
ReverCSP: Time-travelling in CSP computations

Carlos Galindo1[0000−0002−3569−6218], Naoki Nishida2[0000−0001−8697−4970],
Josep Silva1[0000−0001−5096−0008], and Salvador Tamarit1[0000−0001−5103−4153]

1 Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València

Camino de Vera sn, E-46022 Valencia, Spain
2 Graduate School of Informatics

Nagoya University
Furo-cho, Chikusa-ku, 464-8603 Nagoya, Japan.

Abstract. This paper presents reverCSP, a tool to animate both for-
ward and backward CSP computations. This ability to reverse computa-
tions can be done step by step or backtracking to a given desired state
of interest. reverCSP allows us to reverse computations exactly in the
same order in which they happened, or also in a causally-consistent way.
Therefore, reverCSP is a tool that can be especially useful to compre-
hend, analyze, and debug computations. reverCSP is an open-source
project publicly available for the community. We describe the tool and
its functionality, and we provide implementation details so that it can
be reimplemented for other languages.

Keywords: Reversible computations · CSP · Tracing.

1 Introduction

The Communicating Sequential Processes (CSP) is nowadays one of the must
used process algebras [16]. The analysis of CSP computations has traditionally
been based on the so-called CSP traces. Roughly, CSP traces are a representation
to specify all possible computations that may occur in a system, and they are
represented with sequences of events. Among the different analyses defined over
traces we have security analysis [6], livelock analysis [3], and deadlock analysis
[7, 17].

Unfortunately, CSP traces are not very appropriate for debugging because
they do not relate the computations with the source code. For this reason, a
data structure called CSP track [12] was defined to overcome that problem.
CSP tracks were originally conceived for program comprehension and debugging
because they can represent forward CSP computations with the advantage that
every single step of the operational semantics is associated with the positions
in the source code (i.e., initial and final line and column) of the literals of the
specification participating in that step. This means that, with a CSP track, one
can see directly in the source code the parts that are being executed.

Example 1. Consider the following CSP specification:3

3 Those readers non familiar with the CSP syntax are referred to [16], where all CSP
syntax constructs are explained.

2 C. Galindo et al.

0 MAIN
L0 0-0

1 [|{|a|}|]
L3 10-19

2 P
L3 8-9

5 Q
L3 20-21

3 [|{|a|}|]
L4 7-16

4 R
L4 5-6

6 a
L4 17-18

6 a
L5 5-6

6 a
L6 5-6

7 →
L5 7-9

8 SKIP
L5 10-14

7 →
L4 19-22

9 |~|.left
L4 34-42

7 →
L6 7-9

10 b
L6 10-11

13 b
L4 24-25

11 →
L6 12-14

12 SKIP
L6 15-19

14 →
L4 26-28

15 SKIP
L4 29-33

Causally-consistent step 1.3

Causally-consistent step 1.2

Causally-consistent step 1.3.1

Causally-consistent step 1 Causally-consistent step 1.1

CC step
1.2.1

Fig. 1. Extended track of the computation produced by the trace 〈abb〉 in reverCSP.

channel a,b

MAIN = P ||
{a}

Q

P = R ||
{a}

a → (b → SKIP u Q)

R = a → SKIP

Q = a → b → SKIP

The only possible traces of this specification are: {〈〉,〈a〉,〈ab〉,〈abb〉}
If we consider the trace 〈abb〉, it can be produced by two different computa-

tions due to the non-deterministic evaluation order of the processes. While the
first event (a) is deterministic, the b events are not (they could correspond to
either process P or Q). Therefore, a trace 〈abb〉 does not give information about
what parts of the computation have been executed and in what order.

In contrast, if we observe the track in Figure 1, we can see that it represents
the source code literals inside nodes (at the top right); each node is labelled with
its associated timestamp (at the top left) and they contain pairs line-column
to uniquely identify the literals in the CSP specification. Synchronizations are
represented with a dashed edge. For the time being the reader can ignore the
green text and lines.

In this paper we present a new tool called reverCSP that uses an extension of
CSP tracks to animate and reverse computations. We explain how to download
and install the tool, and we explain its functionality and architecture.

2 Recording the history of a CSP computation

According to the Landauer’s embedding principle [8] a record of a computation
can make that computation reversible. In order to record CSP computations we
have defined an extension of CSP tracks [12] so that they also store the exact

ReverCSP: Time-travelling in CSP computations 3

time when each literal in the track was executed. This gives us the ability to
know exactly in what order where the literals executed and, thus, to reverse com-
putations. Observe in Figure 1 that each node has a label with a timestamp that
represents the instant where this node was generated. Therefore, synchronized
events have the same timestamp.

With the timestamp we can serialize the program. For instance, if we only
focus on event nodes (those in bold) then it is trivial to generate the associ-
ated trace 〈abb〉 following the sequence: (6,a)→(10,b)→(13,b). Timestamps
together with synchronizations also allow us to define a causally-consistent rela-
tion between nodes. This relation allows us to perform (forward and backward)
causally-consistent steps. These steps group a set of nodes that must happen
before a given action (a visible event or the end of the computation represented
with SKIP or STOP) and after another action that already happened.

Example 2. Consider again the track in Figure 1. Those nodes that belong to
the same causally-consistent step have been grouped inside an area marked with
a dotted green line. The causal relation is represented by the identifier of the
causally-consistent steps. Step X.Y cannot be undone until any suffix of X.Y
has been undone. This means that steps 1.1, 1.2, and 1.3 must be undone (in
any order) before undoing step 1. Similarly, step 1.2.1 must be undone before
undoing step 1.2. Steps 1.2.1 and 1.3.1 can be undone in any order. All this
information is automatically computed by reverCSP and used to control that
steps are (un)done (and offered to the user) in the correct order.

3 The system reverCSP

3.1 Downloading and installation

The reverCSP system is open-source and free. It can be downloaded from:
https://github.com/tamarit/reverCSP. The system can be run either on
Linux or in a Docker container. The later is the simplest, as the user only needs
to install docker and run the following commands:

$ git clone --recursive https://github.com/tamarit/reverCSP
$ docker build -t reverCSP .
$ docker run -it -v $PWD/examples:/reverCSP/examples \

-v $PWD/output:/reverCSP/output --rm reverCSP

Then, from within the shell inside the docker container, the user can run the
script reverCSP, accompanied by the path to a CSP specification file, as can
be seen in Figure 2. The two volumes exposed to docker (the -v option) allow
the user to view the generated PDF files in the output folder and to add new
specifications to be analyzed.

The system uses the Erlang/OTP framework4 to animate CSP specifications,
and it (optionally) uses Graphviz5 to produce PDF outputs of the tracks. Oth-
4 https://www.erlang.org
5 https://www.graphviz.org

4 C. Galindo et al.

$./reverCSP examples/rc2020.csp
[...]
Current expression:
MAIN

These are the available options:
1 .- MAIN
2 .- Random choice.
3 .- Random forward-reverse choice.
4 .- See current trace.
5 .- Print current track.
6 .- Reverse evaluation.
7 .- Undo.
8 .- Roll back.
0 .- Finish evaluation.
What do you want to do?
[1/2/3/4/5/6/7/8/0]: 1

Current expression:
MAIN

| MAIN
(P [|{|a|}|] Q)

| Q
(P [|{|a|}|] a->b->SKIP)

| P
(R [|{|a|}|] a->(b->SKIP |~| Q) [|{|a|}|] a->b->SKIP)

| Reverse evaluation
| Q

(R [|{|a|}|] a->(b->SKIP |~| Q) [|{|a|}|] Q)
| P

(P [||a||] Q)

Fig. 2. Main menu (left) and a series of user actions and the resulting states (right).

erwise, only DOT files will be produced. Both systems are also freely available
under open-source licenses.

3.2 Main functionality

reverCSP implements in Erlang a reversible CSP interpreter with two phases:

Generation of tracks. Tracks can be generated using a random number of
steps (a random execution) or following the computation steps defined by
the user (user-directed execution). This means that, at any point of the
computation, the user can choose how to proceed and the associated track
is dynamically generated. For instance, a user can perform, say, 50 random
steps, then go backward, say 20 steps, and then go forward again but selecting
a different rule to be applied. Thus, a different computation (and track) is
produced.

Exploration of tracks. Provided that we have a track generated, it can be
traversed backward. The traversal is done with computation steps that can
be deterministic (using the Undo option) or causally-consistent (using the
Reverse evaluation option). After each step, the system shows the cur-
rent expression and it gives the option to output the trace and the track.
Figure 2 shows the menu displayed during a computation (left), followed by
the computation steps selected by the user (right). The states reached are
in black, the user actions are in blue and the changes in the state produced
by the last action selected are in red.

3.3 Architecture and implementation details

Figure 3 shows the architecture of reverCSP. The source code is parsed by mod-
ule CSP tracker to produce an initial state (of the operational semantics). This
state is used by module Forward Computation to perform a forward step and
generate the associated track. If we want to reverse the computation, then mod-
ule Backward Computation can update the state with the information of the

ReverCSP: Time-travelling in CSP computations 5

Trace

Current
state

CSP
MAIN = P || Q
P = R || a -> …
R = a -> SKIP
…

Track

CSP
Tracker P P

a a

||

MAIN

SKIP SKIP
-> START_TRACE
tau -> MAIN
tau -> P
tau -> Q
a
...
<- FINISH TRACE

reverCSP

Source code
Forward

Computation

Backward
Computation

MAIN = ?

MAIN = P || Q

Initial State

Parsing
+

Codeserver

Fig. 3. reverCSP architecture.

track. When required, module CSP tracker serves the parsed code to the other
modules and performs semantic steps from a given state. The interface interacts
with the user and continuously displays the trace of the computation.

4 Related Work

There exist different works that propose techniques for rollback-recovery [5] and
for reversibility in sequential systems [15] and concurrent systems [11]. Our sys-
tem, reverCSP, is a replay debugger that uses tracks to record the execution. In
the core of our tool we use a library called CSP-tracker [13] that can be invoked
to produce tracks. One interesting tool that is related to our work is CauDEr
[10]. It can also causal-consistently reverse computations, but in this case for
Erlang and using a different notion of track. The idea of reversing computations
in a causally-consistent manner was introduced in [4] for CCS. Since then, differ-
ent approaches have emerged. A survey that very nicely describes some of those
approaches is [9].

There are other systems such as [1, 2] and [11] that are somehow related to
our tool. The work in [1] proposes a modular framework that can be used to
define causal-consistent reversible extensions of different concurrent models and
languages. The extension of tracks that we defined was inspired by that work.
Another interesting work that also proposes a tool that can reverse computa-
tions, this time for a CSP-based language embedded in Scala, was presented by
Brown and Sabry [2]. Unfortunately, the implementation is not publicly avail-
able. Finally, Lanese et al. [11] proposed a novel approach called controlled
causal-consistent replay where the debugger displays all and only the causes
of an error. These approaches are also related to causally-consistent dynamic

6 C. Galindo et al.

slicing [14], but there are important differences: They target pi calculus and we
target CSP. Our tool is based on tracks to reverse computations, while dynamic
slicing uses execution traces to compute program slices that contain the parts of
the source that could influence a given behavior.

5 Conclusions

This paper described reverCSP, a tool for the animation and analysis of CSP
specifications. On the practical side, reverCSP can be seen as a CSP animator
with the ability to replay and reverse computations. This ability is provided by
the fact that reverCSP records every execution step of the computation in a
graph-like data structure called track.

We have extended the original definition of track to incorporate timestamps
that make explicit the order in which the components of the specification were
executed; and this order allows us to reverse the computation. reverCSP im-
plements different functionalities such as step-by-step forward and backward
execution, random (multiple) steps, undo, and rollback. Besides, it allows to
perform both deterministic and causally-consistent reversible steps.

Because reverCSP (re)generates the corresponding part of the track with
every computation step, the complete track is available to perform different
post-mortem analyses. One of them is program slicing, which was already im-
plemented in a tool called CSP-tracker. As future work we plan to adapt our
analyses to also implement a causally-consistent dynamic program slicer based
on tracks for CSP.

6 Acknowledgements

This work has been partially supported by the EU (FEDER) and the Span-
ish MCI/AEI under grants TIN2016-76843-C4-1-R and PID2019-104735RB-C41,
and by the Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust).

References

1. A. Bernadet and I. Lanese. A Modular Formalization of Reversibility for Concur-
rent Models and Languages. In Proc. ICE 2016, EPTCS, 2016.

2. G. Brown and A. Sabry. Reversible communicating processes. Electronic Proceed-
ings in Theoretical Computer Science, 203:45–59, 2016.

3. M. Conserva Filhoa, M. Oliveira, A. Sampaio, and A. Cavalcanti. Compositional
and local livelock analysis for csp. Inf. Process. Lett, 133:21–25, 2018.

4. V. Danos and J. Krivine. Reversible communicating systems. In Proc. CON-
CUR’04, volume 3170 of LNCS, pages 292–307. Springer, 2004.

5. E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–
408, 2002.

ReverCSP: Time-travelling in CSP computations 7

6. Y. Fang, H. Zhu, F. Zeyda, and Y. Fei. Modeling and analysis of the disruptor
framework in csp. In Proc. CCWC’18. IEEE Computer Society, 2018.

7. P. B. Ladkin and B. B. Simons. Static deadlock analysis for CSP-type communi-
cations. In Responsive Computer Systems: Steps Toward Fault-Tolerant Real-Time
Systems. The Springer International Series in Engineering and Computer Science,
vol 297. Springer, 1995.

8. R. Landauer. Irreversibility and heat generation in the computing process. IBM
J. Res. Dev., 5:183–191, 1961.

9. I. Lanese, C. Antares Mezzina, and F. Tiezzi. Causal-consistent reversibility. Bul-
letin of the EATCS, 114:17, 2014.

10. I. Lanese, N. Nishida, A. Palacios, and G. Vidal. CauDEr: A causal-consistent
reversible debugger for erlang. In Proc. FLOPS 2018, volume 10818 of LNCS,
pages 247–263, 2018.

11. I. Lanese, A. Palacios, and G. Vidal. Causal-consistent replay debugging for mes-
sage passing programs. In Proc. FORTE 2019, pages 167–184, June 2019.

12. M. Llorens, J. Oliver, J. Silva, and S. Tamarit. Dynamic slicing of concurrent
specification languages. Parallel Computing, 53:1–22, 2016.

13. M. Llorens, J. Oliver, J. Silva, and S. Tamarit. Tracking CSP computations. J.
Log. Algebr. Meth. Program., 102:138–175, 2019.

14. R. Perera, D. Garg, and J. Cheney. Causally consistent dynamic slicing. In Proc.
CONCUR’16, volume 59 of LIPIcs, pages 18:1–18:15, 2016.

15. I. Phillips, I. Ulidowski, and S. Yuen. A reversible process calculus and the mod-
elling of the erk signalling pathway. In Proc. RC’12, volume 7581 of LNCS, pages
218–232. Springer, 2012.

16. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997.

17. H. Zhao, H. Zhu, F. Yucheng, and L. Xiao. Modeling and verifying storm using
csp. In Proc. HASE’19. IEEE Computer Society, 2019.

