
Preserving Sharing in the Partial Evaluation of
Lazy Functional Programs?

Sebastian Fischer1, Josep Silva2, Salvador Tamarit2, and Germán Vidal2

1 University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
sebf@informatik.uni-kiel.de

2 Technical University of Valencia, Camino de Vera S/N, E-46022 Valencia, Spain.
{jsilva,stamarit,gvidal}@dsic.upv.es

Abstract. The goal of partial evaluation is the specialization of pro-
grams w.r.t. part of their input data. Although this technique is already
well-known in the context of functional languages, current approaches
are either overly restrictive or destroy sharing through the specializa-
tion process, which is unacceptable from a performance point of view.
In this work, we present the basis of a new partial evaluation scheme for
first-order lazy functional programs that preserves sharing through the
specialization process and still allows the unfolding of arbitrary function
calls.

1 Introduction

Partial evaluation [12] is an automatic technique for the specialization of pro-
grams. Currently, one can find partial evaluation techniques for a variety of
programming languages, like C [5], Curry [17], Prolog [14], Scheme [8], etc.

In this work, we focus on solving a problem associated with the partial eval-
uation of lazy functional languages. In these languages (e.g., Haskell [15]), it is
essential to share program variables in order to avoid losing efficiency due to the
repeated evaluation of the same expression. Consider, e.g., the following program
excerpt (we use [] and “:” as constructors of lists):

sumList([]) = 0 incList(n, []) = []
sumList(x : xs) = x + sumList(xs) incList(n, x : xs) = (x + n) : incList(n, xs)

where function sumList sums the elements of a list and incList increments the
elements of a list by a given number. Let us now consider different alternatives
for the partial evaluation of the following expression:

sumList(incList(e , [a, b]))

where e is a closed expression (i.e., without free variables) whose evaluation is
expensive, a, b are natural numbers, and [a, b] is a shorthand for a : b : [].
? This work has been partially supported by the EU (FEDER) and the Spanish MEC

under grants TIN2005-09207-C03-02 and Acción Integrada HA2006-0008.

First Try: Downgrading Program Efficiency. A naive partial evaluator
may reduce the previous expression as follows:

sumList(incList(e , [a, b]))
⇒ sumList(a + e) : incList(e , [b]))
⇒ sumList(a + (e1 + 42)) : incList(e , [b]))

where we assume that e is unfolded to e1 + 42 in one reduction step. Now,
we would build the following residual rule—called resultant—associated to the
above partial computation:

new function = sumList(a + (e1 + 42)) : incList(e , [b]))

Then, if we evaluate new function using the above rule, the original expression
e will be eventually evaluated twice since e and e1 are not shared anymore.

Actually, since their degree of evaluation is different (i.e., e1 comes from a one-
step reduction of e), the identification of common subexpressions by means of
some post-processing analysis is not generally feasible.

Clearly, the duplicate evaluation of e is unacceptable from a performance
point of view. Note that, in the original program, the expression e is only
evaluated once since the two occurrences of the variable n in the second rule of
function incList are shared.

Second Try: Conservative Partial Evaluation. In order to avoid down-
grading performance, partial evaluators of lazy languages usually include a re-
striction so that the unfolding of functions which are not right-linear (i.e., whose
right-hand side contains multiple occurrences of the same variable) is forbidden.

In this case, the partial evaluation of sumList(incList(e , [a, b])) would
mainly return the original program unchanged since the function incList is not
right-linear and, thus, cannot be unfolded. Unfortunately, this strategy is often
overly restrictive since it may happen that e can be completely evaluated at
partial evaluation time, thus allowing the subsequent reduction of sumList.

Our Proposal: Sharing-Based Partial Evaluation. Current partial eval-
uation techniques for lazy functional (logic) languages have mostly ignored the
issue of sharing,3 generally implementing the conservative approach.

In this work, we present an alternative to such trivial, overly restrictive treat-
ment of sharing during partial evaluation. Basically, we allow the unfolding of
arbitrary function calls but still ensure that sharing is never destroyed. For this
purpose, our partial evaluation scheme is based on a lazy semantics that models
sharing by means of an updatable heap. For instance, given the above expression,
we could produce a partial computation of the form

[] & sumList(incList(e , [a, b]))
⇒ [n 7→ e , x 7→ a, xs 7→ [b]] & sumList(x + n : incList(n, xs))
⇒ [n 7→ e1 + 42, x 7→ a, xs 7→ [b]] & sumList(x + n : incList(n, xs))

3 We note that this is a critical issue that has been considered in the context of inlining
(see, e.g., [16]), which could be seen like a rather simple form of partial evaluation.

P ::= D1 . . . Dm (program) Domains
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable) P1, P2, . . . ∈ Prog (Programs)

| c(x1, . . . , xn) (constructor call) x, y, z, . . . ∈ Var (Variables)
| f(x1, . . . , xn) (function call) a, b, c, . . . ∈ C (Constructors)
| let {xk = ek} in e (let binding) f, g, h, . . . ∈ F (Functions)
| case x of {pk → ek} (case expression) p1, p2, p3, . . . ∈ Pat (Patterns)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax for normalized flat programs

where states are informally denoted by a pair heap & expression and [] denotes
the empty heap. Observe that there is a single binding for all occurrences of
variable n and, thus, duplicated computations are not possible. Here, we would
produce the following associated residual rule:

new function = let n = e1 + 42 in sumList(a + n : incList(n, [b]))

where the bindings for variables x and xs are inlined since they only occur once
in the expression, and the binding for n that appears twice is kept in a let
expression so that sharing is preserved.

In summary, our new approach is based on the definition of an unfolding
strategy that extends a lazy semantics [1] (which models variable sharing by
means of an updatable heap) in order to perform symbolic computations, i.e.,
in order to deal with free variables in expressions denoting missing information
at partial evaluation time. Then, we introduce how residual rules should be
extracted from these partial computations. For simplicity, we will not introduce
the details of a complete partial evaluation scheme (but it would be similar
to that of [2] by replacing the underlying partial evaluation semantics and the
construction of residual rules from partial computations, i.e., control issues would
remain basically unaltered).

2 Preliminaries

We consider in this work a simple, first-order lazy functional language. The syn-
tax is shown in Fig. 1, where we write on for the sequence of objects o1, . . . , on. A
program consists of a sequence of function definitions such that the left-hand side
has pairwise different variable arguments. The right-hand side is an expression
composed by variables, data constructors, function calls, let bindings (where the
local variables xk are only visible in ek and e), and case expressions of the form
case x of {c1(xn1) → e1; . . . ; ck(xnk

) → ek}, where x is a variable, c1, . . . , ck

are different constructors, and e1, . . . , ek are expressions. The pattern variables
xni

are introduced locally and bind the corresponding variables of ei. We say

that an expression is closed if it contains no occurrences of free variables (i.e.,
variables which are not bound by let bindings).

Observe that, according to Fig. 1, the arguments of function and constructor
calls are variables. As in [13], this is essential to express sharing without the use
of graph structures. This is not a serious restriction since source programs can
be normalized so that they follow the syntax of Fig. 1 (see, e.g., [13, 1]).

Laziness of computations will show up in the description of the behavior of
function calls and case expressions. In a function call, parameters are not eval-
uated but directly passed to the body of the function. In a case expression, the
outermost symbol of the case argument is required. Therefore, the case argument
should be evaluated to head normal form [7] (i.e., a variable or an expression
with a constructor at the outermost position).

3 Partial Evaluation of Lazy Functional Programs

The main ingredients of our new proposal for preserving sharing through the
specialization process are the following: i) partial computations are performed
with a lazy semantics that models sharing by means of an updatable heap (cf.
Sect. 3.1); ii) this semantics is then extended in order to perform symbolic com-
putations during partial evaluation (cf. Sect. 3.2); iii) finally, we introduce a
method to extract residual rules from partial computations (cf. Sect. 3.3).

3.1 The Standard Semantics

First, we present a lazy evaluation semantics for our first-order functional pro-
grams that models sharing. The rules of the small-step semantics are shown in
Fig. 2 (they are a simplification of the calculus in [1], which in turn originates
from an adaptation of Launchbury’s natural semantics [13]). It follows these
naming conventions:

Γ,∆,Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(xn)

A heap is a partial mapping from variables to expressions (the empty heap is
denoted by []). The value associated to variable x in heap Γ is denoted by Γ [x].
Γ [x 7→ e] denotes a heap with Γ [x] = e, i.e., we use this notation either as a
condition on a heap Γ or as a modification of Γ . A value is a constructor-rooted
term (i.e., a term whose outermost function symbol is a constructor symbol).

A state of the small-step semantics is a triple 〈Γ, e, S〉, where Γ is the current
heap, e is the expression to be evaluated (often called the control of the small-
step semantics), and S is the stack which represents the current context. We
briefly describe the transition rules:

In rule var, the evaluation of a variable x that is bound to an expression e
proceeds by evaluating e and adding to the stack the reference to variable x. If
a value v is eventually computed and there is a variable x on top of the stack,
rule val updates the heap with x 7→ v. This rule achieves the effect of sharing

var
〈Γ [x 7→ e], x, S〉 ⇒ 〈Γ [x 7→ e], e, x : S〉

val
〈Γ, v, x : S〉 ⇒ 〈Γ [x 7→ v], v, S〉 where v is a value

fun
〈Γ, f(xn), S〉 ⇒ 〈Γ, ρ(e), S〉 where f(yn) = e ∈ P and ρ = {yn 7→ xn}

let

〈Γ, let {xk = ek} in e, S〉 ⇒ 〈Γ [yk 7→ ρ(ek)], ρ(e), S〉 where ρ = {xk 7→ yk}
and yn are fresh variables

case
〈Γ, case e of {pk → ek}, S〉 ⇒ 〈Γ, e, {pk → ek} : S〉

select

〈Γ, c(xn), {pk → ek} : S〉 ⇒ 〈Γ, ρ(ei), S〉
where pi = c(yn) and ρ = {yn 7→ xn},
with i ∈ {1, . . . , k}

Fig. 2. Small-step semantics for (sharing-based) lazy functional programs

since the next time the value of variable x is demanded, the value v will be
immediately returned thus avoiding the repeated evaluation of e.

Rule fun implements a simple function unfolding. Here, ρ : Var → Var
denotes a variable substitution. We assume that the considered program P is a
global parameter of the calculus.

In order to reduce a let construct, rule let adds the bindings to the heap and
proceeds with the evaluation of the main argument of let. Note that the variables
introduced by the let construct are renamed with fresh names in order to avoid
variable name clashes. For this purpose, we use variable renamings, a particular
case of substitutions which are bijections on the domain of variables Var .

Rule case initiates the evaluation of a case expression by evaluating the case
argument and pushing the alternatives {pk → ek} on top of the stack. If a value
is eventually reached, then rule select is used to select the appropriate branch
and continue with the evaluation of this branch.

In order to evaluate an expression e, we construct an initial state of the
form 〈[], e, []〉 and apply the rules of Fig. 2. We denote by ⇒∗ the reflexive and
transitive closure of ⇒. A derivation 〈[], e, []〉 ⇒∗ 〈Γ, e′, S〉 is complete if e′ is a
value and S is the empty stack.4

Example 1. Consider the following simple functions:

double(x) = add(x, x)
add(n, m) = case n of {Z→ m; S(u) → let {v = add(u, m)} in S(v)}

where natural numbers are built from Z and S. In order to evaluate the expression
double(add(Z, Z)), we proceed as follows. First, we normalize it, i.e.,

exp ≡ let {x1 = Z, x2 = Z} in (let {y = add(x1, x2)} in double(y))

4 We ignore failing derivations (e.g., a case expression with no matching branch) in
this work in order to keep the presentation simple.

〈[], exp, []〉 ⇒let 〈Γ1 ≡ [w1 7→ Z, w2 7→ Z], let {v = add(w1, w2)} in double(v), []〉
⇒let 〈Γ2 ≡ Γ1[v 7→ add(w1, w2)], double(v), []〉
⇒fun 〈Γ2, add(v, v), []〉
⇒fun 〈Γ2, case v of {Z→ v; S(u) → let {v = add(u, v)} in S(v)}, []〉
⇒case 〈Γ2, v, S1 ≡ [{Z→ v; S(u) → let {v = add(u, v)} in S(v)}]〉
⇒var 〈Γ2, add(w1, w2), S2 ≡ v : S1〉
⇒fun 〈Γ2, case w1 of {Z→ w2; S(u) → let {v = add(u, w2)} in S(v)}, S2〉
⇒case 〈Γ2, w1, S3 ≡ {Z→ w2; S(u) → let {v = add(u, w2)} in S(v)} : S2〉
⇒var 〈Γ2, Z, w1 : S3〉
⇒val 〈Γ2, Z, S3〉
⇒select 〈Γ2, w2, S2〉
⇒var 〈Γ2, Z, w2 : S2〉
⇒val 〈Γ2, Z, S2〉
⇒val 〈Γ3 ≡ [w1 7→ Z, w2 7→ Z, v 7→ Z], Z, S1〉
⇒select 〈Γ3, v, []〉
⇒var 〈Γ3, Z, [v]〉
⇒val 〈Γ3, Z, []〉

Fig. 3. Complete derivation for double(add(Z, Z))

Then, we construct the initial state 〈[], exp, []〉 and apply the rules of the standard
semantics. The complete derivation is shown in Fig. 3 (where variables x1, x2, y
are renamed as w1, w2, v, respectively).

Observe that the expression add(Z, Z) is only evaluated once: look at the 6th
state in the derivation, where its evaluation is first demanded (since variable
v is bound to this expression in the heap), and at the 16th state, where it is
demanded again and the computed value is just returned from the heap.

3.2 The Partial Evaluation Semantics

While expressions to be evaluated at run time should be closed (i.e., without
free variables), expressions to be partially evaluated are usually incomplete so
that missing information is denoted by means of free variables. The standard
semantics of Fig. 2 is not appropriate to perform computations at partial eval-
uation time since there is no rule for evaluating variables that are not bound in
the associated heap.

In this work, we follow the approach of [3] and introduce a residualizing
version of the standard semantics.5 Essentially, the resulting partial evaluation
semantics has the following features:

– A free variable x is represented in a heap Γ by a circular binding x 7→ x
such that Γ [x] = x. Furthermore, such free variables are now considered as
values in rule val.

5 Note, however, that [3] does not consider a sharing-based standard semantics and,
thus, the residualizing extensions are rather different.

fun stop
〈Γ, f(xn), x : {pk → ek} : S〉 ⇒ 〈Γ [x 7→ f(xn)], case x of {pk → ek}, S〉

case stop
〈Γ, case y of {p′

q → e′
q}, x : {pk → ek} : S〉

⇒ 〈Γ [x 7→ case y of {p′
q → e′

q}], case x of {pk → ek}, S〉
guess

〈Γ [x 7→ x], x, {pk → ek} : S〉 ⇒ 〈Γ [x 7→ x], case x of {pk → ek}, S〉
case of case

〈Γ [x 7→ x], case x of {p′
m → e′

m}, {pk → ek} : S〉
⇒ 〈Γ [x 7→ x], case x of {p′

m → case e′
m of {pk → ek}}, S〉

residualize

〈Γ [x 7→ x], case x of {pk → ek}, []〉 ⇒ case x of {p′
k → 〈Γ [x 7→ p′

k, ynk 7→ ynk], e′
k, []〉}

where pi = c(xni), ρi = {xni 7→ yni}, yni are fresh,
with p′

i = ρi(pi), and e′
i = ρi(ei), for all i = 1, . . . , k

Fig. 4. Partial evaluation rules

– Sharing is preserved thanks to the use of an unfolding strategy based on
a (residualizing) semantics that models sharing, together with an appropri-
ate procedure for extracting residual rules from partial computations (see
Sect. 3.3). This is orthogonal to control issues and, thus, our approach can
be integrated in both online or offline partial evaluation schemes (see, e.g.,
[10] for a gentle introduction to online and offline partial evaluation). For
simplicity, though, we consider in the following an offline scheme for partial
evaluation and assume that the program contains some function annotations
that can be used to ensure the termination of partial computations.
To be precise, we denote annotated function calls by underlining the function
name and annotated case expressions by underlining the word case. Basically,
annotated function calls or case expressions should not be reduced in order
to have a finite computation.6

Underlined function calls and case expressions are no longer evaluable and,
thus, they are also treated as values in rule val.

Because of the introduction of the new “values” (free variables and annotated
functions and cases), rule select does not suffice anymore to evaluate a case
expression whose argument reduces to a value. Therefore, we introduce the rules
shown in Fig. 4, which we now briefly describe.

Rule fun stop applies when the argument of a case expression evaluates
to an annotated function call f(xn). Here, the form of the current stack is
x : {pk → ek} : S, which means that the original case expression had the form
case x of {pk → ek} and x was eventually reduced to f(xn). In this case, we an-

6 We do not deal with termination issues and the computation of program annotations
in this paper but refer the interested reader to, e.g., [9, 11, 12, 17, 6] (within the
functional and functional logic paradigms).

notate the original case expression (since it is not reducible because f(xn) is not
reducible), update the binding for x, and return the annotated case expression.
Intuitively speaking, once an annotated function call suspends the computation,
we should go backwards and reconstruct the case expression whose branches were
stored in the stack: case f(xn) of {pk → ek}.

Rule case stop proceeds in a similar way, the only difference being that the
computed value is now an annotated case expression.

Rule guess applies when the argument of a case expression reduces to a
free variable. Similarly to the previous rules, an annotated case expression is
returned. Observe, however, that it does not mean that the computation is sus-
pended; rather, the annotated case expression can still be further evaluated by
rules case of case and residualize (see below).

Rule case of case, originally introduced in the context of deforestation [18],
is used to reduce a case expression whose argument is another case with a free
variable as argument. It moves the outer case to the branches of the inner case,
e.g., it transforms an expression like

case (case x of {p1 7→ e1; p2 7→ e2}) of {q1 7→ t1; q2 7→ t2}

into case x of { p1 7→ case e1 of {q1 7→ t1; q2 7→ t2};
p2 7→ case e2 of {q1 7→ t1; q2 7→ t2} } .

It is often the case that the transformed expression has more opportunities for
further reduction (look at the inner cases, where possibly known arguments e1
and e2 may allow the application of rule select). Basically, we use this rule to
lift case expressions with a free variable to the topmost position so that rule
residualize applies.

Finally, rule residualize residualizes a case expression (i.e., it is already con-
sidered part of the residual code) but allows us to continue evaluating the states
in the branches of the residualized case expression. Observe that, because of this
rule, the type of the semantics is no longer State → State, where State is the
domain of possible states, but StateExp → StateExp , where StateExp is defined
as follows: StateExp ::= State | case x of {pk → StateExp}. Note that bindings
of the form x 7→ p′

i, i = 1, . . . , k, are applied to the different branches so that
information is propagated forward in the computation. As in rule let, we rename
the variables of the case patterns to avoid variable name clashes, so that p′

i and
e′i denote the renaming of pi and ei, respectively. Moreover, since the pattern
variables of p′

i are not bound in e′i, we add them to the heap as free variables,
i.e., as circular bindings of the form yni 7→ yni.

Now, our partial evaluation semantics includes the rules of Fig. 2 (standard
component) and Fig. 4 (residualizing component). We note that rule val overlaps
with rules fun stop and case stop since annotated expressions are considered
values. This overlapping is not intended and can easily be avoided by adding an
additional side condition for rule val:

(val redefined)

〈Γ, v, x : S〉 ⇒ 〈Γ [x 7→ v], v, S〉 if rules fun stop & case stop are not applicable
where v is a value

Also, we note that an additional condition should be added in rule var in order
to avoid undesired loops due to the evaluation of free variables:

(var redefined)

〈Γ [x 7→ e], x, S〉 ⇒ 〈Γ [x 7→ e], e, x : S〉 where e 6= x

In our partial evaluation semantics, we should always construct complete com-
putations, i.e., we should apply the rules of the partial evaluation semantics as
much as possible. Note that it does not mean that every function is unfolded,
since one can still stop the unfolding process by means of annotations (so that
termination is guaranteed). Then, we have the following trivial property:

Lemma 1. Let s0, sn ∈ StateExp be states such that there exists a complete
derivation s0 ⇒∗ sn using the rules of the partial evaluation semantics (Figures 2
and 4). Then, every state s ∈ State occurring in sn has an empty stack.

This result is an easy consequence of the fact that every function and case
expression is either reduced, annotated or residualized, so that an empty stack
is eventually obtained.

Another trivial but important property relates the standard and the partial
evaluation semantics as follows:

Lemma 2. Let P be a program without annotations and s0 = 〈[], e, []〉 be an
initial state where e is closed. Then, s0 ⇒∗ sn holds in the standard semantics
iff s0 ⇒∗ sn holds in the partial evaluation semantics.

Intuitively speaking, the above lemma says that, as long as no annotated function
call occurs, both calculi have exactly the same behavior.

The following simple example illustrates the way our partial evaluation se-
mantics deals with sharing in a partial computation.

Example 2. Consider again functions double and add from Example 1 and the
initial expression double(double(x)). By normalizing this expression, we build
the following initial state:

〈[], let {x = x, w = double(x)} in double(w), []〉

The associated complete computation with the partial evaluation semantics is
shown in Fig. 5 (variables x and w are renamed as n and m, respectively). Note
that, thanks to the use of the partial evaluation semantics, we can evaluate
the considered expression as much as needed but we still keep track of shared
expressions in the associated heap.

3.3 Extracting Residual Rules

Now, we consider how residual rules are extracted from the computations per-
formed with the semantics of Figures 2 and 4.

〈[], let {x = x, w = double(x)} in double(w), []〉
⇒let 〈[n 7→ n, double(m), []〉

m 7→ double(n)],
⇒fun 〈[n 7→ n, add(m, m), []〉

m 7→ double(n)],
⇒fun 〈[n 7→ n, case m of []〉

m 7→ double(n)], {Z→ m; S(u) → let {v = add(u, m)} in S(v)}
⇒case 〈[n 7→ n, m, [{. . .}]〉

m 7→ double(n)],
⇒var 〈[n 7→ n, double(n), [m, {. . .}]〉

m 7→ double(n)],
⇒fun stop 〈[n 7→ n, case m of []〉

m 7→ double(n)], {Z→ m; S(u) → let {v = add(u, m)} in S(v)}

Fig. 5. Derivation with the partial evaluation semantics

Definition 1 (resultant). Let P be an annotated program and e be an expres-
sion. Let 〈[], e, []〉 ⇒∗ e′ be a complete derivation with the rules of Figures 2 and 4
(i.e., e′ is irreducible). The associated resultant is given by the following rule:

f(xn) = [[del(e′)]]

where f is a fresh function symbol,7 xn are the free variables of e (appropriately
renamed as in the considered computation), function del removes the annotations
(if any), and function [[]] is defined as follows:

[[e]] =
{

case x of {pk → [[ek]]} if e = case x of {pk → ek}
let Γ in e′ if e = 〈Γ, e′, []〉

Here, Γ represents the set of bindings stored in Γ except those for xn (which are
now the parameters of the new function).

Let us illustrate the extraction of a residual rule with an example.

Example 3. Consider the computation of Example 2 shown in Fig. 5. The asso-
ciated resultant is as follows:

f(n) = [[〈 [n 7→ n, case m of
m 7→ double(n)], {Z→ m; S(u) → let {v = add(u, m)} in S(v)}, []〉]]

which is reduced to

f(n) = let {m 7→ double(n)} in
case m of {Z→ m; S(u) → let {v = add(u, m)} in S(v)}

7 Consequently, some calls in the right-hand side should also be renamed. We do not
deal with renaming of function calls in this paper; nevertheless, standard techniques
for functional (logic) languages like those in [4] would be applicable.

Observe that sharing is preserved despite the unfolding of a function which is not
right-linear (i.e., the outer call to function double). Note also that inlining the
let expression (i.e., replacing all occurrences of m by double(n)) would destroy
this property since double would be evaluated twice, once as an argument of
the case expression and once when selecting the corresponding case branch.

3.4 Correctness

The correctness of our approach to the partial evaluation of first-order lazy
functional programs relies on two results. On the one hand, one should prove
that the partial evaluation semantics is somehow equivalent to the standard
one. Regarding the extraction of resultants from computations with the partial
evaluation semantics, its correctness can easily be proved by exploiting the clear
operational equivalence between a state of the form 〈Γ, e, []〉 and an expression
like let Γ in e (i.e., we have that 〈[], let Γ in e, []〉 reduces to 〈Γ, e, []〉 in one
reduction step by applying rule let).

Let us first consider the equivalence between the standard and the par-
tial evaluation semantics for closed expressions. In the following, we say that
two states 〈Γ, e, S〉 and 〈Γ ′, e′, S′〉 are equivalent under annotations, in symbols
〈Γ, e, S〉 ≈ 〈Γ ′, e′, S′〉, iff Γ and Γ ′ become equal when removing bindings with
annotated expressions, e = e′, and S = S′. By abuse, we say that a derivation is
complete when no more rules are applicable, even if this is due to an annotated
function call (which is irreducible in the standard semantics since it does not
deal with annotations).

Theorem 1. Let P be an annotated program and s be an initial state. If s ⇒∗ s′

is a complete derivation in P with the standard semantics then, for any deriva-
tion s ⇒∗ s′ ⇒∗ 〈Γ, e, []〉 in P with the partial evaluation semantics, we have
〈Γ, e, []〉 ⇒∗ s′′ with the standard semantics and s′ ≈ s′′.

Intuitively, the above result can be depicted graphically as follows (SS and PES
stand for Standard Semantics and Partial Evaluation Semantics, respectively):

〈[], e0, []〉
SS

uujjjjjjj
∗uujjjjjjj PES

))SSSSSS
∗))SSSSSS

〈Γs, es, Ss〉 〈Γ, e, []〉
SS

oo
∗
oo

Proof. Let s ⇒∗ s′ in P with the standard semantics, where s′ = 〈Γs, es, Ss〉.
Now, we distinguish two possibilities. If es is a value (and, thus, Ss = []) then
the proof is trivial by Lemma 2, with 〈Γ, e, []〉 = 〈Γs, es, Ss〉.

Otherwise, es ≡ f(xn) for some function symbol f . By Lemma 2, we have
s ⇒∗ s′ with the partial evaluation semantics. Trivially, since e was closed,
only rules fun stop and case stop from the partial evaluation semantics can be
applied to s′. Let s′ ⇒∗ 〈Γ, e, []〉 be a derivation with the partial evaluation
semantics where rules fun stop and case stop are applied as much as possible.
Then, we can also construct a sort of inverse computation using rules case and

var from the standard semantics; namely, every application of rule fun stop or
case stop can be undone by applying rules case and var in this order. Hence,
we have 〈Γ, e, []〉 ⇒∗ 〈Γ ′′, e′′, S′′〉 ≡ s′′ by applying rules case and var as much
as possible. Finally, it is clear that s′ ≈ s′′ since Γ ′′ adds only bindings with
annotated expressions to Γs, e′′ = es, and S′′ = Ss.

Now, we focus on expressions which are not closed. Since this is orthogonal to
program annotations, we now consider programs without annotations.

In the following, we introduce the following reduction rules over the expres-
sions produced by the partial evaluation semantics:

case c(vn) of {pk → ek} ↪→ σi(ei) if pi = c(yn) and σi = {yn 7→ vn}
s ↪→ s′ if s ⇒ s′ with the standard semantics

These rules are used to evaluate expressions from StateExp (as returned by rule
residualize). Our next result is then stated as follows:

Theorem 2. Let P be a program and e be a (not necessarily closed) expression.
Let σ be a substitution mapping the free variables of e to values. If there exists a
complete derivation 〈[], σ(e), []〉 ⇒∗ 〈Γ, v, []〉 with the standard semantics, then
for all derivations 〈[], e, []〉 ⇒∗ s with the partial evaluation semantics we have
σ(s) ↪→∗ s′ and s′ ≈ 〈Γ, v, []〉.

Intuitively speaking, this result ensures that computations with the partial eval-
uation semantics and some incomplete expression including free variables appro-
priately capture every possible computation with the standard semantics and a
closed instance of the incomplete expression.

Proof. For simplicity, we consider that e contains a single free variable x and that
σ = {x 7→ c} maps x to a constructor constant c. Assume that the derivation
with the standard semantics has the form

〈[], σ(e), []〉 ⇒∗ 〈Γx[x 7→ c], x, [{pk → ek}]〉
⇒var 〈Γx[x 7→ c], c, x : {pk → ek}〉
⇒val 〈Γx[x 7→ c], c, [{pk → ek}]〉
⇒select 〈Γx[x 7→ c], ei, []〉 (with pi = c, i ∈ {1, . . . , k})
⇒∗ 〈Γ, v, []〉

Observe that we considered a stack with the branches of a single case expression.
A generalization to consider nested case expressions is not difficult and only
require some additional applications of rule case of case.

Trivially, we have 〈[], e, []〉 ⇒∗ 〈Γx, x, [{pk → ek}]〉 with the standard seman-
tics. Therefore, 〈[], e, []〉 ⇒∗ 〈Γx, x, [{pk → ek}]〉 is also a derivation with the
partial evaluation semantics by Lemma 2.

We now consider two possibilities for the partial evaluation semantics. If the
derivation is stopped before applying rule guess, the claim follows trivially by

the definition of ↪→. Otherwise, we have a derivation of the form

〈[], e, []〉 ⇒∗ 〈Γx[x 7→ x], x, [{pk → ek}]〉
⇒guess 〈Γx[x 7→ x], case x of {pk → ek}, []〉
⇒residualize case x of {pk → 〈Γx[x 7→ ρk(pk), ynk 7→ ynk], ρk(ek), []〉}
⇒∗ . . .

Now, the claim follows since

case σ(x) of {pk → 〈Γx[x 7→ ρk(pk), ynk 7→ ynk], ρk(ek), []〉} ↪→ 〈Γx[x 7→ c], ei, []〉

and the fact that there are no more free variables (and, thus, computations in
the standard and the partial evaluation semantics coincide from this point on).

4 Partial Evaluation in Practice

We have already developed an offline partial evaluator for functional and func-
tional logic programs following the basic technique of [17] (later improved with
a stronger termination analysis in [6]). The implementation is publicly available
from http://www.dsic.upv.es/~gvidal/german/offpeval/.

Now, we have added the new unfolding strategy presented so far (i.e., the
rules of Figures 2 and 4), together with the procedure for the extraction of
resultants of Sect. 3.3. In order to check the usefulness of the new approach, we
have considered three different unfolding strategies:

(aggressive) This strategy does not take into account the linearity of functions,
i.e., a function call is annotated (classified as “not unfoldable”) only if there is
a risk of nontermination (according to the already implemented termination
analysis [6]). Furthermore, unfolding is performed with a semantics that does
not model sharing.

(conservative) This strategy annotates a function call if either there is a risk
of nontermination or the associated function definition is not right-linear.
Again, unfolding is performed with a semantics that does not model sharing.

(sharing-based) This is the new strategy described in this paper, where function
calls are annotated only if there is a risk of nontermination but a sharing-
based unfolding is used.

The first two strategies could easily be adopted by the old partial evaluator, but
the third one required the implementation of the sharing-based partial evaluation
semantics.

We have tested the implemented system on a number of examples, and the
sharing-based strategy generally produces residual programs which are as good
as the best of the other two strategies.

Let us illustrate this point with some examples. Consider the program (in
Haskell-like notation) shown in Fig. 6. The annotations are given by the termi-
nation analysis of our partial evaluator when considering the expression

dapp (incList (S100 Z) x)

append [] x = x dapp x = append x x

append (x : xs) ys = x : append xs ys

incList n [] = [] add Z m = m

incList n (x : xs) = (add n x) : (incList n xs) add (S n) m = S (add n m)

Fig. 6. Double-append program

to be partially evaluated, where (S100 Z) is a shorthand for the natural number
S (S (. . . Z)) with 100 nested applications of S.

Now, the three strategies mentioned above proceed as follows:

(aggressive) Here, we get the following residual program:

new [] = []
new (y : ys) = (S100 y) : append (incList100 ys) (incList100 (y : ys))

incList100 [] = []
incList100 (x : xs) = (S100 x) : (incList100 xs)

together with the original definition of append. The following function re-
namings were considered:

dapp (incList (S100 Z) x) 7→ new x
incList (S100 Z) x 7→ incList100 x

Observe that function new has repeated calls to function incList100, which
will cause a slower execution of the residual program.

(conservative) This strategy basically returns the original program unchanged
because the call to dapp is also annotated in order to avoid the unfolding of
a function which is not right-linear. In this case, no slowdown is produced
in the residual program, but its run time is essentially the same as that of
the original program.

(sharing-based) By using our new partial evaluation semantics, we get the fol-
lowing residual program:

new [] = []
new (y : ys) = let w = incList100 (y : ys) in append w w

incList100 [] = []
incList100 (x : xs) = (S100 x) : (incList100 xs)

together with the original definition of append. Here, we use the same re-
namings of the aggressive strategy.
In this case, the performance of the residual program is comparable to the
outcome of the conservative approach, i.e., we avoid producing a slower resid-
ual program but no significant improvement is achieved.

Now, consider the following expression to be partially evaluated:

dapp (decList x [Z, Z, Z])

where function decList is defined as follows:

decList n [] = []
decList n (x : xs) = (minus n x) : (decList n xs)

minus n Z = n
minus (S n) (S m) = minus n m

The difference with the previous example is that the inner call to decList can
be fully unfolded. Now, the three strategies mentioned above proceed as follows:

(aggressive) It returns a residual program of the form

new x = [x, x, x, x, x, x]

where (dapp (decList x [Z, Z, Z])) is renamed as (new x).
(conservative) This strategy basically returns the original program unchanged

because the call to dapp is not unfolded.
(sharing-based) We get the same residual program as in the aggressive case. No

let expression is necessary in the residual rule since the argument of dapp is
fully evaluated and thus repeated values are not problematic (note that the
residual function new can only be called with a value, see Theorem 2).

To summarize, our preliminary experiments are encouraging and show that the
new sharing-based approach could be able to get the best of previous approaches.

5 Discussion

Despite the extensive literature on partial evaluation, we are not aware of any
approach to the specialization of lazy functional languages where sharing is pre-
served through the specialization process in a non-trivial way. For instance, [2,
3] presents a partial evaluation scheme for a lazy language but sharing is not
preserved since the underlying semantics does not model variable sharing.

In this paper, we have presented a novel approach by first extending a stan-
dard lazy semantics (where sharing is modeled by using an updatable heap) and,
then, defining a method to properly extract the associated residual rules. Our
approach is not overly restrictive since every function can be unfolded (even if
it is not right-linear) and still preserves sharing, thus avoiding the introduction
of redundant computations in the residual program.

Acknowledgements

We gratefully acknowledge the anonymous referees as well as the participants of
LOPSTR 2007 for many useful comments and suggestions.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics
for Declarative Multi-Paradigm Languages. Journal of Symbolic Computation,
40(1):795–829, 2005.

2. E. Albert, M. Hanus, and G. Vidal. A Practical Partial Evaluation Scheme for
Multi-Paradigm Declarative Languages. Journal of Functional and Logic Pro-
gramming, 2002(1), 2002.

3. E. Albert, M. Hanus, and G. Vidal. A Residualizing Semantics for the Partial Eval-
uation of Functional Logic Programs. Information Processing Letters, 85(1):19–25,
2003.

4. M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Specialization of Lazy Func-
tional Logic Programs. In Proc. of the ACM SIGPLAN Conf. on Partial Evaluation
and Semantics-Based Program Manipulation, PEPM’97, volume 32, 12 of Sigplan
Notices, pages 151–162, New York, 1997. ACM Press.

5. L.O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, 1994.

6. G. Arroyo, J.G. Ramos, J. Silva, and G. Vidal. Improving Offline Narrowing-
Driven Partial Evaluation using Size-Change Graphs. In Proc. of LOPSTR’06,
pages 60–76. Springer LNCS 4407, 2007.

7. H.P. Barendregt. The Lambda Calculus—Its Syntax and Semantics. Elsevier, 1984.
8. A. Bondorf. Similix 5.0 Manual, 1993.
9. A. Bondorf and J. Jørgensen. Efficient Analyses for Realistic Off-Line Partial

Evaluation. Journal of Functional Programming, 3(3):315–346, 1993.
10. C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Proc. of the

ACM Symp. on Principles of Programming Languages, pages 493–501. ACM, New
York, 1993.

11. A.J. Glenstrup and N.D. Jones. Termination analysis and specialization-point
insertion in offline partial evaluation. ACM TOPLAS, 27(6):1147–1215, 2005.

12. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs, NJ, 1993.

13. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of the ACM
Symp. on Principles of Programming Languages (POPL’93), pages 144–154. ACM
Press, 1993.

14. M. Leuschel, D. Elphick, M. Varea, S. Craig, and M. Fontaine. The Ecce and Logen
Partial Evaluators and Their Web Interfaces. In Proc. of PEPM’06, pages 88–94.
IBM Press, 2006.

15. S. Peyton-Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

16. S.L. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler Inliner.
Journal of Functional Programming, 12(4&5):393–433, 2002.

17. J.G. Ramos, J. Silva, and G. Vidal. Fast Narrowing-Driven Partial Evaluation for
Inductively Sequential Systems. In Proc. of the 10th ACM SIGPLAN Int’l Conf.
on Functional Programming (ICFP’05), pages 228–239. ACM Press, 2005.

18. P.L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73:231–248, 1990.

