
A Program Slicer for Java (Tool paper)⋆

Carlos Galindo[0000−0002−3569−6218], Sergio Perez[0000−0002−4384−7004], and
Josep Silva[0000−0001−5096−0008]

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera s/n, 46022 Valencia, Spain
cargaji@vrain.upv.es, {serperu,jsilva}@dsic.upv.es

Abstract. Program slicing is a static analysis technique used in debug-
ging, compiler optimization, program parallelization, and program spe-
cialization. However, current implementations for Java are proprietary
software, pay-per-use, and closed source. Most public and open-source
implementations for Java are not maintained anymore or they are ob-
solete because they do not cover novel Java features or they do not
implement advanced techniques for the treatment of objects, exceptions,
and unconditional jumps. This paper presents JavaSlicer, a public and
open-source tool written in Java for slicing Java programs, which sup-
ports the aforementioned features. We present its usage, architecture,
and performance.

Keywords: Program slicing · System Dependence Graph · System demo

1 Introduction

Program slicing is a static analysis technique used to automatically identify what
parts of a program may affect the value of a variable at a given position (static
backward slicing) or what parts of a program may be affected by the value of a
variable at a given position (static forward slicing). The program point of interest
(a set of variables in a line) is known as slicing criterion. The output, or slice,
is the subset of the program that affects the slicing criterion.

Program slicing can be likened to automated scissors for code: given a pattern
to target (a slicing criterion) it will remove all the code that is not relevant to
that pattern. Consider Figure 1, in which a very simple program has been sliced.
The criterion ⟨10, sum⟩ indicates that we are interested in the elements that

⋆ This work has been partially supported by the EU (FEDER) and the Spanish
MCI/AEI under grants TIN2016-76843-C4-1-R and PID2019-104735RB-C41, by the
Generalitat Valenciana under grant Prometeo/2019/098 (DeepTrust), and by TAI-
LOR, a project funded by EU Horizon 2020 research and innovation programme un-
der GA No 952215. Sergio Pérez was partially supported by Universitat Politècnica
de València under FPI grant PAID-01-18. Carlos Galindo was partially supported
by the Spanish Ministerio de Universidades under grant FPU20/03861.



2 C. Galindo et al.

1 void f(int n, int m) {
2 int sum = 0;
3 int prod = 0;
4 int i = 0;
5 while (i < m) {
6 sum += n;

7 prod *= n;
8 i++;
9 }

10 log(sum);
11 log(prod);
12 }

Fig. 1. A simple Java program and its slice w.r.t. ⟨10, sum⟩ (in black).

affect the value of the variable sum at line 10. The resulting slice has removed
the lines used to compute prod because they have no influence on sum.

Program slicing is particularly useful for debugging (where the slicing crite-
rion is a variable containing an incorrect value and, thus, the slice must contain
the bug), but there are many other applications such as program specialization,
and program parallelisation. Unfortunately, currently, there does not exist a pub-
lic and open-source program slicer for modern Java since the existing ones are
obsolete or proprietary. For instance, there does not exist a plug-in for IntelliJ
IDEA or Eclipse, two of the most popular Java IDEs in the market.

JavaSlicer is a library and terminal client that creates slices for Java pro-
grams, using the System Dependence Graph (SDG). Its current version is JavaSlicer
1.3.1 (aka scissorhands). In this paper, we present its usage, structure, underly-
ing architecture, and performance.

2 Background

The most common data structure used to slice a program is the System Depen-
dence Graph (SDG) [3], a directed graph that represents program statements as
nodes and the dependences between them as edges. Once built, a slice can be
computed in linear time as a graph reachability problem by selecting the node
that represents the slicing criterion and traversing the edges backwards/forwards
(for a backward/forward slice, respectively).

The SDG itself is built from a sequence of graphs: each method is used
to compute a Control-Flow Graph (CFG), then control and flow (aka data)
dependences are computed and they are stored in a Program Dependence Graph
(PDG). Finally, the calls in each PDG are connected to their corresponding
declarations to form the SDG, making it the union of all the PDGs.

To compute a slice, the slicing criterion is located, and then a two-phase
traversal process is used (so that the context of each call is preserved), which
produces a set of nodes that can then be converted back to code or processed in
other ways.

3 Producing slices with JavaSlicer

JavaSlicer is a very sophisticated tool that implements the SDG and its corre-
sponding slicing algorithms with advanced treatment for object-oriented (OO)



A Program Slicer for Java (Tool paper) 3

features [5], exception handling [1], and unconditional jumps [4] (in Java, break,
continue, return and throw are unconditional jumps). It includes novel tech-
niques that improve the until now most advanced representation of OO pro-
grams, the JSysDG [2]. It is free/libre software and is publicly available at
https://github.com/mistupv/JavaSlicer under the AGPL license. The sources
can be built by using maven (following the instructions in the README), or a
prebuilt jar can be downloaded from the releases page1.

With the sdg-cli.jar file, an installation of Java 11 or later, and the Java
sources that are to be sliced, producing a slice for is a simple task. E.g., for a file
called Example.java and the slicing criterion ⟨10, x⟩, the command would be:

$ java -jar sdg-cli.jar -c Example.java:10#x

The slice will be placed in a slice folder (which will be created if it does not al-
ready exist). The parameter --output or -o can set the output directory to any
other location. The slicing criterion is given using the --criterion or -c pa-
rameter, with the following format: FILE:LINE#VAR. Alternatively, the criterion
can be split into the --file, --line, and --var parameters.

3.1 Slicing more than one file

Most non-trivial programs are spread across multiple files, so it is also possible
to produce slices w.r.t. a whole project. An additional parameter (--include
or -i) must be passed so that a SDG is generated with all the files that make
up the program. Assuming that the project is inside src and that the slicing
criterion is ⟨10, x⟩ in src/Main.java, the command would be:

$ java -jar sdg-cli.jar -i src -c src/Main.java:10#x

Any file from the project from which statements are included in the slice will
appear in the slice folder. If the project is spread across multiple modules, they
can be concatenated with commas (i.e., -i x/src,y/src).

3.2 Slicing with external libraries

A limitation of JavaSlicer is that the project must be compilable, so any exter-
nal dependency must be included either in the SDG (as shown in the previous
section) or added to Java’s classpath. To do so, we can use the -cp parameter,
concatenating multiple libraries with semicolons. For example, to slice a small
program that depends on JGraphT with slicing criterion ⟨25, res⟩, the command
would be:

$ java -cp jgrapht-1.5.0.jar -jar sdg-cli.jar -c Graphing.java:25#res

1 Available at https://github.com/mistupv/JavaSlicer/releases

https://github.com/mistupv/JavaSlicer
https://github.com/mistupv/JavaSlicer/releases


4 C. Galindo et al.

JavaSlicer

SDG creation
Class 
Graph

Call 
GraphCFG PDGCFG

w/ formal nodes

SDG SDG

w/ summary edges
1 2 3 4 5 6 7

SDG slice
〈13, x〉

JavaParser

IN
PU

T
O

UT
PU

T

JavaParser

SDGSlicing 
Criterion

Slice
Slicing 

Algorithm

Fig. 2. Sequence of events that slice a program in JavaSlicer.

Of course, transitive dependencies must also be included (in our case, we
would need to include JGraphT ’s dependencies).

Each module, library, and dependency in a project must be included via -i
or -cp. However, the SDG’s behaviour changes in each. With the former, the
files are included in the SDG (they are parsed, analysed, its dependences are
computed, etc.), increasing precision but making the analysis take longer and
more memory. The latter does not take into account the body of each function,
speeding up the process at the cost of some precision. This gives the user the
freedom of including/excluding specific libraries from the analysis.

4 Implementation

JavaSlicer is a Java project with 9.3K LOC2 in two modules:

sdg-core: The main program slicing library, which contains multiple variants
of the SDG with their corresponding slicing algorithms.

sdg-cli: A simple client that uses the core library to produce slices.

The main module contains all the data structures and algorithms required
to run the slicer. Slicing a program with the library is as simple as creating a
new SDG, building it with the parsed source code, and slicing it w.r.t. a slicing
criterion. Internally, the construction of the SDG follows a 7-step process: (1)
Compute the class graph (connecting classes, their parents and members) from
the parsed sources. (2) Compute the control-flow arcs to create a CFG for each
method in the program. (3) Compute the call graph, which represents methods
as nodes and calls between them as edges. (4) Perform a data-flow analysis to
locate the formal-in and formal-out variables, adding markers to the CFG such
that formal nodes will be placed in the PDG. (5) Compute control and data
dependence for each CFG, creating its corresponding PDG. (6) Transform the
PDGs into the associated SDGs, connecting each call site to its corresponding
2 Measured at release 1.3.1, excluding whitespace and comments, measured with cloc.



A Program Slicer for Java (Tool paper) 5

Table 1. Time required to build and slice re2j (release 1.6).

Slice size range (SDG nodes) # SCs Build time (s) Slice time (ms)
[0, 100) 49

13.35± 0.07

0.927± 0.018
[100, 1000) 95 217.315± 2.874
[1000, 1400) 122 1164.423± 13.093
[1400, 1800) 146 1584.023± 12.429
[1800,∞) 31 2943.965± 15.702

[0,∞) - Averages 443 13.35± 0.07 1095.440± 12.039

declaration (using the call graph). (7) Compute the summary arcs between each
pair of actual-in and actual-out nodes that belong to the same call.

Finally, the graph can be stored for repeated use or a slice can be generated.
Each child class of SDG contains a reference to the correct slicing algorithm
required to slice it. The user only has to provide enough information to locate the
node(s) that represent the slicing criterion (via an instance of SlicingCriterion).
The resulting slice is a set of nodes from the SDG, that can be studied as-is or
converted back to source code via JavaParser.

Figure 2 summarises the process through which the source code and slicing
criterion are employed to build and slice the SDG.

5 Empirical evaluation

To evaluate the capabilities and performance of our tool, we chose re2j, a Java
library written by Google to handle regular expressions. It contains 8.1K LOC
across 19 Java files. We generated the SDG and then sliced it once per return
statement (using the value being returned as the slicing criterion). In total we
performed 443 slices. We repeated each action a hundred times to obtain the
average execution time with error margins (99% confidence).

The results are summarised in Table 1. To show more relevant values, we
grouped the slices by slice size, showing that the time required to slice scales
linearly with the number of nodes traversed. Our tool produces slices between
one and four orders of magnitude faster than it builds the SDG, which is expected
and fits well into the typical usage of program slicers, in which the graph is built
once and sliced multiple times. The amount of time dedicated to each phase in
the creation of the graph can be seen in Figure 3.

6 Related work

The most similar tool in the state of the art is Codesonar, a proprietary tool
for C, C++, and Java, that is being sold by grammatech©. On the public side,
unfortunately, most Java slicers have been abandoned. For instance, Kaveri is an
Eclipse plug-in that contains a program slicer, but it has not been updated since
2014 (8 years) and cannot work with maintained releases of Eclipse. The reason



6 C. Galindo et al.

Parsing (JavaParser)
5%

(1) Class graph
5%

(2) CFGs

6%

(3) Call graph

10%(4) Formal nodes

27%

(5) PDGs

19%

(6) Connect calls

11% (7) Summary arcs
17%

Fig. 3. Breakdown of the time dedicated to each step of the creation of the SDG.

is, probably, the difficulty of dealing with the new features of Java (functional
interfaces, lambda expressions, record types, sealed classes, etc.). There is still,
however, a public program slicer maintained for Java: the slicer contained in the
WALA (T. J. Watson Libraries for Analysis, for Java and JavaScript) libraries.
Unfortunately, this slicer does not implement the advanced extensions of the
SDG for object-oriented (OO) features.

7 Conclusions

JavaSlicer is a novel free-software program slicing tool for Java. It efficiently
implements the most advanced extensions of the SDG, including all the JSysDG
extensions for object-oriented programs (inheritance, interfaces, polymorphism,
etc.); specific exception handling treatment (throw, try-catch, etc.); and un-
conditional jumps (return, break, continue, etc.). It is both a library that can
be used by other systems, and a standard program slicing tool.

References

1. Allen, M., Horwitz, S.: Slicing java programs that throw and catch exceptions.
SIGPLAN Not. 38(10), 44–54 (June 2003)

2. Galindo, C., Pérez, S., Silva, J.: Data dependencies in object-oriented programs. In:
11th Workshop on Tools for Automatic Program Analysis (2020)

3. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence
graphs. In: Proceedings of the ACM SIGPLAN 1988 Conference on Program-
ming Language Design and Implementation. pp. 35–46. PLDI ’88, ACM, New
York, NY, USA (1988). https://doi.org/10.1145/53990.53994, http://doi.acm.org/
10.1145/53990.53994

4. Kumar, S., Horwitz, S.: Better slicing of programs with jumps and switches. In:
Proceedings of the 5th International Conference on Fundamental Approaches to
Software Engineering (FASE 2002). Lecture Notes in Computer Science (LNCS),
vol. 2306, pp. 96–112. Springer (2002)

5. Walkinshaw, N., Roper, M., Wood, M.: The java system dependence graph. In:
Proceedings Third IEEE International Workshop on Source Code Analysis and Ma-
nipulation. pp. 55–64 (2003)

https://doi.org/10.1145/53990.53994
https://doi.org/10.1145/53990.53994
http://doi.acm.org/10.1145/53990.53994
http://doi.acm.org/10.1145/53990.53994

	 A Program Slicer for Java (Tool paper) 

