grey code is
excluded from the slice) with respect to ⟨14, i⟩, represented with underlined code.
Method f of class A internally uses its data member y to compute its result,
but not data member x. Hence, as the slicing criterion is the result of a call to
method f, the slice contains the definition of method f and tracks down where
the value of y comes from. In this example, the value of y comes from the call
to the A’s constructor in line 13. Although object a1 is included in the slice,

2

we can exclude its data member x and its initialization, since its value does not
affect the value of the slicing criterion ⟨14,i⟩.

1.1. The problem

Currently, one of the most advanced program representations used to slice
object-oriented programs is the Java System Dependence Graph (JSysDG) [8],
a graph that can represent packages, interfaces, classes, and methods; and that
gives support to polymorphism, dynamic binding, and inheritance. The slice
shown in Figure 1b is the minimal slice of the code in Figure 1a, and it has been
computed with the JSysDG.

Although, in general, the JSysDG provides accurate slices, in this paper, we
present an incompleteness result: we show that some scenarios exist where the
JSysDG’s slices are not complete. Therefore, we do not reveal an imprecision
problem (the slices contain more code than they need), but an incompleteness
problem (the slices contain less code than they need), which means that some
code that can affect the slicing criterion is not included in the slice. This is
a fundamental problem because completeness is a property required by most
applications of program slicing. For instance, the slice computed from a bug
symptom could not contain the bug. Or the slice computed from a variable
to produce a specialized program could produce a specialized code that is not
equivalent to the original program.

The source of the problem is that JSysDG is not prepared to select an object
variable as the slicing criterion, and it can produce a slice where only some of
its required data members are included. This lack of completeness is caused by
the definition of flow dependence in the JSysDG. The classic flow dependence
[1] was designed for variables that are atomically defined or used in a single
statement, but has never been reconsidered to deal with object variables, which
can be partially defined or used (e.g., by defining or using only one of its data
members) in a statement.

Example 1.2 (JSysDG completeness counterexample) Consider again the
code in Figure 1a. We can define the slicing criterion ⟨15, a1⟩, which means
that we are interested in the whole object a1 after1 executing the method call in
line 15. This means that the slice should include all the data members of a1,
and the code needed to define them.

The code in black in Figure 2a is the result obtained by slicing the JSysDG.
The JSysDG includes the definition of a1.x in the slice because the function
call a1.setX(3) is also included as part of the slice, but it ignores all the data
members not being defined there. As a result, data member a1.y in line 2 and its
definition in line 5 are not included in the slice. Even the call to A’s constructor
is missing. The result is an incomplete slice for ⟨15, a1⟩, which provides no value

1In the rest of the paper, for simplicity in our examples, we interpret the slicing criterion
as “a1 after executing line 15”. The complementary interpretation “a1 before executing line
15” can be achieved by simply changing the line of the slicing criterion (i.e., ⟨14, a1⟩).

3

1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(a) JSysDG slice

1 class A{
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 public int f(int a) { return a * y; }
9 }

10
11 class Main{
12 public static void main(String[] args){
13 A a1 = new A(1,2);
14 int i = a1.f(10);
15 a1.setX(3);
16 A a2 = a1;
17 }
18 }

(b) Expected slice

Figure 2: JSysDG and expected slices of the code in Figure 1 w.r.t. ⟨15, a1⟩.

for data member a1.y, nor for a1 itself. The expected complete slice is the code
in black of Figure 2b.

The problem described for the JSysDG is inherited by its later extensions,
such as the Sub-Statement Level Dependence Graph (SSLDG) [9]. The SSLDG
extends the theoretical model proposed by the JSysDG to accept more concrete
slicing criteria. Both models share the same representation for object variables
in method calls, which is the key factor of the incompleteness problem.

This paper presents an approach that solves the problem described in Ex-
ample 1.2. We augment the JSysDG by replacing the current definition of flow
dependence with three more accurate definitions: the standard definition of flow
dependence for primitive variables and another pair of new definitions for object
variables that we call object-flow dependence and object-reference dependence.
These definitions require the specialization of the ‘defined variables (DEF)’ and
‘used variables (USE)’ sets of each statement, two concepts coming from the
JSysDG that are explained later through Definitions 2.1 and 2.2. The special-
ization of these sets allows the JSysDG to distinguish when object variables are
being totally or partially used or defined in method calls.

The rest of the paper is structured as follows. Section 2 recalls some key
concepts about the construction of the JSysDG. Section 3 explains and justifies
the incompleteness problem of the current JSysDG when slicing an object that
is the caller of a method call, illustrating it with an example in Java. Then,
in Section 4, the DEF and USE sets for every statement are redefined in or-
der to properly represent definitions and uses of object variables and its data
members. After that, Section 5 formally introduces object-flow dependence and
object-reference dependence, and justifies their necessity in OO programs. Sec-
tion 6 presents some slicing restrictions that need to be added to the slicing
algorithm when traversing object-flow dependences; and Section 7 presents the
empirical evaluation comparing the JSysDG and the JSysDG extended with

4

object dependences. Finally, Section 8 presents the related work and Section 9
concludes.

2. Background: The Java System Dependence Graph (JSysDG)

This section has been included to keep the paper self-contained. Those
readers already familiar with the JSysDG can skip this section, where we explain
how the program representation field has evolved to reach the current solution
to properly represent the program in Figure 1a so that we can automatically
obtain the slice shown in Figure 1b. In particular, we explain the JSysDG
through its incremental evolution:

CFG→ PDG→ SDG→ ClDG→ JSysDG

CFG. The starting graph to build a JSysDG is the Control Flow Graph (CFG) [10].
It is a graph that represents all possible execution paths of a method. In the
CFG, each statement is represented with a node, and two nodes are connected
if they may be executed sequentially. Two nodes, Enter and Exit , are added as
the initial and final nodes of the method execution respectively. Additionally,
every CFG node is augmented with two sets: the definition set and the use set,
that denote the set of variables respectively defined and used at this CFG node.
Formally,

Definition 2.1 (Definition set (DEF)) Let G be a CFG. Let n be a node in
G representing a statement s. The definition set of n is denoted with DEF (n)
and it contains all the program variables that are defined (their value is assigned)
at statement s.

Definition 2.2 (Use set (USE)) Let G be a CFG. Let n be a node in G rep-
resenting a statement s. The use set of n is denoted with USE (n) and it contains
all the program variables that are used (their value is accessed) at statement s.

PDG. From the CFG we can calculate two different dependences that are used
to construct a Program Dependence Graph (PDG) [11]. These dependences are
the control dependence and the flow dependence, defined hereunder.

Definition 2.3 (Control dependence) Let G be a CFG. Let n and m be
nodes in G. A node m post-dominates a node n in G if every directed path from
n to the Exit node passes through m. Node m is control dependent on node n
if and only if m post-dominates one but not all of n’s CFG successors.

Definition 2.4 (Flow Dependence) Let G be a CFG. Let n and m be nodes
in G. Node m is flow dependent on node n if:

(i) v ∈ DEF (n),

(ii) v ∈ USE (m), and

(iii) there exists a control-flow path from n to m where v is not redefined.

5

The PDG of a method is a graph G = (N,A) where N is the set of nodes
of the CFG minus the Exit node, and A is a set of arcs that represent control
and flow dependences.

SDG. A program usually contains a set of methods connected by method calls.
For this reason, in order to connect the PDGs of all the methods of a program
and simulate parameter passing between calls and definitions, Horwitz et al.
defined the System Dependence Graph (SDG) [12]. An SDG represents each
parameter of a method with a formal-in node, and a formal-out node represents
a parameter that may be modified inside the method. Analogously, each method
call is augmented with an actual-in node for each argument of the call, and
an actual-out node for each argument that may be modified by the method.
The SDG connects method calls with their definitions representing parameter
passing with (interprocedural) parameter arcs (input arcs connect actual-in with
formal-in nodes and output arcs connect formal-out with actual-out nodes).
Additionally, a call arc is generated to connect the call node to the method
Enter node. Finally, a new kind of arc called summary arc is added to the
SDG to describe the relation between input and output arguments in method
calls. A summary arc connects an actual-in node and an actual-out node if the
value related to the actual-in node is needed to calculate the value defined in
the actual-out node.

ClDG. With an SDG as its base, the Class Dependence Graph (ClDG) [13]
augments its representation to consider OO programs. The ClDG defines a
class entry node for each class, connected to the method Enter nodes of all
its methods by class membership arcs, and to all its data members by data
membership arcs. In the ClDG graph, inheritance is represented with a class
dependence arc from the base class to the derived classes.

JSysDG. The Java System Dependence Graph (JSysDG) augments the ClDG
with a representation for polymorphic calls and dynamic binding. This can be
seen in Figures 3, 4, and 5, which shows a Java program and two portions of
its JSysDG that illustrate different aspects of the graph described above. This
figure also shows how the JSysDG represents two specific scenarios that are
worth mentioning to later understand the source of incompleteness:

1. A polymorphic object is the caller of a method, and the call’s
target is only known at runtime. The JSysDG represents the caller
and its defined and used data members as a tree. There is a node for each
possible dynamic type connected to the corresponding method definition.
An example of this situation can be seen in Example 2.5.

Example 2.5 Consider the code in Figure 3, where a Java program with
two classes with an inheritance relationship (B extends A) is represented.
The program also contains a Main class with a main method that creates
an object of either A or B dynamic type depending on a randomly generated

6

1 class A{
2 public int x, y;
3 public A (int a, int b) { x = a; y = b; }
4 public int getX() { return x; }
5 public int getY() { return y; }
6 public void f() { x = x + 1; }
7 }
8 class B extends A{
9 public B (int a, int b){ super(a,b); }

10 public void f() { x = x + 2; }
11 }

12 class Main{
13 public static void main(String[] args){
14 A a;
15 if (Math.random() > 0.5)
16 a = new A(1);
17 else
18 a = new B(2);
19 a.f();
20 g(a);
21 }
22 public void g(A a){
23 System.out.println(a.getX() + a.getY());
24 }
25 }

Figure 3: Fragment of Java code with a polymorphic call.

call
a.f()

Control Arc
Flow Arc
Interprocedural Arc
Summary Arc

method
f()

x_in x_out

x = x + 1

class A class B

method
f()

x_in x_out

x = x + 2

a

A.f B.f

x_in x_inx_out x_out

Figure 4: JSysDG of call a.f() in line 19 of Figure 3.

number. In line 19, the method that would be executed in the call a.f()
can only be determined at runtime, thus, the static representation of the
program needs to define both possibilities. An example of how the JSysDG
represents this method call is shown in Figure 4.

2. A method call contains a polymorphic object as a parameter. In
this scenario the JSysDG representation follows the proposal introduced
by Liang and Harrold in [14], where the object parameter is represented

7

call
g(a)

Control Arc

Interprocedural Arc

method
g(a)

x y

BA

yx

a

x y

BA

yx

a System.out.println(…)

Figure 5: JSysDG of call g(a) in Line 20 of the code in Figure 3.

in the graph as a tree structure, with a subtree for each possible dynamic
class, unfolding all its data members in both method call and definition.
This scenario is shown in Example 2.6.

Example 2.6 Consider the call to method g in line 20 of Figure 3. This
call receives a polymorphic object (variable a) as a parameter. The cor-
responding JSysDG representation is shown in Figure 5. In the JSysDG,
only data members inside each type tree are linked, in order to accurately
select only those data member used inside the method definition of g. Note
that, when we follow the proposed representation, if an object is represented
recursively, the tree representation may be infinite. To address this issue,
the JSysDG employs a k-limiting approach (a tree representation is only
unfolded to a level k).

3. Limitations of the JSysDG

As it has been proven with Example 2, even though being the current most
accurate representation of Java OO programs, the JSysDG can produce incom-
plete slices. In this section we explain what its cause is.

In Java, program variables can be of two different types. On the one hand, we
have primitive variables, which are atomic (e.g., int i = 42). These variables
are always defined and used atomically, i.e., every time a primitive variable is
defined in the program, the new value of the variable replaces the previous one,
and the previous value cannot be further accessed. On the other hand, there
are object variables, which are compositionally formed by a collection of data
members. Each data member, in turn, can be a primitive variable, or another
object variable.

The JSysDG was proposed by Walkinshaw et al. [8] extending the represen-
tation provided by Liang and Harrold for C++ [14]. Both approaches share the
same definition for program slice and slicing criterion:

8

“A program slice is a set of program statements and predicates that
might affect the value of a program variable v that is defined or used
at a program point p; ⟨p, v⟩ is known as the slicing criterion.”

According to this definition, an object variable can be considered as the
slicing criterion. If we select an object variable as the slicing criterion, the slice
should include all the statements that might affect the value of any of its data
members. Nevertheless, as we have seen in Figure 4, when an object variable
is the caller of a method call, only the used and defined data members of the
object have a representation in the unfolding tree as argument-in and argument-
out nodes respectively. Additionally, all the flow dependences between object
definitions and uses in method calls are propagated through their data members,
but they never connect the node that represents the object variable itself.

If we put all this knowledge together, we can identify a specific scenario where
the slice obtained by the JSysDG is not complete when selecting some object
variables as the slicing criterion. This scenario is given in the main method of
Figure 1, in particular in lines 13 and 15 (the relevant code is shown in Figure 6).
Line 13 creates object variable a1 of type A instantiating its data members x

and y with a call to A’s constructor. Then, line 15 modifies only the value of
its data member x. Therefore, after line 15, the values of the data members
(x and y) of object a1 come from two statements: x is defined in line 15 (with
value 3) and y is defined in line 13 (with value 2). However, there is not flow
dependence between these two statements because method call a1.setX(3) does
not depend on any data member of object variable a1 to define data member x.
The described situation is represented in Figure 6.

Figure 6 represents with grey nodes the slice produced by the JSysDG with
respect to ⟨15, a1⟩. This slicing criterion is marked in the JSysDG with a bold
line. Note that, when the slicing criterion is an object variable, then all the data
members are marked as the slicing criterion as well. Thus, the slicing criterion is
formed from the control dependence subtree of node a1. This slice corresponds
to the code shown in Figure 2a. Contrarily to the expected slice, which is the
one in Figure 2b, the slicing traversal of the JSysDG ends without reaching
the declaration of a1, the constructor call new A(1, 2), and data member y in
class A. This counterexample reveals that flow dependences of object variables
need to be redefined so that slices are correctly computed when a whole object
variable is selected as the slicing criterion.

4. Definitions and uses of object variables

In order to solve the problem identified in the previous section, we need to
extend the standard notion of flow dependence (see Definition 2.4) for the case
of objects. We start by giving a more accurate description for the DEF and
USE sets when object variables are contained inside them.

Unlike primitive variables, object variables are not completely replaced every
time they are defined. Since they are formed from a collection of data members,
a statement may modify only some of them. As a result, the definition of all

9

// Class A
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }

// Class Main
12 public static void main(String[] args){
13 A a1 = new A(1,2);
15 a1.setX(3);
17 }

call new
A(1,2)

method
main()

a11 2

x y

call
a1.setX(3)

A.setX

x_out

3

constructor
A(a,b)

a_in x_outb_in y_out

x = a y = b

method
setX(a)

a_in x_out

x = a

Class Main

Class A

Control Arc
Flow Arc

Interprocedural Arc
Summary Arc

a1

Slicing Criterion

Figure 6: JSysDG representing lines 13 and 15 of the main method in Figure 1, and slice w.r.t.
⟨15, a1⟩ (grey nodes represent the slice, bold nodes the slicing criterion).

the data members of an object variable may be split into different statements.
Hence, object variables can be defined in two different ways:

Definition 4.1 (Total definition of an object variable) An object variable
v that points to a memory location m1 is totally defined in a program statement
s if the execution of s makes v to point to m2, and m1 ̸= m2 (v points to a
different object).

Total definitions appear in two different scenarios:

1. An assignment of an object variable with a constructor call. This
happens, e.g., in A a1 = new A(1,2) (see line 13 of Figure 1), where a1 is
totally defined. Constructor methods always define2 all the data members
of the variable and never use them. Hence, the DEF set for this statement
(DEF (#13)) includes the object variable itself and all its data members.
The order in which all these definitions occur is crucial for the definition
of flow dependence. For this reason, we transform the DEF set into an
ordered sequence called DEF os where all data members are defined first,
and the object variable is defined at the end, e.g., the ordered sequence of
definitions in the mentioned statement is DEF os(#13) = [a1.x, a1.y, a1].
In this scenario, USE (#13) = ∅ since no variable is used.

2This definition can be explicit or implicit, because Java initializes all data members by
default.

10

2. An alias assignment between two object variables that point to
different objects. This happens, e.g., in A a2 = a1 (see line 16 of Fig-
ure 1), where a2 is totally defined3. As in the previous scenario, the DEF
set is transformed into an ordered sequence where data members are de-
fined first, and the object variable is defined at the end. In contrast,
USE (#16) remains as a set of uses, and contains the object variable of
the right-hand side of the assignment ({a1}).

Definition 4.2 (Partial definition of an object variable) An object vari-
able v is partially defined in a program statement s if v points to the same object
o before and after the execution of s, and s defines at least one data member of
o.

Partial definitions occur when a statement modifies at least one data member
of an object variable, but not the object it points to. Partial definitions appear
in two different scenarios:

3. A method call that defines a data member of the caller. This
happens, e.g., in a1.setX(3) (see line 15 of Figure 1). Method calls may
partially define object variables by defining some or all of its the data
members. The DEF set is also transformed to an ordered sequence which,
as it happened in total definitions, includes all the data members defined
inside the method followed by the object variable itself. On the other
hand, the USE set includes all the data members used inside the method
together with the caller object itself, whose reference is needed to make
the call.

4. An assignment of an object variable’s data member. This happens,
e.g., in a1.x = 42. The JSysDG treats this case as a particular case of the
previous scenario because the JSysDG inherits the program assumptions
given by Liang and Harrold when building their version of the ClDG:
“We further assume that data members of an object can be accessed only
through a method (we replace a direct reference to a data member of an
object as a method call).”. For this reason, before building the JSysDG,
a1.x = 42 is a1.setX(42). Therefore, the DEF set turns into an ordered
sequence that contains data member a1.x followed by the object variable
itself. In this case, the USE set contains the object variable defined (a1).

Example 4.3 Table 1 provides an example of DEF and USE sets for the main

method of the program in Figure 1. In this table there are examples of the
described scenarios. Definitions and uses appear in the order described in the
previous scenarios.

This new method to annotate definitions and uses of object variables in
program statements is of fundamental importance for the redefinition of flow

3This type of total definitions include also assignments with the form A a = f(); where
an object variable is defined through the return of a method call.

11

Table 1: The ordered sequence DEFos and the USE set of some of the statements in the main
method of Figure 1a.

Scenario Statement DEF os USE
1 A a1 = new A(1,2); [a1.x, a1.y, a1] ∅
3 a1.setX(3); [a1.x, a1] {a1}
2 A a2 = a1; [a2.x, a2.y, a2] {a1}

dependence. Moreover, it comes with an important advantage over the previous
formulation: It allows us to differentiate the specific moment in which a data
member and an object is defined or used and, thus, it allows us to slice a
program with respect to a specific instant in the computation (for instance, we
can slice a.setX(41) with respect to the value of a ‘before’ or ‘after’ the method
invocation). To incorporate this feature to the JSysDG, we have enhanced the
graph representation for object variables at the scope of a method call. On the
one hand, we provide an object tree for the scope to represent its value before
the call (scope in). The root of this tree represents the use of the object variable,
and the tree contains the data members used inside the function call. On the
other hand, if the object is modified during the method invocation, we provide
another object tree that represents its value after the call (scope out). The root
of this second tree represents the definition of the object variable and it contains
the data members defined inside the function call. For instance, considering the
function call a.setX(41), the resulting JSysDG would be the following:

call a.setX(3)

A.setX

x_out

3 a_outa_in

A.setX

// Class A
7 public void setX(int a) { x = a; }

// Class Main
12 public static void main(String[] args){
15 a1.setX(3);
17 }

Figure 7: Input and output scopes in a method call.

5. Definition of object-flow and object-reference dependences

In Java, as it happens in most programming languages, a variable cannot
be used without being previously defined. The definition of a primitive variable
is always total, but, as shown in Section 4, the definition of an object variable

12

can be partial. This poses new difficulties in the computation of the usual flow
dependence. In fact, the standard definition (see Definition 2.4) is insufficient.
Let us illustrate the problem with a simple example.

Example 5.1 Consider the code in Figure 8a, where the primitive variable x

is defined twice and then used. According to Definition 2.4, x in line 4 depends
on x in line 3, but x in line 4 does not depend on x in line 2.

1 (...)
2 int x = 5; // def x
3 x = 1; // def x
4 y = x; // use x

(a) Def-use with primitive variables.

1 (...)
2 A a = new A(); // def a
3 a.setX(1); // def a
4 a.setY(2); // def a
5 b = a; // use a

(b) Def-use with object variables.

Figure 8: Flow dependence in presence of primitive and object variables.

If we consider, however, the code in Figure 8b, we have an analogous situ-
ation: a is defined twice and then used. Therefore, according to the standard
definition of flow dependence, a in line 5 flow depends on a in line 4 (which is
correct), but a in line 5 does not depend on a in line 3 (which is clearly wrong).

The rationale why Definition 2.4 does not work with object variables is
because they can be partially defined, while primitive variables are always totally
defined. This is also the problem of the JSysDG: it uses the standard definition
of flow dependence (Definition 2.4) with object variables. The solution is to
extend the definition of flow dependence to account for objects. Interestingly,
this extension allows for novel situations. For instance, in Figure 8b, a in line 5
depends on a in line 3 (even though it is redefined in line 4), but also, a (partial)
definition can depend on another definition. In particular, a in line 4, which is
a (partial) definition, depends on a in line 3, which is another definition.

With all these ideas, we identify (and formally define) two new dependences
that complement the classical flow dependence with a specific treatment for ob-
ject variables (it does not apply to primitive variables, which continue using the
classic flow dependence definition (Definition 2.4)). We call these new depen-
dences object-flow dependence and object-reference dependence. The former can
be formally defined with an extended CFG.

Definition 5.2 (Extended Control-Flow Graph) Given a CFG G = (N,A),
its extended version eCFG is a graph G′ with the same nodes and arcs as G with
one exception: every node n ∈ N that defines an object variable and contains
m > 1 variable definitions (DEF os(n) = [v1, v2 . . . vm]) is replaced by a se-
quence of nodes (n1, ..., nm, connected by arcs) where each variable definition is
represented by one single node.

The eCFG is useful to explicitly represent the order in which a sequence
of operations happen inside a single statement. These operations cannot be
distinguished in a CFG because all of them are represented with one single node,

13

a1 = call new A(1,2)
DEFos(n) = [a1.x,a1.y,a1]

Control Flow Arc

n

(a) CFG node

a1 = call new A(1,2)
DEFos(n1) = [a1.x]

a1 = call new A(1,2)
DEFos(n2) = [a1.y]

a1 = call new A(1,2)
DEFos(n3) = [a1]

n1

n2

n3

(b) eCFG nodes

Figure 9: CFG and eCFG nodes corresponding to statement A a1 = new A(1,2).

while they can be distinguished in the eCFG because they are represented by a
sequence of nodes.

Example 5.3 Consider the assignment A a1 = new A(1,2) in line 13 of Fig-
ure 1. This assignment contains a total definition of variable a1 and its CFG
node together with its sequence of definitions and uses are shown in Figure 9a.
Note that the sequence of definitions appear in the order described by scenario
1 in Section 4. Since the node contains three different definitions, the node
must be split into different nodes in the corresponding eCFG. Figure 9b shows
how the initial CFG node is split into three different nodes (one per variable
definition) which are sequentially connected to form the corresponding eCFG
representation.

We can now formally define object-flow dependence.

Definition 5.4 (Object-Flow Dependence) Let n and m be nodes in an
eCFG. m is object-flow dependent on n if:

(i)#1 n defines an object o,

(ii) m uses the object o, and

(iii) there exists a control-flow path from n to m where object o is not redefined.

or

(i)#2 n defines a data member x of an object o,

(ii) m defines object o4, and

(iii) there exists a control-flow path from n to m where data member x of o is
not redefined.

4I.e., in the eCFG, DEFos(m) = [v], where v is an object variable that points to object o.

14

The first set of conditions corresponds to the classic definition of flow de-
pendence, the definition-use dependence, which also applies to object variables,
even if the definition is partial. The second one considers a definition-definition
dependence, produced by partial definitions. This flow dependence considers the
case when the slicing criterion is an object variable, and it depends on all the
complementary partial definitions that, together, produce the complete value of
that variable.

Object-flow dependence represents all situations in which the values of the
data members of an object are propagated. In particular, it is able to identify
multiple partial definitions of an object and properly connect all of them to pro-
duce the whole value of an object. But object-flow dependence does not consider
the object reference of objects. Unlike primitive variables, object variables have
a pointer to a memory position where a specific object is stored. This pointer
is updated every time a total definition of an object variable is executed (see
Definition 4.1). Example 5.5 shows a scenario where object-flow dependence is
insufficient to include the reference of an object in a slice.

Example 5.5 Consider the code in Figure 10, where an object a of class A
(which has one single data member x) is totally defined in line 2. Then, line 3
redefines data member x (even though its unique data member is redefined, the
object reference remains unchanged). Finally, line 4 contains a use of variable
a. All object-flow dependences in this code are represented in the graph of the
figure labelled with #1 and #2. These object-flow dependences are the ones
generated by the first (#1) and second (#2) sets of conditions in Definition 5.4,
respectively.

With these dependences, the slice computed for ⟨4, a⟩ is shown with grey
nodes. Clearly, this slice is incomplete, because line 2 should be included in the
slice. The problem is that there is a missing dependence between a out in line 3
and a in line 2. The missing part is the object reference of a, which is defined
in line 2. The rationale is the following: even though all data members of a out
are defined in line 3, the object reference of a out is not. Therefore, a out in
line 3 must depend on the code that defines its object reference (line 2).

To account for these missing dependences, we define a new type of depen-
dence called object-reference dependence that complements object-flow depen-
dence. It connects objects with their object reference. Formally,

Definition 5.6 (Object-Reference Dependence) Let G be a CFG. Let m
and n be nodes in G. n is object-reference dependent on m if m totally defines
an object o, n partially defines object o, and there exists a control-flow path from
m to n where object o is not totally defined.

Object-flow and object-reference dependences are the key elements to solve
the incompleteness problem of the JSysDG. The completeness of both depen-
dences with respect to any definition-use combination of statements with object
variables is an important result that we formulate here and prove in Appendix
A and Appendix B.

15

1 (...)
2 A a = new A(0);
3 a.setX(1);
4 A b = a;

A b = a

ENTRY

#2

call new
A(0)

0 a

x

call a.setX(1)

A.setX

x_out

1 a_out

#2

#1

Control Arc

Object-Flow Arc

Summary Arc

#1
a_in

A.setX

Slicing Criterion

Figure 10: Code with data member redefinition (left) and its JSysDG with object-flow (right).

Theorem 5.7 Object-Flow Completeness.
Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable or a
data member of an object variable defined at s1. If the value of an object o at
sn data depends on the execution of s1, then there is a transitive object-flow
dependence between s1 and sn.

Theorem 5.8 Object-Reference Completeness
Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable totally
defined at s1. If the reference of an object variable v at sn depends on the
total definition of s1, then there is a path formed by object-flow and/or object-
reference arcs between s1 and sn.

The final JSysDG that includes our new dependences is shown in the follow-
ing example. With object-reference dependence it solves the problem explained
in Example 5.5.

Example 5.9 Consider again the code in Figure 1a. Figure 11 shows its asso-
ciated JSysDG. The upper part of the figure corresponds to the representation
of class Main, where we can see how object dependences are also defined over
the tree structure of method calls. Although object dependences add arcs be-
tween object variables, the original definition of flow dependence is still applied
to primitive variables. This happens in the call a1.f(10), where data member
y of the constructor call is linked to the argument-in node y in. We can see
that the object-reference arc is needed to connect the object variable a1 after
the call a1.setX(3) with the construction of this object in call new A(1,2).
This JSysDG extended with object dependences can properly slice the graph from
any slicing criterion. For instance, the slice computed for the slicing criterion
⟨15, a1⟩ in Figure 1a would be the expected slice, i.e., the code in black in Fig-
ure 2b.

16

A a2 = a1

method
main()

call new
A(1,2)

1 2 a1

yx

call
a1.setX(3)

A.setX

x_out

3 a1_out

call
a1.f(10)

A.f

y_in

10a1_in i

constructor
A(a,b)

a_in x_outb_in y_out

x = a y = b

method
setX(a)

a_in x_out

x = a

Class A
method

f(a)

y_in f_out

return a * y

Class Main

a_in

Control Arc

Flow Arc Object-Flow Arc

Interprocedural Arc

Summary Arc

1st Phase Slicing Alg. 2nd Phase Slicing Alg.

Slicing Criterion

A.setX

a1_in

Object-Reference Arc

Figure 11: JSysDG of the program in Figure 1 and slice w.r.t. ⟨15, a1⟩.

6. The slicing algorithm

The JSysDG slicing algorithm is the standard one proposed by Horwitz et
al. [12]. It computes slices in two phases: (i) traverse the graph backwards from
the slicing criterion collecting all nodes reached using any arc except for output
arcs, (ii) traverse the graph backwards from any node in the slice collecting all
nodes reached using any arc except call and input arcs. The overall process has
a linear time complexity. This algorithm can be used with our graph, producing
the same precision as with the JSysDG. However, this algorithm does not take
advantage of the new object-flow dependences, producing a loss of precision.
The standard algorithm would include in the slice all the data members of an
object variable even if we are only interested in one of them. For instance, in
Figure 11, if we consider the node y inside the method call new A(1, 2), the
algorithm would unnecessarily include in the slice data member x and its value

1 (due to arc a1
#2←−− x).

The problem can be solved by limiting the traversal of the object-flow arcs
in certain cases. When the traversal reaches a node n, an incoming object-flow
arc can only be traversed if one of the following three conditions is true:

1. n has been reached via an object-flow arc,

2. n is the slicing criterion, or

3. n is a predicate.

Condition 1 ensures that the traversal of object-flow arcs is still transitive.
Conditions 2 and 3 provide a starting point to traverse object-flow arcs. When

17

the slicing criterion is an object variable (Condition 2), we need to traverse all
object-flow arcs to include in the slice the value of all its data members. On
the other hand, in Condition 3, when the traversal reaches a predicate (e.g.,
the condition of an if or a while statement) we need to follow object-flow arcs
to include the data members used by its condition in order to keep the slice
complete. The restriction imposed to the traversal of object-flow arcs increases
the precision of the algorithm in the presence of object variables, while keeping
its linear time complexity. Algorithm 1 includes all these conditions in the
original slicing algorithm proposed in [12], making it suitable to traverse the
JSysDG after adding object-flow dependences.

Algorithm 1 illustrates the slicing process by including a couple of relevant
changes to Horwitz’s algorithm. The first one (A) is that the slicing criterion
nsc is now used as a parameter of function MarkReachingNodes, since this
function needs to identify in Line 16 whether the current node is the slicing
criterion (to check Condition 2). Additionally, (B) the WorkList in function
MarkReachingNodes contains now tuples of two elements (see Line 9) in-
stead of a single element, storing also the information about the type of the

Algorithm 1 Slicing Algorithm for the JSysDG with Object-Flow Dependence

Input: A JSysDG G and the slicing criterion node nsc .
Output: The set of nodes that compose the slice S of G w.r.t. nsc .
Initialization: S0 ← {⟨nsc ,none⟩}.

1: function MarkNodesOfSlice(G,nsc)
2: S1 ← MarkReachingNodes(G,S0, nsc , {Output}) ▷ Phase 1
3: S2 ← MarkReachingNodes(G,S1, nsc , {Call , Input}) ▷ Phase 2
4: S ← {n | ⟨n, arcType⟩ ∈ S2}
5: return S

6: function MarkReachingNodes(G,N, nsc ,ArcTypes) ▷ Change (A)
7: WorkList ← N
8: while WorkList ̸= ∅ do
9: select some ⟨n, lastArcType⟩ ∈WorkList ▷ Change (B)

10: WorkList ←WorkList \ ⟨n, lastArcType⟩
11: for all arc ∈ getIncomingArcs(n) do
12: if arcType ∈ ArcTypes then
13: continue
14: m← getSourceNode(arc)
15: if arcType = ObjectFlow then
16: if lastArcType ̸= ObjectFlow ∧ n ̸= nsc ∧ ¬isPredicate(m) then
17: continue
18: N ← N ∪ ⟨m, arcType⟩
19: WorkList ←WorkList ∪ ⟨m, arcType⟩
20: return N

18

last traversed arc (to check Condition 1). The three aforementioned conditions
are checked in lines 15-17. If any of them holds then the current node is not
included in the slice.

Example 6.1 shows how the application of Algorithm 1 solves the incom-
pleteness problem of the JSysDG presented in Section 3.

Example 6.1 The graph in Figure 11 represents the JSysDG of the code in
Figure 2 augmented with object-flow and object-reference dependences. It shows
the slice computed with respect to the object variable a1 in line 15 after the
method call a.setX() (the slicing criterion node is marked with a bold line in
the graph). To clearly show the two traversal phases of the algorithm, the slice
is divided into two sets of nodes. The nodes marked in light grey are added to
the slice during Phase 1. On the other hand, the dark grey nodes are the nodes
added to the slice during Phase 2. The slice code is exactly the expected slice
shown in Figure 2b. It is worth mentioning that the change proposed in Section 6
to Horwitz et al.’s algorithm has a direct impact on the slice’s precision.

Note that the traversal algorithm improves its accuracy by preventing the x

data member of object variable a1 in method call new A(1,2) to be included
in the slice. This happens because x can only be reached from a1 (through an
object-flow arc) and this arc can only be traversed from another object-flow arc,
according to Condition 1 of the slicing algorithm. Even though a1 can be reached
from two object-flow arcs, none of them belong to the slice, thus x is never
included in the slice.

7. Empirical Evaluation

In this section we compare our implementation, which include object-flow
and object-reference dependences, with the original JSysDG. We have compared
both graph implementations by measuring the graph generation time, the slicing
time, and the size of the slice, comparing the results obtained by both slicer
executions.

All the algorithms and ideas described in this paper have been implemented
in a prototype slicer for Java programs called JavaSlicer. JavaSlicer is open
source and publicly available5.

To compare the performance difference between the JSysDG and JavaSlicer,
we used the publicly available Java library re2j, a library developed by Google
to work with regular expressions in Java. In particular, we used the most
recent release of this library (version 1.66). re2j is a project with 8100 lines of
code, distributed in 19 different Java files. In order to evaluate the techniques
proposed throughout this work, we used both the JSysDG and JavaSlicer to
build and slice the whole re2j library. Then, to make the comparison meaningful,
we selected as slicing criteria all the object variables (root node of the object

5Available at https://github.com/mistupv/JavaSlicer
6Available at https://github.com/google/re2j/releases/tag/re2j-1.6

19

Table 2: Summary of experimental results, comparing the slices of re2j produced by the
JSysDG (A) and JavaSlicer (B).

Size Range SCs Slice Time (A) Slice Time (B) Slower Size (A) Size (B) Improv.

[0, 100) 49 0.076± 0.001ms 0.927± 0.018ms 48.876 9.10 39.59 693.74%
[100, 1000) 95 130.98± 1.823ms 217.315± 2.874ms 0.782 608.69 738.68 23.19%
[1000, 1400) 122 622.67± 10.833ms 1164.423± 13.093ms 0.857 1284.66 1664.99 29.32%
[1400, 1800) 146 881.09± 13.101ms 1584.023± 12.429ms 0.779 1535.62 1948.16 26.77%
[1800, ∞) 31 1603.05± 11.769ms 2943.965± 15.702ms 0.842 1994.42 2522.74 26.73%

[0, ∞) 443 602.13± 9.078ms 1095.440± 12.039ms 6.126 1130.99 1439.91 100.47%

Build times JSysDG: 10.85 ± 0.09s JavaSlicer: 13.35 ± 0.07s (23% slower)

tree representations) that are directly connected to a return statement7. The
result of this selection is a total of 443 different slicing criteria located over the
19 Java files.

All experiments were done on an Intel Core i5-7600 processor with 16 GB
RAM (DDR4 at 2400MT/s) under a Linux OS with kernel version 5.18.1.
The experiment was run with the OpenJDK Java Virtual Machine (version
11.0.15+10). During the execution of the experiment, all processes and services
except for the program slicer and the shell it was launched from were completely
stopped to prevent interferences in the CPU performance.

The methodology used to measure the performance of both slicers was the
following: each time measurement (the graph generation or a specific slice)
was repeated 101 times, and the first iteration was always discarded (to avoid
influence of dynamically loading libraries to physical memory, data persisting
in the disk cache, etc.). Finally, we computed the average with error margins
(with 99% confidence) with the remaining 100 values.

The results of the experiments performed are summarised in Table 28. In
it, the slicing criteria are grouped according to the size of the JSysDG slice
(in nodes). This is due to the strong influence the size of the slice has on the
time required to compute it and on the relative sizes of slices produced by both
graphs. The columns of Table 2 are described as follows:

• Size Range: the sizes of the JSysDG slices (in nodes) that are contained
in each row.

• SCs: the number of slicing criteria contained in a particular range.

• Slice Time (A/B): the average time required to slice the corresponding
JSysDG (A) and JavaSlicer (B).

• Slower: how much slower is JavaSlicer in comparison to the JSysDG. It
is computed as (TimeB − TimeA)/TimeA.

7Note that, to compare the performance of both models, selecting an object variable during
the slicing traversal is preferable because any slicing criterion that produces a slice in the
JSysDG without object variables would produce the same slice in our augmented JSysDG, as
the two representations are identical except for object-flow and object-reference arcs.

8The full dataset produced by the slicer execution is publicly available at https://mist.

dsic.upv.es/git/program-slicing/SDG/-/snippets/9.

20

1 10 100 1000 10000
0,001

0,01

0,1

1

10

100

1000

10000

Size of the slice (nodes)

T
im

e
to

 c
om

pu
te

 t
he

 s
lic

e
(m

s)

Figure 12: Relationship between the size and time required to compute a slice (logarithmic
scale).

• Size (A/B): the average number of nodes in the JSysDG (A) and JavaSlicer
(B) slices.

• Improv. (improvement): the average increase in size of the JavaSlicer
slice compared to the JSysDG slice. It is computed as (SizeB−SizeA)/SizeA.

To interpret the results, we first need to focus on the usage of the SDG.
Typically, a graph will be built once and sliced multiple times, and thus its
creation can be (and often is) much more costly than its traversal. Regard-
ing complexity, creation is polynomial and traversal is linear. Our results are
as expected: creating the graph is between one and four orders of magnitude
more time-consuming (depending on the final slice’s size). Regarding the graph
creation, we can observe a 23% increase between the JSysDG and JavaSlicer,
which is attributable to the great number of object trees that are featured on
the graph. The graph itself consists of 42000 nodes, most of which represent
objects, their polymorphism or their members. Thus, computing object-flow
and object-reference arcs represents a noticeable increase in time consumption.

If we turn our attention to the slicing portion of the results, we can see that
the slices can be classified into two distinct groups. The first group consists of
slices whose size is below 100 in the JSysDG tend to “blow up”, as the addition
of object-flow and object-reference adds a significant number of nodes to the
slice (relative to the size of the original slice). Thus, the relative columns of
the first row of results show a slicer that includes almost 700% more nodes
and takes about 50 times longer. Due to the small size of the resulting slices
and the short time it takes the JSysDG to compute them (0.08ms), a 50x
increase only manages to bring the average up to 0.9ms, which is negligible
in most applications of program slicing. This first group can be considered an
outlier, and it affects the averages of the table as a whole. The second group is
represented by the rest of the table (slices with sizes above 100 nodes), where
the results show that slices increase between 23% and 30%, with the cost being a
80% time increase. Throughout the table, time has increased linearly with slice

21

size, as can be seen in Figure 12. Whether the cost is worth the improvement
in completeness is up to the application of slicing. For example, in compiler
optimization, completeness is an important requirement for slicers; while for
dependency highlighting or light debugging, a faster but incomplete slice may
be more appropriate. Another important remark is the comparison between the
slice results computed over the two models. We verified that every JavaSlicer’s
slice included all the statements of the associated JSysDG slice. The rationale
behind this is that the graph representation used by JavaSlicer is a conservative
extension of the JSysDG (i.e., it also contains all the nodes and arcs of the
JSysDG), where object-flow and object-reference arcs are added. Therefore, for
any possible slicing criterion, the slice computed with the JSysDG (SJSys) will
always be contained in the slice computed with JavaSlicer (SJS):

SJSys ⊆ SJS

8. Related Work

In 1996, Larsen and Harrold [13] proposed the first graph representation able
to slice OO programs, the Class Dependence Graph (ClDG). Their approach was
the first to provide a way to represent inheritance, polymorphism, and dynamic
binding. The ClDG connected all the methods and data members of a class in a
single graph. Their proposal was later improved by other approaches like those
of Tonella et al. [15], or Liang and Harrold [14]. Although all these proposals
focused on OO programs, none of them noticed the difference between total and
partial definitions in object variables and their impact in flow/data dependence.

When we review the literature looking for specific slicing approaches for
Java, we find interesting related papers. For instance, Hammer and Snelting
[16] defined a new object unfolding process for method calls in presence of
recursive data types, improving the results of the k-limiting approach proposed
in [14]. They defined an algorithm to completely unfold object variables without
unfolding the same object twice in the same object tree and without loosing
dependences based on point-to information. Kashima et al. [17] compared
four different backward slicing techniques for Java: static execute before (SBE),
based in the CFG; context-insensitive slicing (CIS), ignoring the call context;
hybrid model (HYB), where the slice is defined as the intersection of SBE and
CIS; and improved slicing (IMP), based on the Hammer and Snelting’s work [16].
They compared their precision, scalability, and tradeoffs, determining IMP as
the more accurate but not applicable to large programs.

Other techniques focused on the representation of polymorphic objects in
Java. This is the case of the JSysDG [8] and the SSLDG [9], mentioned at the
beginning of this paper. Both graphs include a multiple-layer representation
that contemplates Java programs at different levels: package level, class level,
method level, and statement level. At statement level, both graphs use the
unfolding of object variables in method calls using a tree-like representation
for data members proposed in [14]. There are three main differences between
these two graphs: the first one in that the SSLDG includes a sub-statement

22

layer where object variables outside method calls are further split into their
data members, making the representation of direct accesses to object fields
explicit in the graph; the second one is that the SSLDG proposal enhances the
information of the slicing criterion when slicing polymorphic objects, using a
triplet as slicing criterion where the new element indicates the dynamic type
of the object being sliced to further reduce the computed slice; and the third
difference is the modification of the slicing algorithm to adapt its graph for
forward slicing.

Other works dealt with object-oriented programs in other programming lan-
guages like C++ or Python. In [18], Pani et al. present an algorithm for finding
dynamic slices for object oriented programs in presence of function overloading
on C++; and in [19], Jain and Poonia proposed a mixed static and dynamic slic-
ing for C++ OO programs, where they generate dynamic slices in a faster and
more accurate way by using object-oriented information in C++. These works
are centred on dynamic slicing, and they are not focused in the representation
of object variables, but in taking advantage of the information given by the
compiler to compute the slice. On the other hand, a program slicing approach
for Python is presented by Xu et al. in [20]. This work defines the Python
System Dependence Graph (PySDG), used to slice Python First-Class objects.
The PySDG takes all the first-class objects including functions, methods, classes
and modules into consideration, to construct the dependencies between the defi-
nition and use statements of these first-class objects. In this model, the authors
also introduce a new kind of dependence (Entity Dependence), which describes
the dependency relationship between the statement which defines the entity
object and the statement which calls the entity object.

There are also some other works mainly focused on modelling data depen-
dences for slicing in object-oriented programs. Chen and Xu [21] augmented
the PDG of each method with tags, used to distinguish the different definitions
and dependences inside a statement. The authors defined five different sets:
Def (s), Ref (s), Def (s, x), Dep D(s, x), and Dep R(s, x). These sets were used
to annotate data dependence arcs with the program variables involved in each
data dependence. Despite the perspective is interesting, its purpose is different
to ours. It gives extra information to data dependences by annotating them,
limiting the graph traversal at slicing level when reaching a node looking for
just a particular variable. Contrarily, our approach focuses on establishing a
dependence between an object variable and the value of all its corresponding
data members in any program point. The work by Orso et al. [22] exhaustively
analyses data dependence in the presence of pointers. They considered two dif-
ferent aspects: the classification of definitions and uses, and the classification of
different kinds of paths in the CFG. In their work, they differentiate 24 kinds of
data dependence and allowed the possibility of slicing with respect to only some
of them including the considered dependences as part of the slicing criterion.
Unfortunately, their data dependence is more suitable for point-to analysis than
for the OO paradigm, as it is based on point-to relationships.

Our approach may seem similar to object slicing, introduced by Liang and
Harrold [14], or class slicing, defined by Chen and Xu in [23], but there are

23

some differences between their approaches and ours. In object slicing, the slic-
ing criterion is defined with a tuple ⟨v, p, o⟩ where v is a variable in a program
statement p, and o is an object variable of the program. Object slicing deter-
mines which statements of o’s class affect the slicing criterion through object
variable o. First, a standard slice is computed for the criterion ⟨v, p⟩. Then,
considering the computed slice, a new process isolates all method calls with o as
the caller object. Afterwards, method definitions corresponding to o’s detected
method calls are identified. Finally, o’s slice is computed by extracting from the
initial slice all the statements corresponding to those method definitions. Note
that, in object slicing, the slicing criterion is not the object variable itself, but a
mechanism to reduce the statements included in the original slice. Our objective
is different: we are interested in considering the object variable o as the slicing
criterion, extracting from the whole program (not only from o’s class) the code
that affects its whole value (the value of all its data members) in a particular
statement. Class slicing [23] is similar to object slicing: it is also defined over a
slicing criterion ⟨v, p, c⟩, but this time, instead of a specific object o, a class c is
selected. Class slicing is restricted to a single class. It extracts any statement in
c that affects the slicing criterion ⟨v, p⟩ for every object instance of class c that
is part of the slice. This approach is a bit far from what we are interested in,
because it considers a set of objects, not a single one and, once again, it focuses
on a single class while we are interested in the whole program.

9. Conclusions

Object-oriented programs are challenging for program slicing since they in-
troduce features such as inheritance, polymorphism, and dynamic binding; for
which the standard program representation (the SDG) was not prepared. The
scientific community has iteratively improved the SDG to solve the above prob-
lems, being the current solution the JSysDG, which subsumes previous ap-
proaches and introduces a precise representation of call sites where polymorphic
objects are involved as the caller or as a parameter. Its representation allows
us to accurately slice the data members of an object variable being used in a
method, or defined through it.

Nevertheless, we have shown in this paper that the JSysDG is not prepared to
slice programs when an object variable is selected as the slicing criterion because
it can produce imprecise or even incomplete slices. Our first contribution is the
design of a counterexample that reveals the JSysDG incompleteness. Further,
we have identified the source of that incompleteness, and we have explained the
rationale of this problem.

In order to solve the problem, we have properly redefined the DEF and USE
sets for any statement that involves objects, specifically for caller variables in
method calls. This is our second contribution, which has been mapped to the
program representation so that it can be used for slicing. Since caller variables
in method calls are unfolded in a tree representation, we have associated the def-
inition and use of the caller to different nodes of the call. This has produced an
important advantage of our program representation: in contrast to the standard

24

approach, we allow a caller object to be selected as slicing criterion both before
and after the method call was performed, obtaining a complete and accurate
slice in both cases.

Our third contribution is a new definition of flow dependence with a specific
treatment for object variables. This extension allows us to express the relation-
ship between object variables and its data members in a more accurate way.
Hence, flow dependence is split into flow dependence for primitive variables,
and flow dependence for object variables (object-flow dependence and object-
reference dependence). It is important to remark that the new definitions come
with a proof of completeness, showing that they capture all dependences not
considered in the previous approach.

Our fourth contribution is the extension of the JSysDG with the new object
dependences and a new slicing algorithm that properly treats them. The new
algorithm not only solves the described problems of the JSysDG, ensuring com-
pleteness and improving precision, but it also keeps the linear-time performance
of the standard slicing algorithm.

Finally, our last (fifth) contribution is a new slicer for Java, the JavaSlicer,
with the JSysDG in its basis that includes object-flow and object-reference
dependences. Our experimental evaluation has shown that this incompleteness
situation is frequently given in our benchmarks. Our approach adds around a
quarter additional nodes to larger slices (100 or more nodes) and increases sizes
seven-fold for smaller slices. The cost to this increase in completeness is a 23%
slower graph creation and a linearly slower traversal to generate each slice.

Although our proposal targets Java, it can be easily adapted for similar
object-oriented programming languages like C++, where the relation between
objects and data members is analogous to Java’s.

References

[1] F. Tip, A survey of Program Slicing techniques, Journal of Programming
Languages 3 (1995) 121–189.

[2] J. Silva, A vocabulary of program slicing-based techniques, ACM Com-
puting Surveys 44 (2012).

[3] M. Weiser, Program Slicing, in: Proceedings of the 5th international
conference on Software engineering (ICSE ’81), IEEE Press, Piscataway,
NJ, USA, 1981, pp. 439–449.

[4] K. J. Ottenstein, L. M. Ottenstein, The program dependence graph in a
software development environment, SIGSOFT Software Engineering Notes
9 (1984) 177–184. URL: http://doi.acm.org/10.1145/390010.808263.
doi:10.1145/390010.808263.

[5] A. Hajnal, I. Forgács, A demand-driven approach to slicing legacy COBOL
systems, Journal of Software Maintenance 24 (2012) 67–82. URL: http:
//dblp.uni-trier.de/db/journals/smr/smr24.html#HajnalF12.

25

[6] R. A. DeMillo, H. Pan, E. H. Spafford, Critical slicing for software fault
localization, SIGSOFT Softw. Eng. Notes 21 (1996) 121–134. URL: http:
//doi.acm.org/10.1145/226295.226310. doi:10.1145/226295.226310.

[7] C. Ochoa, J. Silva, G. Vidal, Lightweight program specialization via Dy-
namic Slicing, in: Proceedings of the 2005 ACM SIGPLAN Workshop on
Curry and Functional Logic Programming, WCFLP ’05, ACM, New York,
NY, USA, 2005, pp. 1–7. URL: http://doi.acm.org/10.1145/1085099.
1085101. doi:10.1145/1085099.1085101.

[8] N. Walkinshaw, M. Roper, M. Wood, The Java system dependence graph,
in: Proceedings Third IEEE International Workshop on Source Code Anal-
ysis and Manipulation, 2003, pp. 55–64.

[9] W. Lulu, L. Bixin, K. Xianglong, Type slicing: An accurate object
oriented slicing based on sub-statement level dependence graph, In-
formation and Software Technology 127 (2020) 106369. URL: https:

//www.sciencedirect.com/science/article/pii/S0950584920301385.
doi:https://doi.org/10.1016/j.infsof.2020.106369.

[10] F. E. Allen, Control flow analysis, SIGPLAN Not. 5 (1970) 1–19.

[11] J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependence
graph and its use in optimization, ACM Transactions on Programming
Languages and Systems 9 (1987) 319–349.

[12] S. Horwitz, T. Reps, D. Binkley, Interprocedural slicing using dependence
graphs, ACM Transactions Programming Languages and Systems 12 (1990)
26–60.

[13] L. Larsen, M. J. Harrold, Slicing object-oriented software, in: Proceedings
of the 18th international conference on Software engineering, ICSE ’96,
IEEE Computer Society, Washington, DC, USA, 1996, pp. 495–505. URL:
http://dl.acm.org/citation.cfm?id=227726.227837.

[14] D. Liang, M. J. Harrold, Slicing objects using system dependence graphs,
in: Proceedings of the International Conference on Software Maintenance,
ICSM ’98, IEEE Computer Society, Washington, DC, USA, 1998, pp. 358–
367. URL: http://dl.acm.org/citation.cfm?id=850947.853342.

[15] P. Tonella, G. Antoniol, R. Fiutem, E. Merlo, Flow insensitive C++ point-
ers and polymorphism analysis and its application to slicing, in: Proceed-
ings of the 19th international conference on Software engineering, 1997, pp.
433–443.

[16] C. Hammer, G. Snelting, An improved slicer for Java, in: Proceedings
of the 5th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, 2004, pp. 17–22.

26

[17] Y. Kashima, T. Ishio, K. Inoue, Comparison of backward slicing techniques
for Java, IEICE TRANSACTIONS on Information and Systems 98 (2015)
119–130.

[18] S. K. Pani, P. Arundhati, M. Mohanty, An effective methodology for slic-
ing C++ programs, International Journal of Computer Engineering and
Technology 1 (2010) 72–82.

[19] S. Jain, M. S. Poonia, A new approach of program slicing: Mixed SD
(static & dynamic) slicing, International Journal of Advanced Research in
Computer and Communication Engineering Vol 2 (2013).

[20] Z. Xu, J. Qian, L. Chen, Z. Chen, B. Xu, Static slicing for Python first-
class objects, in: 2013 13th International Conference on Quality Software,
2013, pp. 117–124. doi:10.1109/QSIC.2013.50.

[21] Z. Chen, B. Xu, Slicing concurrent Java programs, SIGPLAN Not.
36 (2001) 41–47. URL: http://doi.acm.org/10.1145/375431.375420.
doi:10.1145/375431.375420.

[22] A. Orso, S. Sinha, M. J. Harrold, Effects of pointers on data dependences,
in: Proceedings 9th International Workshop on Program Comprehension.
IWPC 2001, IEEE, 2001, pp. 39–49.

[23] Z. Chen, B. Xu, Slicing object-oriented java programs, SIGPLAN Not. 36
(2001) 33–40. URL: https://doi.org/10.1145/375431.375418. doi:10.
1145/375431.375418.

27

Appendix A and Appendix B include the proofs of Theorems 5.7 and 5.8,
respectively.

Appendix A. Completeness proof of Theorem 5.7

Before proving Theorem 5.7, in order to ease the proof by reducing the
number of possible scenarios, we enunciate and prove the following lemma:

Lemma 1 Let s be a statement in a program P . Let v be an object variable
totally defined at s that points to object o. The value of v at s is not object-flow
dependent on any previous statement s′.

Proof According to Definition 4.1 (see also the scenarios 1 and 2 of Section 4),
a statement s that totally defines an object variable also defines all its data
members. In Definition 5.4, a statement s can be object-flow dependent on
another statement s′ iff: (i) s uses an object o, or (ii) s defines an object o
and there is a data member x of o not defined between s′ and s. Since s is a
definition of o and also defines all o’s data members, neither (i) nor (ii) are
fulfilled and, thus, s cannot be object-flow dependent on any previous statement.

Theorem 5.7 Object-Flow Completeness.
Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable or a
data member of an object variable defined at s1. If the value of an object o at
sn data depends on the execution of s1, then there is a transitive object-flow
dependence between s1 and sn.

Proof First of all, according to Lemma 1, when sn is a total definition the
theorem is trivially proved because sn defines the value of o and its data members
and no object-flow path can end at sn. With respect to the rest of possibilities,
we divide the proof in three different scenarios:

1. o is defined at s1 and not redefined in s2 . . . sn−1.

(a) If sn uses object o and x = o, i.e., object variable x points to object
o, the claim follows trivially by case #1 of Definition 5.4.

(b) If sn partially defines object o and x is a data member of o not defined
at sn the claim follows trivially by case #2 of Definition 5.4.

(c) If sn uses object o and x is a data member of o, then s1 also defines
o according to scenario 3 described in Section 4. Thus, the claim
follows by the object-flow path formed by cases 1a and 1b.

(d) If sn partially defines object o and x = o there exists an object-flow
path from s1 to sn iff s1 also defines a data member of o not defined
in sn, which makes this case equivalent to case 1b.

2. o is not defined at s1.

If s1 defines x where x ̸= o or x is a data member of a different object
p, object-flow dependence cannot be applied, because in both cases #1 and

28

#2 of Definition 5.4 it is mandatory for both statements to operate over
the same object. Hence, there cannot be an object-flow path between s1
and sn.

3. x is redefined in s2 . . . sn−1.

In this case, we can assume that x = o or x is a data member of object o
because in any other case we will find ourselves in case 2. We can prove
the claim for n = 3 (s1; s2; s3;) because it does not matter the number of
transitive dependencies. The proof is the same for each transitive step. We
can analyse all cases separately. We use the following notation: si(A,B)
with A = D to denote that x is defined at si and with A = U to denote
that x is used at si; and with B = O to denote that x is an object variable
that points to object o at si and with B = DM to denote that x is a data
member of object o at si. Since s1 and s2 perform the same definition
over x they must share the same notation in all cases. This fact leaves 8
possible scenarios:

(a) s1(D,O); s2(D,O); s3(D,O);

(b) s1(D,DM); s2(D,DM); s3(D,O);

Scenarios 3a and 3b are trivially proved because s3 is a total definition of
object o and total definitions does not depend on any previous statement
according to Lemma 1. Hence, s3 cannot be object-flow dependent on a
previous statement s1.

(c) s1(D,O); s2(D,O); s3(U,O);

(d) s1(D,O); s2(D,O); s3(D,DM);

In scenario 3c, s3 is trivially object-flow dependent on s2 (case #1 of
Definition 5.4) while in scenario 3d s3 is object-flow dependent on s2 if
s2 defines a data member of o different from the one defined at s3 (case
#2 of Definition 5.4). In both scenarios there is not direct object-flow
dependence between s1 and s3 because the redefinition of x in s2 prevents
it. Additionally, there cannot be a transitive dependence either because s2
cannot be object-flow dependent on s1 due to Lemma 1.

(e) s1(D,DM); s2(D,DM); s3(U,O);

(f) s1(D,DM); s2(D,DM); s3(D,DM);

To proof scenarios 3e and 3f it is important to remember that when a
statement si defines a data member of an object o, it also defines o (see
scenario 3 of Section 4). In scenario 3e, s3 is object-flow dependent on
s2 because it is the last existent definition of object o (case #1 of Defini-
tion 5.4). In scenario 3f, s3 is object-flow dependent on s2 if s2 defines a
data member of o different from the one defined at s3 (case #2 of Defini-
tion 5.4). In scenarios 3e and 3f, due to the existence of s2, s3 cannot be

29

directly dependent on s1 according to Definition 5.4. In turn, in both sce-
narios s2 is object-flow dependent on any previous statement that defines
a different data member of o (case #2 of Definition 5.4). Since s1 and s2
define the same data member x s2 is not object-flow dependent on s1 and
there is no transitive object-flow path between s1 and s3.

(g) s1(D,O); s2(D,O); s3(U,DM);

(h) s1(D,DM); s2(D,DM); s3(U,DM);

Considering scenarios 3g and 3h, note that the theorem considers “the
value of an object o” at s3. In these two cases, s3 uses a data member of
an object o. If the data member of o is itself an object, these scenarios
would be equivalent to scenarios 3c and 3e respectively. Finally, if the data
member o is a primitive, this case would be out of the scope of the proof.
In this case, there would not be a path to the last definition of this data
member formed by object-flow edges, but for flow edges.

Appendix B. Completeness proof of Theorem 5.8

Before proving Theorem 5.8, in order to ease the proof by reducing the
number of possible scenarios, we enunciate and prove the following lemma:

Lemma 2 Let s be a statement in a program P . Let v be an object variable
totally defined at s that points to object o. The reference of v at s is not object-
reference dependent on any previous statement s′.

Proof According to Definition 5.6, a statement s is object-reference dependent
on another statement s′ if s partially defines an object variable v. Since s totally
defines v, s also defines v’s reference (see Definition 4.1) and the condition is
not fulfilled. Thus, s cannot be the target of any object-reference dependence.

Theorem 5.8 Object-Reference Completeness
Let s1; s2; . . . sn; be a sequence of statements. Let x be an object variable totally
defined at s1. If the reference of an object variable v at sn depends on the
total definition of s1, then there is a path formed by object-flow and/or object-
reference arcs between s1 and sn.

Proof First of all, according to Lemmas 1 and 2, when sn is a total definition
the theorem is trivially proved because sn cannot be the target of any object-flow
or object-reference dependence. With respect to the rest of possibilities, we divide
the proof into three different scenarios:

1. x is defined at s1 and not redefined in s2 . . . sn−1.

(a) If sn uses object variable v and x = v the claim follows trivially by
the object-flow arc generated by case #1 of Definition 5.4.

(b) If sn partially defines object variable v and x = v the claim follows
trivially by Definition 5.6.

30

2. v is not defined at s1.

If s1 defines x where x ̸= v, object-flow and object-reference dependences
cannot be applied, because in both Definitions 5.4 and 5.6 it is mandatory
for both statements to operate over the same object. Hence, there cannot
be a path formed by object-flow and/or object-reference arcs between s1
and sn.

3. x is redefined in s2 . . . sn−1.

In this case, we can assume that x = v because in any other case we will
find ourselves in case 2. We can prove the claim for n = 3 (s1; s2; s3;) be-
cause it does not matter the number of transitive dependencies. The proof
is the same for each transitive step. We can analyse all cases separately.
We use the following notation: si(A) with A = DT to denote that x is
totally defined at si, with A = DP to denote that x is partially defined at
si, with A = U to denote that x is used at si, and with A = ∗ to denote
that A can be either DT , DP or U . There are several possible scenarios:

(a) s1(∗); s2(∗); s3(DT);

Scenario 3a represents the set of cases where s3 totally defines variable
v. These scenarios are trivially proved by Lemma 2, since s3 cannot be
object-referent dependent on any previous statement.

(b) s1(DP); s2(∗); s3(∗);

Scenario 3b illustrate the set of cases where s1 partially defines x. Note
that this scenario is not contemplated by the theorem because “x is totally
defined at s1” is a condition described in the theorem that this scenario
does not contemplate.

(c) s1(DT); s2(DT); s3(U);

(d) s1(DT); s2(DT); s3(DP);

In scenarios 3c and 3d, s3 is trivially object-flow dependent on s2 by cases
#1 and #2 of Definition 5.4, respectively. In both scenarios there is nei-
ther direct object-flow, nor object-reference dependence between s1 and s3
because the total definition of x in s2 prevents it. Additionally, there can-
not be a transitive dependence because s2 cannot be object-flow nor object-
reference dependent on s1 due to Lemmas 1 and 2.

(e) s1(DT); s2(DP); s3(U);

In scenario 3e, s3 is trivially object-flow dependent on s2 according to case
#1 of Definition 5.4. Additionally, since s2 partially defines an object
variable that is totally defined in s1, s2 is object-reference dependent on
s1 according to Definition 5.6. Therefore, in this scenario, there is a
transitive path formed by object-flow and object-reference arcs that connect
the use of an object variable to its last total definition in s1.

31

(f) s1(DT); s2(DP); s3(DP);

Finally, in scenario 3f, s3 may be object-flow dependent on s2 according to
case #2 of Definition 5.4 if they define different data members of the same
object. Either way, both s3 and s2 are always object-reference dependent
on s1 for being partial definitions of an object variable totally defined at
s1. Consequently, there is at least one path from the last total definition
in s1 to the later partial definition in s3 formed by an object-reference arc.

32

