
Slicing Unconditional Jumps1

with Unnecessary Control Dependencies2

Carlos Santiago[0000−0002−3569−6218], Sergio Pérez[0000−0002−4384−7004], and3

Josep Silva[0000−0001−5096−0008]4

VRAIN5

Universitat Politècnica de València6

Camı́ de Vera s/n7

E-46022 València, Spain8

{cargaji,serperu,jsilva}@dsic.upv.es9

Abstract. Program slicing is an analysis technique that has a wide10

range of applications, ranging from compilers to clone detection soft-11

ware, and that has been applied to practically all programming lan-12

guages. Most program slicing techniques are based on a widely extended13

program representation, the System Dependence Graph (SDG). How-14

ever, in the presence of unconditional jumps, there exist some situations15

where most SDG-based slicing techniques are not as accurate as possible,16

including more code than strictly necessary. In this paper, we identify17

one of these scenarios, pointing out the cause of the inaccuracy, and de-18

scribing the initial solution to the problem proposed in the literature,19

together with an extension, which solves the problem completely. These20

solutions modify both the SDG generation and the slicing algorithm.21

Additionally, we propose an alternative solution, that solves the prob-22

lem by modifying only the SDG generation, leaving the slicing algorithm23

untouched.24

Keywords: Program analysis, Program slicing, Unconditional jumps25

1 Introduction26

Program slicing [20, 18] is a technique for program analysis and transformation27

whose main objective is to extract from a program the set of statements that28

affect a given set of variables in a specific statement, the so-called slicing crite-29

rion. The programs obtained with program slicing are called slices, and they are30

used in many areas such as debugging [1], program specialization [2], software31

maintenance [7], code obfuscation [13], etc.32

There exist several algorithms and data structures to represent programs33

that can be used to compute slices, but the most efficient and broadly used data34

structure is the System Dependence Graph (SDG), introduced by Horwitz et al.35

[9]. It is computed from the program’s source code, and once built, a slicing36

criterion is chosen and mapped on the graph, that is then traversed with the37

algorithm proposed in [9] to compute the corresponding slice.38



The SDG is the result of assembling a set of graphs that represent informa-39

tion about a program. Figure 1 depicts how the SDG is built using the Control40

Flow Graph (CFG) as the starting graph. First, using the CFG of each function41

definition in the code, two different graphs are built: (i) the Control Dependence42

Graph (CDG) [6] and (ii) the Data Dependence Graph (DDG) [19, 6]. The union43

of both graphs results in the Program Dependence Graph (PDG) [14, 6], which44

represents all data and control dependencies inside a concrete function. Finally,45

PDG’s function calls, definitions and their parameters are linked with interpro-46

cedural arcs, generating the final SDG. The SDG can be traversed from a slicing47

criterion to produce a slice in linear time with the algorithm proposed in [9].48

CFG

CDG

DDG

PDG SDG Slice

Fig. 1. Sequence of graphs generated to build the SDG.

As all the aforementioned graphs conforming the SDG represent different49

relationships of the program, an improvement in the accuracy of these graphs50

results in a direct impact on the accuracy of the SDG. Throughout the years, the51

SDG has been augmented with different dependencies, and several techniques52

have been defined to properly represent complex situations: interprocedural al-53

ternatives to compute executable slices [4], extensions of the CFG to represent54

interprocedural control dependencies [17], object-oriented language representa-55

tions and slicing [12], or program slicing in concurrent environments [10, 5] are56

some examples of the evolution of the SDG.57

For the purpose of this paper, we are interested in the evolution of the un-58

conditional control flow treatment for program slicing. In this specific area, the59

initial proposal was the one introduced by Ball and Horwitz [3]. In their work,60

the authors considered a simplified language with scalar variables and constants,61

assignment statements, jump statements (goto, break, halt, etc.), conditional62

statements (if-then, if-then-else), and loops (while and repeat). Despite63

the simplicity of the given programming language, the ideas proposed can be64

applied to any kind of unconditional jumps present in other programming lan-65

guages. In this paper, we provide examples using the break statement in the66

Java programming language, even though the problem presented and its solu-67

tion can be applied to any statement that represents an unconditional jump.68

The following example illustrates the problem identified by Ball and Horwitz69

after their proposal.70

Example 1 (Unconditional jump subsumption [3]). Consider the Java method71

shown below on the left-hand side:72

2



1 public void f() {
2 while (X) {
3 if (Y) {
4 if (Z) {
5 A;
6 break;
7 }
8 B;
9 break;

10 }
11 C;
12 }
13 D;
14 }

1 public void f() {
2 while (X) {
3 if (Y) {
4 if (Z) {
5

6 break;
7 }
8

9 break;
10 }
11 C;
12 }
13

14 }

1 public void f() {
2 while (X) {
3 if (Y) {
4

5

6

7

8

9 break;
10 }
11 C;
12 }
13

14 }

73

Original program SDG slice Minimal slice74

This method contains a while statement, from which the execution may75

exit naturally or through any of the break statements. To represent the rest76

of statements and conditional expressions, uppercase letters are used; and, for77

simplicity, we can assume that there are no data dependencies between them.78

Now consider statement C as the slicing criterion: each input that produces a79

computation in the original program that reaches C must produce a computation80

in the slice that also reaches C. Note that C is only executed when X is true and81

Y is false.82

The code in the centre displays the computed slice by Ball and Horwitz’s83

approach; the code on the right-hand side is the minimal slice. As can be ob-84

served, the break in line 6 and its surrounding if statement (if (Z)) have been85

unnecessarily included in the slice, since the evaluation of Z does not influence86

the execution of a break after being the Y statement evaluated to true. Their87

inclusion would not be specially problematic, if it were not for the condition of88

the if statement (Z), which may include extra data dependencies that are un-89

necessary in the slice and that may lead to include other unnecessary statements,90

making the slice even more imprecise.91

The rest of the paper is structured as follows: Section 2 illustrates the ratio-92

nale behind the problem shown in Example 1, detailing how dependencies are93

generated, identifying when the problem shows up, and describing the solution94

proposed by Kumar and Horwitz in [11], where the authors introduced changes95

in two steps of the process shown in Figure 1. Section 3 proposes an alternative96

solution that is simpler and does not need to change the slicing algorithm, low-97

ering the time complexity while preserving completeness at all times. Finally,98

Section 4 concludes the article outlining the main contributions.99

2 Unconditional jumps and the PPDG100

To keep the paper self-contained, we start with the definition of control flow101

graph.102

Definition 1. (control flow graph) Given a program P , the control flow graph103

of P is a graph (N,A) where N is a set of nodes that contains one node for104

3



each statement in the program, and A are arcs that represent the execution flow105

between the nodes:106

Statement node. Any statement that is not a conditional jump. These nodes107

have one outgoing edge pointing to the next statement of the program.108

Predicate node. Any conditional jump statement, such as if, while, etc.109

These nodes have two outgoing edges labelled true and false, leading to the110

statements that would be executed regarding the condition evaluation.111

The CFG of the Original program in Example 1 is shown in Figure 2 (left),112

where N are all the nodes and A all the solid black arcs in the graph (we will113

ignore the dashed red arcs for now, since they are not part of the CFG). In this114

graph, all nodes with just one outgoing arc of A represent statements, while all115

nodes with two outgoing arcs of A labeled with T or F represent predicates.116

start

while (X)

if (Z)

if (Y)

B

C

D end

break

A

break

start

while (X)

B breakA break

D

if (Y)

if (Z) C

T

T

T

T

T F

F

F

F

F

Fig. 2. ACFG (left) and CDG (right) of the code in Example 1.

The control flow graph is the basis to calculate control dependencies in a117

program and, thus, the control dependence graph.118

Definition 2 (Control dependence). Let G be a CFG. Let X and Y be nodes119

in G. A node Y post-dominates a node X in G if every directed path from X to120

the End node passes through Y . Node Y is control dependent on node X if and121

only if Y post-dominates one but not all of X’s CFG successors.122

Definition 3 (Control dependence graph). Given a program P and its as-123

sociated CFG GCFG = (N,A), the Control Dependence Graph (CDG) of P124

is a graph GCDG = (N,A′) where (x, y) ∈ A′ if and only if node y ∈ N is125

control-dependent on node x ∈ N .126

4



Unconditional jump statements distort the usual understanding of control127

dependence, and they invalidate the standard representation of control depen-128

dencies in the CDG. Example 2 shows that the standard definition of control129

dependence is insufficient in presence of unconditional jumps.130

Example 2 (Control dependencies induced by unconditional jumps). Consider the131

following code on the left-hand side and the slicing criterion x in the last line.132

1 x = 0;
2 while (true) {
3 x++;
4 if (x>10)
5 break;
6 }
7 print(x);

1 x = 0;
2 while (true) {
3 x++;
4 if (x>10)
5

6 }
7 print(x);

133

Original program Wrong slice134

The slice of this code is the whole code (everything is needed to reach the135

slicing criterion). Nevertheless, according to Definition 2, the break statement136

in line 5 does not control any other statement, that is, no statement depends on137

the break statement. Therefore, the (wrong) slice computed with the standard138

definition of control dependence would be the code on the right. This is an infinite139

loop that never reaches the slicing criterion. Clearly, the execution of print(x) is140

in some way controlled by the execution of break and, thus, unconditional jumps141

induce some kind of control dependencies that are not captured in Definition 2.142

To deal with this problem (i.e. unconditional control flow statements), Ball143

and Horwitz [3] proposed a modification of the CFG in presence of unconditional144

control flow statements, which result in a CDG with augmented dependencies.145

This approach is the most popular one and the one used in most of the subsequent146

literature [15, 11, 16]. The main modification applied to the CFG consists in the147

introduction of a third category of nodes in the definition of the CFG:148

Pseudo-predicates. Unconditional jumps (i.e. break, goto, return1, etc.) are149

treated like predicates, where the outgoing edge labelled false is marked150

as non-executable—because there is no possible execution where such edge151

would be possible, according to the definition of the CFG [8]. For uncondi-152

tional jumps, the true edge leads to the statement at the jump destination,153

and the false edge to the statement that would be executed if the jump was154

skipped.155

The graph obtained from adding the false arcs to the pseudo-predicate nodes156

of a CFG is called the Augmented CFG (ACFG). As a consequence of the ap-157

pearance of pseudo-predicate nodes, in an ACFG every statement between an158

unconditional jump and its destination is control-dependent on it (see Defini-159

tion 2), as can be seen in Example 3.160

1 The target of a return statement is the exit of the procedure it’s in, from which
control will be handed back to the previous procedure in the call stack.

5



Example 3 (Control dependencies generated by unconditional jumps). Consider161

again the ACFG in Figure 2 (left), which represents the code in Example 1. Here,162

solid arrows represent edges that come out from statements, predicates, and true163

pseudo-predicate branches; and dashed red arrows represent the non-executable164

(false) branches of pseudo-predicates. When we transform this ACFG to a CDG,165

we obtain the CDG in Figure 2 (right), where the slice with respect to variable166

C is represented with grey nodes.167

Even though Ball and Horwitz solved the exposed problem with the defini-168

tion of the ACFG, there was still a problem they were not able to solve. This169

problem is represented in the code of Example 1. It appears when there are two170

different unconditional jumps with the same jump destination. Due to the false171

pseudo-predicate arcs in the ACFG, all the statements between the first uncon-172

ditional jump and the second one become directly control-dependent on the first173

jump, including the second one. Similarly, all the statements located between the174

second jump and the destination statement become directly control-dependent175

on the second jump. As a result of the transitive dependence, when any state-176

ment between the second jump and the destination statement is required, the177

inclusion of both unconditional jump statements in the slice is unavoidable. The178

inclusion of the first jump statement will increase the size of the slice with all179

its dependencies, leading to an imprecise slice. The solution proposed in [3] is180

complete, but not as accurate as it was expected to be.181

Ball and Horwitz were aware of the aforementioned problem and, some years182

later, Kumar and Horwitz proposed a solution in [11]. Their solution was based183

on two main modifications:184

1. A new definition of control dependence in the presence of pseudo-185

predicates. “Node Y is control-dependent on node X if and only if Y post-186

dominates, in the CFG, one but not all of X’s ACFG successors”. The re-187

sulting graph was called the pseudo-predicate PDG (PPDG).188

2. A new slicing algorithm. The new algorithm established some restrictions189

in the slicing traversal. “To compute the slice from node S, include S itself and190

all of its data and control-dependence predecessors in the slice. Then follow191

backwards all data-dependence edges, and all control-dependence edges whose192

targets are not pseudo-predicates; add each node reached during this traversal193

to the slice.”194

By the introduction of these novelties, the accuracy of the slice was improved,195

since it is not possible to add in the slice two pseudo-predicate nodes that jump196

to the same destination unless one of them is the slicing criterion itself. This197

approach solved the problem of Example 1, proposed in [3].198

3 Alternative solution: unnecessary control dependencies199

In this section, we propose an alternative solution to the unconditional jump200

problem shown in the previous section. The key idea of our approach is to identify201

6



which edges of the CDG are responsible for the inaccurate slices and define a202

method to avoid building them in the graph generation process.203

To properly reason about the accuracy of our approach, we provide a formal204

definition of slicing criterion and slice.205

Definition 4 (Slicing criterion). Let P be a program. A slicing criterion C206

of P is a tuple 〈s, v〉 where s is a statement in P and v is a set of variables that207

are used or defined in s.208

Definition 5 (CDG slice). Given a CDG G = (N,A) and a slicing criterion209

〈s, v〉, where n ∈ N represents s in G, a CDG slice of n is a subgraph G′ =210

(N ′, A′) such that:211

1. N ′ ⊆ N .212

2. ∀n′ ∈ N ′, n is control dependent on n′ and n′ is needed to execute n.213

3. A′ = {(x, y) ∈ A | x, y ∈ N ′}.214

The standard slicing algorithm, denoted slice(G ,C ), collects all nodes that215

are reachable from the node in G associated with the slicing criterion C traversing216

backwards the CDG arcs.217

We have identified a general situation in which some control dependencies218

should be omitted. If those control dependencies are removed from the CDG,219

then the standard slicing algorithm is still complete and precision is kept the220

same or better. Consider a CDG G with two unconditional jump statements x221

and y that jump to the same destination, with an arc (x, y) in G. There exists a222

CDG G′ with the same set of nodes and a set of arcs obtained by deleting all the223

control arcs in G with y as target, that produces more accurate program slices.224

Formally,225

Theorem 1. Let G = (N,A) be a CDG. Let x ∈ N be any unconditional jump226

statement. Let y ∈ N be an unconditional jump statement without any variable227

use or definition that jumps to the same destination as x. Let G′ = (N,A′) where228

A′ = (A \ {(w, y) | w ∈ N}). For all slicing criterion C, slice(G ′,C ) is a CDG229

slice.230

Proof. We prove the theorem by means of a generic code that captures all possi-231

ble scenarios that can happen under the conditions of the theorem. We consider232

two unconditional jump statements, x as the first jump statement and y as the233

second one. First, x and y cannot be sequential statements because in that case234

y would be dead code. This forces us to enclose x inside a conditional structure.235

As y does not define or use any variable, we add the statement s1 and place an236

external conditional structure to also prevent it to be dead code. This generic237

code is depicted in Figure 3 (left). Any statement or groups of them added to238

this code before or after x or y would produce a similar topology that would not239

affect the proof. The reason is that any statement represented by a set of nodes240

has only one successor in the CFG and can never be the source of a control241

dependence (see Section 2.3 in [3]).242

7



We graphically illustrate this proof by means of figures 3 and 4. Figure 3243

represents the ACFG (centre) of the aforementioned code with the ACFG extra244

arcs represented with dashed red arrows, and its associated CDG (right). Figure 4245

represents the same CDG removing two control dependence arcs (dashed red246

arcs). The figure represents two program slices with respect to two different247

slicing criteria: x (left) and s1 (right).248

…
cond1{

cond2
x

y
}
s1
… x y

cond2

cond1

T

T F

x

y

cond2

cond1

s1

F

s1end

… …

F
F

T
T

Fig. 3. Piece of code (left), its ACFG (centre) and its associated CDG (right).

x

y

cond2

cond1

s1

x

y

cond2

cond1

s1

Fig. 4. CDG of our approach and CDG slices w.r.t. x (left) and s1 (right).

8



We distinguish two possible scenarios according to the slice computed by249

slice(G ′,n):250

(i) y 6∈ slice(G ′,n) (Figure 4 left). In this case, node y is not needed to exe-251

cute n and, thus, the removal of the arcs that end in y do not affect the252

computation of slice(G ′,n) because they are never traversed. Therefore,253

all nodes needed to execute n belong to the slice (condition 1 in Defini-254

tion 5) and also all arcs induced by them are kept in the slice (condition 2255

in Definition 5). Hence, slice(G ′,n) is a CDG slice.256

(ii) y ∈ slice(G ′,n) (Figure 4 right). First, according to Definition 4, node257

y cannot be selected as slicing criterion, as it does not define or use any258

variables of the program according to the theorem conditions imposed on259

y. Then, because no data dependence exists on y, the only possibility to260

include y in slice(G ′,n) is because some statement between y and the jump261

destination of y is included in the slice (s1 in our graph in Figure 4 (right)).262

Because of that, there is an execution path where y affects the execution263

of this statement. In the case that cond1 was a loop, y would be control264

dependent on cond1 itself, including cond1 in slice(G ′,n) but, in this case,265

we would obtain the same result because s1 is also control dependent on266

cond1 and thus, included in slice(G ′,n).267

We have two possible scenarios to execute n (see the ACFG in Figure 3268

(centre)):269

– s1 is executed. Then, cond1 is false and cond2, x, and y are not executed270

(they can be excluded from slice(G ′,n)).271

– Either x or y are executed. As the result of executing x and y is func-272

tionally the same (the program execution continues at the destination273

of y), there is no difference between taking one path of cond2 or another.274

Therefore, cond2, x and y can be replaced by y without modifying the275

behaviour of the program; making the control dependency arcs from276

cond2 and x to y unnecessary.277

In the three cases, the removal of the arcs that end in y ensure that the278

two conditions in Definition 5 hold. Thus, slice(G ′,n) is a CDG slice.279

Algorithm 1 formalizes the new CDG generation process, which removes the280

unnecessary arcs. To perform that task, the algorithm uses an ACFG as the281

starting point. The algorithm uses the following functions and sets:282

– genControlArcs\1. It inputs an ACFG and outputs all control arcs that can283

be obtained according to Definition 2.284

– unjumps . This is a set with all nodes that represent an unconditional jump.285

– jumpDest\1. This function inputs a CDG node n that represents an uncon-286

ditional jump statement and outputs the destination of the jump.287

Algorithm 1 first generates all control dependencies in the ACFG. Then,288

each control dependency n → n′ is inspected to determine whether both n and289

n′ are unconditional jumps with the same destination. If this is the case, then290

all control arcs that target node n′ are removed. This forms the set A′. Finally,291

9



Algorithm 1 CDG Generation Algorithm

Input: An ACFG G = (N,A).
Output: A CDG G′ = (N ′, Ac).
1: Ac = genControlArcs(G)
2: for all (ns, ne) ∈ Ac do
3: if (ns, ne ∈ un jumps ∧ jumpDest(ns) == jumpDest(ne)) then
4: Ac = Ac \ (x, ne) ∀ x ∈ N
5: end if
6: end for
7: N ′ = N \ {End}
8: G′ = (N ′, Ac)

N ′ is calculated by removing the End node from N and the CDG G′ = (N ′, A′)292

is obtained.293

With this generation process, the CDG produced is more accurate than the294

one produced by Ball and Horwitz. For instance, the CDG associated to the295

Original program in Example 1 is shown in Figure 5. The CDG slice associated to296

the slicing criterion C is shown in grey, and it corresponds to the Minimal slice in297

Example 1. As can be seen, nodes break and if(Z) are no longer part of the slice.298

The structure of this graph represents now a more realistic control dependence,299

where unconditional jumps to common destinations are not dependent on each300

other.301

start

while (X)

A break

D

if (Y)

if (Z) breakB

C

Fig. 5. CDG obtained by applying Algorithm 1 to the code in Example 1.

It is worth remarking the main difference between the solution presented302

in [11] and our approach: the amount of steps of the slicing process that are303

modified. Both approaches introduce a modification in the CDG generation pro-304

cess. While the amount of arcs generated by Kumar and Horwitz may be lower305

10



or greater than the amount of arcs generated in the initial proposal ([3]), the306

amount of arcs generated in our approach is always equal or lower than in the ini-307

tial proposal. In addition, the approach by Kumar and Horwitz needs to change308

the standard SDG-traversal algorithm, introducing an overhead when calculat-309

ing slices. On the contrary, in our approach the SDG-traversal algorithm remains310

untouched, keeping the slicing process as a graph reachability problem and en-311

suring the slicing cost proposed by Ottenstein and Ottenstein in [14].312

4 Conclusions313

Ball and Horwitz proposed the first program slicing technique with a specific314

treatment for unconditional jumps. Even though their technique produces com-315

plete slices in all cases, they were aware that accuracy could be improved, and316

they proposed a challenging example (analogous to Example 1) where the com-317

puted slice was bigger than needed. Some years later, Kumar and Horwitz solved318

this accuracy problem changing the definition of control dependencies and re-319

defining the standard slicing algorithm.320

In this paper, we propose an alternative approach that solves the problem321

performing fewer changes to the standard approach. Our approach only needs to322

change the CDG produced, and all the other phases of program slicing (including323

SDG traversal) remain unchanged. We have theoretically proven the correctness324

of our approach.325

5 Acknowledgements326

This work has been partially supported by the EU (FEDER) and the Span-327

ish MCI/AEI under grants TIN2016-76843-C4-1-R and PID2019-104735RB-C41,328

and by the Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust).329

References330

1. C. ai Sun, Y. Ran, C. Zheng, H. Liu, D. Towey, and X. Zhang. Fault localisation331

for WS-BPEL programs based on predicate switching and program slicing. Journal332

of Systems and Software, 135:191 – 204, 2018.333

2. M. Aung, S. Horwitz, R. Joiner, and T. Reps. Specialization slicing. ACM Trans.334

Program. Lang. Syst., 36(2):5:1–5:67, June 2014.335

3. T. Ball and S. Horwitz. Slicing programs with arbitrary control-flow. In Proceedings336

of the First International Workshop on Automated and Algorithmic Debugging,337

AADEBUG ’93, pages 206–222, London, UK, UK, 1993. Springer-Verlag.338

4. D. Binkley. Precise executable interprocedural slices. ACM Letters on Program-339

ming Languages and Systems, 2(1-4):31–45, March 1993.340

5. Z. Chen and B. Xu. Slicing concurrent java programs. SIGPLAN Not., 36(4):41–47,341

Apr. 2001.342

6. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph343

and its use in optimization. ACM Transactions on Programming Languages and344

Systems, 9(3):319–349, 1987.345

11



7. A. Hajnal and I. Forgács. A demand-driven approach to slicing legacy COBOL346

systems. Journal of Software Maintenance, 24(1):67–82, 2012.347

8. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence348

graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming349

Language Design and Implementation, PLDI ’88, pages 35–46, New York, NY,350

USA, 1988. ACM.351

9. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence352

graphs. ACM Transactions Programming Languages and Systems, 12(1):26–60,353

1990.354

10. J. Krinke. Static slicing of threaded programs. SIGPLAN Not., 33(7):35–42, July355

1998.356

11. S. Kumar and S. Horwitz. Better slicing of programs with jumps and switches.357

In Proceedings of the 5th International Conference on Fundamental Approaches to358

Software Engineering (FASE 2002), volume 2306 of Lecture Notes in Computer359

Science (LNCS), pages 96–112. Springer, 2002.360

12. L. Larsen and M. J. Harrold. Slicing object-oriented software. In Proceedings of the361

18th international conference on Software engineering, ICSE ’96, pages 495–505,362

Washington, DC, USA, 1996. IEEE Computer Society.363

13. A. Majumdar, S. J. Drape, and C. D. Thomborson. Slicing obfuscations: Design,364

correctness, and evaluation. In Proceedings of the 2007 ACM Workshop on Digital365

Rights Management, DRM ’07, pages 70–81, New York, NY, USA, 2007. ACM.366

14. K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a soft-367

ware development environment. SIGSOFT Software Engineering Notes, 9(3):177–368

184, 1984.369

15. T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. Speeding up slicing. SIGSOFT370

Softw. Eng. Notes, 19(5):11–20, December 1994.371

16. T. Reps and G. Rosay. Precise interprocedural chopping. In Proceedings of the372

3rd ACM SIGSOFT Symposium on Foundations of Software Engineering, pages373

41–52, New York, NY, USA, 1995. Association for Computing Machinery.374

17. S. Sinha, M. J. Harrold, and G. Rothermel. System-dependence-graph-based slicing375

of programs with arbitrary interprocedural control flow. In Proceedings of the 1999376

International Conference on Software Engineering (IEEE Cat. No.99CB37002),377

pages 432–441. IEEE, May 1999.378

18. F. Tip. A survey of Program Slicing techniques. Journal of Programming Lan-379

guages, 3(3):121–189, 1995.380

19. R. A. Towle. Control and Data Dependence for Program Transformations. PhD381

thesis, USA, 1976. AAI7624191.382

20. M. Weiser. Program Slicing. In Proceedings of the 5th international conference383

on Software engineering (ICSE ’81), pages 439–449, Piscataway, NJ, USA, 1981.384

IEEE Press.385

12


