
1

Reversible CSP Computations
Carlos Galindo, Naoki Nishida, Josep Silva and Salvador Tamarit

Abstract—Reversibility enables a program to be executed both
forwards and backwards. This ability allows programmers to
backtrack the execution to a previous state. This is essential if the
computation is not deterministic because re-running the program
forwards may not lead to that state of interest. Reversibility
of sequential programs has been well studied and a strong
theoretical basis exists. Contrarily, reversibility of concurrent
programs is still very young, especially in the practical side. For
instance, in the particular case of the Communicating Sequential
Processes (CSP) language, reversibility is practically missing. In
this work, we present a new technique, including its formal
definition and its implementation, to reverse CSP computations.
Most of the ideas presented can be directly applied to other
concurrent specification languages such as Promela or CCS,
but we center the discussion and the implementation on CSP.
The technique proposes different forms of reversibility, including
strict reversibility and causal-consistent reversibility. On the
practical side, we provide an implementation of a system to
reverse CSP computations that is able to highlight the source code
that is being executed in each forwards/backwards computation
step, and that has been optimized to be scalable to real systems.

Index Terms—Concurrent programming, tracing, debugging
aids, code inspections and walkthroughs.

I. INTRODUCTION

ONE of the most extended languages for the specification
of concurrent processes is Communicating Sequential

Processes (CSP) [1], [2]. The specification, analysis, and
transformation of CSP specifications have often been based
on the use of CSP traces [2], which represent the sequences
of events that can occur in a system. In fact, there are different
analyses such as deadlock analysis [3], [4], livelock analysis
[5], and security analysis [6], among others, that are based on
or use this kind of traces.

Example 1.1: Consider the following CSP specification:1

channel a,b

MAIN = P ||
{a}

Q

P = a → b → SKIP

Q = b → a → ((b → SKIP) � Q)
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1Readers that are not familiarized with the CSP syntax are referred to
Section II, where a gentle introduction to CSP is given.

The only possible traces of this specification are
{〈〉,〈b〉,〈ba〉,〈bab〉,〈babb〉}. If we consider the trace
〈babb〉, it can be produced by four different computations
due to the non-deterministic evaluation order of the processes.
While the first two events (ba) are deterministic (i.e., the b
event corresponds to the first b in process Q, and the a event
corresponds to the synchronization of the a events in P and
Q), the last two b events in the trace can be produced by P
and one of the two branches of Q interleavedly.

Unfortunately, standard CSP traces are not adequate for
those analyses that need to relate the trace with the source
code (e.g., debugging). The trace of a computation does not
always provide enough information to identify a bug in the
source code, or even to decide whether the computation is
buggy. For instance, if we execute the program in Example 1.1
and we get the trace 〈babb〉, we cannot know what parts
of the code have been executed. It could be the case that
process Q is buggy (e.g., it should be Q = b → a → (c
→ SKIP � Q)). But, even if the buggy code of Q (i.e., b
instead of c) was actually executed, we would not know it,
because the trace produced by the buggy code is identical
to a correct trace (following another path). The problem still
remains if the generated trace is wrong. For instance, if the
last event of the trace (b) is buggy we cannot know what part
of the program produced this buggy event (in fact, it could
be any of the three b events in the specification). And, what
is even more important, if we are interested in a particular
buggy event, we cannot trace the error backward (reversing the
computation [7]). A proper reversibility tool for CSP would
allow programmers to undo unproductive computations, and
to backtrack to a save state when an error is detected.

We overcome these problems in this work. Concretely,
we propose an operational semantics of CSP that is (i)
conservative (i.e., the forward evaluation follows the standard
operational semantics of CSP), and that (ii) produces as a side
effect the history of the computation such that every evaluated
expression has information associated with the source code.
In this way, (1) we can know exactly what expressions of the
program are evaluated at each step (i.e., we can associate the
events that occur in the computation with the corresponding lit-
erals in the source code), and (2) the history of the computation
allows us to reverse the computation. The proposed model has
been implemented in a system to animate CSP computations
forward and backward.

II. PRELIMINARY DEFINITIONS AND NOTATION

In this section we introduce some notation, and provide
definitions used in the rest of the paper. Figure 1 summarizes
the CSP syntax constructs that we consider in this paper.
Extended explanations for each syntax construct can be found
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Domains
M,N . . . ∈ N (Process names) P,Q . . . ∈ P (Processes)
a, b . . . ∈ Σ (Events) u, v . . . ∈ V (Variables) EVn = EV1, . . . , EVn

S ::= {D1, . . . , Dn} (Entire specification)
D ::= M = P (Process definition)

| M(EVn) = P (Parameterized process)
P ::= M (Process call)

| M(EVn) (Parameterized process call)
| CO → P (Prefixing)
| P u Q (Internal choice)
| P 2 Q (External choice)
| P ≮ Bool ≯ Q (Conditional choice)
| P ; Q (Sequential composition)
| P ||

{EVn}
Q (Synchronized parallelism)

| SKIP (Skip)
| STOP (Stop)

CO ::= EV | CO?EVI | CO!EV (Compound Object)
EVI ::= EV | v : b (Input event with Variables)
EV ::= a | v | EV.EV (Event with Variables)
Bool ::= true | false | Bool ∨Bool (Boolean expression)

| Bool ∧Bool | ¬Bool
| EV = EV | EV 6= EV

Fig. 1. Syntax of CSP specifications

in [2]. A CSP specification is viewed as a finite set of process
definitions. The left-hand side of each definition is the name
of a process, which is defined in the right-hand side by means
of an expression formed from the operators in Figure 1 (see
Examples 1.1 and 3.11). The operational semantics of CSP is
an event-based semantics, where the occurrence of events fire
the rules (readers non-familiar with the standard operational
semantics of CSP can find a detailed description in [2]). We
use the domains Σ and Π that, respectively, contain all external
(i.e., visible from the external environment) and internal events
in the execution of a CSP specification.

To uniquely identify each literal in a CSP specification we
use labels (that we call program positions). Each program
position corresponds to a unique node in the CSP specifica-
tion’s abstract syntax tree (AST). A program position [8] is
a pair (P,s) where P is the name of a CSP process and
s is a sequence of natural numbers. The root of the AST is
represented with 0, and, for each operator, the operands are
numbered from left to right. We use a special label (START)
to represent the initial call to a process in the program.

Example 2.1: The following CSP program has been labelled
with program positions (they are underlined):

MAIN = P(a)(MAIN,1) ‖
{b}

(MAIN,0)(b(MAIN,2.1) →(MAIN,2) STOP(MAIN,2.2))

P(x) =(x(P,1.1) → (P,1)SKIP(P,1.2))≮ x = c ≯ (P,0)(b(P,2.1) → (P,2)SKIP(P,2.2))

All terms are uniquely labelled because labels keep the order
of the associated AST (see Figure 2).
We define the domain Pos to represent the set of all possible
program positions. We also define PosΣ ⊂ Pos as the subset
of positions that refer to external events (i.e., events in Σ).

III. RECORDING THE HISTORY OF A CSP COMPUTATION

Following the Landauer’s embedding principle [9], one can
make a CSP computation reversible by recording the history

Fig. 2. Program positions of the program in Example 2.1.

P

Q

→ a → b

→ b → a �

→ bQMAIN

SKIP

||
{a}

1-(START) 2-(MAIN,0)

4-(MAIN,1)

3-(MAIN,2)

8-(P,1)7-(P,0) 14,(P,2.1)13-(P,2) 15-(P,2.2)

5-(Q,0) 6-(Q,1) 7-(Q,2) 8-(Q,2.1) 9-(Q,2.2)

10-(Q,2.2.1) 11-(Q,0) 12-(Q,1)

Fig. 3. R-track of a computation of the program in Example 1.1.

of the computation. In this section, we discuss about the
information that must be stored to record a CSP computation
and make it reversible.

We propose an extension of CSP tracks [8]—a data structure
used to represent (forward) CSP computations—for storing
the execution history of CSP computations, and based on it,
we present a formulation and implementation of a system to
reverse CSP computations.

A CSP track is a dynamic data structure that represents the
sequence of expressions that have been evaluated during one
computation, labelled with the location of these expressions
in the specification. In contrast, a (standard) CSP trace is
the sequence of events that occur during the computation [2].
Therefore, a CSP track is much more informative than a CSP
trace because the former not only contains a lot of information
about original program structures but it also explicitly relates
the sequence of events with the parts of the specification that
caused these events. Our reversibility extension of a track
is called an R-track. R-tracks extend tracks with two small
changes: (i) nodes are labelled with timestamps that represent
the time when the expression associated with each node was
produced, and (ii) the representation of prefixing is changed
(in a track, b -> SKIP is represented with three sequential
nodes: (b) → (->) → (SKIP); while in an R-track it
is represented as (->) → (b) → (SKIP), i.e., the order
of the prefix and the prefixing operator is reversed so that we
can undo the prefixing operator when the event is undone).

Example 3.1: The data structure in Figure 3 is the R-track
associated with a computation of the program in Example 1.1.
This computation selects the recursive branch in the external
choice of process Q. Moreover, it executes the recursive call
to Q before executing the b event in process P. Hence, the
trace produced is 〈babb〉.

Observe in Figure 3 that every single literal of the program
evaluated in a computation is recorded inside a node of the
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associated R-track. Moreover, each node has a label with two
components t-p, where t is a timestamp that represents the
instant where this node was generated. And p is the program
position of the literal in this node. For the sake of clarity, when
it is clear from the context, we often use the internal literal
instead of the program position (i.e., we use (8-a) instead
of (8-(P,1))).

With the timestamp we can serialize the program. For in-
stance, if we only focus on event nodes (those with a bold line)
then it is trivial to generate the associated trace 〈babb〉 fol-
lowing the sequence: (6,b)→(8,a)→(12,b)→(14,b).
Observe also that the R-track records explicit information
about synchronizations, which are represented with a dashed
edge between the two synchronized events. Synchronizations
among three or more events are represented with pairwise
edges. The interested reader can find an example in the public
repository of our implementation: https://github.com/tamarit/
reverCSP#example. It is also important to remark that R-tracks
not only record events in Σ but also internal events (i.e., Σ∪Π).
However, for the sake of simplicity and readability, we only
consider events in Σ in this paper, because the extension to Π
is straightforward (but verbose).

Once we have available a data structure such as the R-track.
Three research questions emerge: (1) Can R-tracks be used
to reverse a CSP computation? Yes. We discuss how to use
R-tracks to reverse computations in Section III-A. (2) Can
R-tracks be automatically generated from CSP computations?
Yes. We have implemented a conservative extension of the
standard semantics that can generate tracks efficiently from
CSP computations. This is described in Section IV. (3) Is the
use of R-tracks scalable to real programs? Yes. We discuss
scalability issues in Section IV-A.

A. Reversing CSP computations with R-tracks

An R-track contains enough information to (re)execute the
program both forward and backward in the standard way (i.e.,
producing a derivation of rewriting steps following the rules
of the operational semantics). However, we want to go beyond
the standard execution. We want to directly map the execution
to the source code. So that, every single event fired along
the execution is associated with a set of expressions of the
source code. With this view, a derivation of a program is a
sequence of pairs (e,p) where e is an event, and p is the
set of program positions that point to the expressions in the
source code needed to fire this event. We call such a derivation
an event–syntax trace.

Example 3.2: Consider again the CSP program in Exam-
ple 1.1. One possible event–syntax trace of this program is:

(b, {(START), (MAIN,0), (MAIN,2), (Q,0), (Q,1)})

→ (a, {(MAIN,1), (P,0), (P,1), (Q,2), (Q,2.1)})

→ (b, {(Q,2.2), (Q,2.2.1), (Q,0), (Q,1)})

→ (b, {(P,2), (P,2.1)})

This event-syntax trace is graphically represented in the second
column (Running R-track) of Figure 4. There we can see that
each set of grey nodes represent the portion of code that is

needed to fire the associated event (represented with a bold
line). With this information, we can highlight the source code
that is being executed in each step, and we can do it both
forward and backward.

Event–syntax traces are particularly useful for debugging,
because they explicitly show what exact expressions in the
source code participate in each step of the computation. Hence,
one could execute the program (either forward or backward)
and highlight in the source code all parts that participate in
the firing of an event. To formalize the generation of event–
syntax traces, we can define an R-track rewriting semantics
that iteratively transforms the information of an R-track with
every event of the computation. We need to provide first some
formal definitions.

Definition 3.3 (R-track): An R-track is a labelled directed
acyclic graph G = (N,Ec, Es) where N are the nodes, and
arcs are divided into two groups:
• control-flow arcs (Ec) are a set of one-way arcs (de-

noted with 7→) representing the control-flow between two
nodes, and

• synchronization arcs (Es) are a set of two-way arcs
(denoted withe) representing the synchronization of two
(event) nodes.

Each node n ∈ N has two labels: time(n) contains a natural
number (the timestamp), and pos(n) contains a program
position. Given two nodes n, n′ ∈ N , the CSP term pos(n) is
executed before pos(n′) if and only if time(n) < time(n′).
For the sake of clarity, we have included inside the nodes
of Figures 3 and 4 a label with a source code literal. Note,
however, that this label does not exist in the definition of R-
track because it is actually redundant with respect to the label
pos , since the program position uniquely identifies the literal.
To ease the reading, we use a node n to denote the program
expression that n actually represents. Hence, we use, e.g., n ∈
Σ instead of pos(n) ∈ PosΣ, so that the notation becomes
more readable. This notion of R-track is a slight conservative
extension of the standard tracks. How to compute tracks from
CSP specifications is described in [10], where the correctness
of tracks is also proved in Theorem 3.

Because we want to execute R-tracks, we need a mechanism
to know what part of the R-track has already been executed.
This idea is captured with the notion of Running R-track.

Definition 3.4 (Running R-track): A running R-track is a
pair (G, t), where G = (N,Ec, Es) is an R-track and t is
a natural number (a timestamp) such that t = 0 or ∃n ∈
N . time(n) = t ∧ n ∈ Σ.

The timestamp represents the last executed event. If the
timestamp is 0, then the execution has not started yet. For
instance, in the track of Figure 3, the timestamp 8 represents
the occurrence of event a.

Given a running R-track (G, t) with G = (N,Ec, Es),
we define functions first-after(G, t) and last-before(G, t) to
obtain the first (respectively last) event node of the R-track
after (respectively before) the given timestamp t. Formally,

first-after(G, t) = {n | t < time(n)

∧ @n′ . t < time(n′) < time(n)

∧ n, n′ ∈ Σ ∧ n, n′ ∈ N}

https://github.com/tamarit/reverCSP#example
https://github.com/tamarit/reverCSP#example
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Event Running R-track (in grey the executed part) Event–syntax rewriting step

b
→ b

Q → b

P → a

→ a ☐

→ bQMAIN ||
{a}

1-(START) 2-(MAIN,0)

4-(MAIN,1)

3-(MAIN,2)

8-(P,1)7-(P,0) 14,(P,2.1)13-(P,2)

5-(Q,0) 6-(Q,1) 7-(Q,2) 8-(Q,2.1) 9-(Q,2.2)

10-(Q,2.2.1) 11-(Q,0) 12-(Q,1)

(G, 0)
{(START),(MAIN ,0),(MAIN ,2),(Q,0),(Q,1)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (G, 6)

a
→ b

Q → b

P → a

→ a ☐

→ bQMAIN ||
{a}

1-(START) 2-(MAIN,0)

4-(MAIN,1)

3-(MAIN,2)

8-(P,1)7-(P,0) 14,(P,2.1)13-(P,2)

5-(Q,0) 6-(Q,1) 7-(Q,2) 8-(Q,2.1) 9-(Q,2.2)

10-(Q,2.2.1) 11-(Q,0) 12-(Q,1)

(G, 6)
{(MAIN ,1),(P,0),(P,1),(Q,2),(Q,2.1)}−−−−−−−−−−−−−−−−−−−−−−−−−→ (G, 8)

b
→ b

Q → b

P → a

→ a ☐

→ bQMAIN ||
{a}

1-(START) 2-(MAIN,0)

4-(MAIN,1)

3-(MAIN,2)

8-(P,1)7-(P,0) 14,(P,2.1)13-(P,2)

5-(Q,0) 6-(Q,1) 7-(Q,2) 8-(Q,2.1) 9-(Q,2.2)

10-(Q,2.2.1) 11-(Q,0) 12-(Q,1)

(G, 8)
{(Q,2.2),(Q,2.2.1),(Q,0),(Q,1)}−−−−−−−−−−−−−−−−−−−−→ (G, 12)

b
→ b

Q → b

P → a

→ a ☐

→ bQMAIN ||
{a}

1-(START) 2-(MAIN,0)

4-(MAIN,1)

3-(MAIN,2)

8-(P,1)7-(P,0) 14,(P,2.1)13-(P,2)

5-(Q,0) 6-(Q,1) 7-(Q,2) 8-(Q,2.1) 9-(Q,2.2)

10-(Q,2.2.1) 11-(Q,0) 12-(Q,1)

(G, 12)
{(P,2),(P,2.1)}−−−−−−−−−−→ (G, 14)

Fig. 4. Event-syntax trace associated with the trace 〈babb〉.

last-before(G, t) = {n | time(n) < t

∧ @n′ . time(n) < time(n′) < t

∧ n, n′ ∈ Σ ∧ n, n′ ∈ N}

Note that both first-after and last-before return a set
of nodes because, due to synchronizations, there could be
different nodes that are the first (respectively last) nodes to
be executed (all of them at the same time). A clear example
of this phenomenon happens in Figure 3. The last event nodes
before timestamp 14 are 8-(P,1) and 8-(Q,2.1) (the
synchronization of a).

We also need to define a causality relation between nodes.
Definition 3.5 (Causality Relation in R-tracks): Given an

R-track G = (N,Ec, Es) and two nodes n1, n2 ∈ N , we say
that n1 is causal with respect to n2 (denoted n1 ; n2) if
and only if (n1, n2) ∈ E∗ where E∗ denotes the reflexive and
transitive closure of Ec and Es (E∗ = (Ec ∪ Es)*).

The causality relation is transitive and it is induced by
control-dependence and synchronizations. It is useful to deter-
mine what nodes in the R-track participate in each rewriting
step. For this, we can divide the R-track into complementary
sections containing a single event occurred in time, and all
causal nodes of this event that are not causal with respect
to other previous events (see Figure 4). This is done with
function causalNodes(n). Roughly, it returns those nodes that
are causal with respect to n (i.e., they precede n in a control
path) and they do not precede an event node that happened
before n in the same control path. Formally, given a running
R-track (G, t) with G = (N,Ec, Es), and a node n ∈ N , we

define causalNodes(n) as:

causalNodes(G,n) = SYNCn ∪ {n′ ∈ N | n′ 6∈ Σ ∧
(n′ 7→ ns) ∈ E∗c ∧
(@n′′ ∈ Σ . n′′ 6∈ SYNCn ∧
(n′ 7→ n′′), (n′′ 7→ ns) ∈ E∗c )}

where ns ∈ SYNCn = {n} ∪ {nsync | (n e nsync) ∈ Es},
and we use E∗c to denote the reflexive and transitive closure
of Ec.

Example 3.6: Figure 4 displays four R-tracks are shown. In
the first, third and fourth R-tracks, all grey nodes are the causal
nodes of the last grey nodes. In the second R-track, however,
not all causal nodes of the last grey node are in grey. The
causal nodes of the nodes with timestamp 8 are all grey nodes
plus nodes with timestamps 1 and 2.

Two nodes can share the same causal nodes. For instance,
in Figure 3, nodes 1 and 2 are causal with respect to nodes
3 and 4. Given the occurrence of an event in an execution,
we want to identify those nodes that caused this event since
the occurrence of the last event. Therefore, we also need to
define a function stepNodes(n) that captures this restricted
causal relation in the R-track. Roughly, it returns those nodes
that precede n in the R-track and do not precede an event node
that happened before n.

stepNodes(G,n) = causalNodes(G,n)\{n′ ∈ N |
(n′ 7→ n′′) ∈ E∗c ∧ n′′ ∈ Σ ∧ time(n′′) < time(n)}
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Example 3.7: In Figure 4, four R-tracks are shown. In each
R-track, all grey nodes are the step nodes of the last grey
nodes.

We are now in a position to define a calculus able to
reproduce a computation both forward and backward from an
R-track (i.e., without the need of the source code program,
and without the need of the standard semantics).

Given an R-track G = (N,Ec, Es), the application of the
following forward rule is able to produce an event–syntax trace
reproducing the computation forward:

(Forward)

n ∈ first-after(G, t) t < t′ = time(n)

P = {pos(n′) | n′ ∈ stepNodes(n)}

(G, t) P−−−−−→ (G, t′)

Analogously, the reverse counterpart to produce a backward
derivation can be done with the application of the backward
rule:

(Backward)

time(n) = t > t′ n′ ∈ last-before(G, t) t′ = time(n′)

P = {pos(n′′) | n′′ ∈ stepNodes(n)}

(G, t) P←−−−−− (G, t′)

It is important to remark that the direction of the steps of
the semantics always go from left to right. The direction of the
arrow only indicates whether the step is forward or backward.

Example 3.8: Let G be the R-track in Figure 3. The
application of four rewriting steps with the forward rule would
produce the derivation shown in the right column of Figure 4.
The associated reverse computation is completely symmetric.

1) Deterministic reversibility of CSP: The technique pro-
posed so far is a mechanism to deterministically execute
forward and backward a computation strictly following the
order of the original execution. That is, at any state, there is
at most one possible forward execution step, and at most one
possible backward execution step. Formally,

Theorem 3.9 (Deterministic forward and backward execu-
tion): Given a running R-track (G, t),

• (G, t) P−−−−→ (G, t′) ∧ (G, t) Q−−−−→ (G, t′′) =⇒ P = Q ∧ t′ = t′′

• (G, t) P←−−−− (G, t′) ∧ (G, t) Q←−−−− (G, t′′) =⇒ P = Q ∧ t′ = t′′

Proof: Trivial by definition, since t′ (and thus t′′)
is unique because functions first-after , time , pos , and
stepNodes are deterministic functions; and hence (Forward )
and (Backward ) are also deterministic.
Moreover, at any state s1 where the execution of a forward
step produces a new state s2, then the execution of a backward
step at s2 always produces the original state s1. Formally,

Theorem 3.10 (Symmetric reversibility): Given a running R-
track (G, t),

• (G, t) P−−−−−→ (G, t′) Q←−−−−− (G, t′′) =⇒ P = Q ∧ t′′ = t

Proof: Since first-after(G, t) = last-before(G, t′) for
n ∈ first-after(G, t) and t′ = time(n) by definition, the claim
holds.

2) Causal-consistent reversibility of CSP: Causal-
consistent reversibility [11] was first introduced in RCCS
[12], a reversible variant of CCS. This form of reversibility
empowers the idea that reversibility may not be necessarily
symmetric in a concurrent environment provided that causality
is kept consistent after every reversible step (hence, the name
causal-consistent).

The main idea is that independent parallel processes should
be reversed independently (thus keeping the essence of con-
currence, where independent events can be executed in any
order). Contrarily, when causal dependencies exist between
parallel processes (e.g., synchronizations) they must be taken
into account when reversing these processes. In particular, any
action can be undone provided that all its consequences, if
any, are undone beforehand. For instance, if two processes
synchronize on event a, then the events that happened before
a in any of the processes cannot be undone until all the events
that happened after a in both processes have been undone.

Clearly, our reverse execution rule (Backward) is too
restrictive for causal-consistent reversibility. Even though all
backward steps made by this rule are always causal-consistent,
there are many possible backward schedules that are also
causal-consistent but they are not allowed by the rule. For
instance, in Example 3.8, the last two b events could be
causal-consistently reversed in any order because they belong
to processes that run in parallel and they are independent after
the synchronization of event a.

In order to define proper rules for both causal-consistent
forward and backward execution, we first need to define a
causal-consistent version of functions first-after and last-
before. Because a causal-consistent step does not necessarily
follow the execution order of the R-track, the timestamp
cannot be used anymore to know in what point of the execution
we are (for instance, in Figure 3 timestamp 14 could be causal-
consistently replayed before timestamp 12, thus changing the
original order of events). Therefore, instead of timestamps
we use a set with the already executed nodes Nex of an R-
track G = (N,Ec, Es) (i.e., Nex ⊆ N ). Given two sets of
executed nodes, Nex1 ⊂ Nex2, then Nex2 describes a point
in the execution history that is later than that of Nex1 (i.e.,
the largest timestamp t associated with any node in Nex1 will
be strictly less than that t′ associated with Nex2. However,
it could be possible that after Nex1 we causal-consistently
replay a node that is not in Nex2 (e.g., because its execution
is completely independent of the nodes in Nex2\Nex1). In
general, if Nex1 6⊂ Nex2 and Nex2 6⊂ Nex1, then there
must be a node n1 ∈ Nex1, n1 6∈ Nex2 that can be causal-
consistently undone in the next step; and vice versa, there
must be a node n2 ∈ Nex2, n2 6∈ Nex1, that can be causal-
consistently undone in the next step. This is ensured by the
fact that (1) n1 6∈ Nex1 ∩Nex2, thus n1 belongs to a branch
not executed in Nex2 (thus, n1 is not causal with respect to
any node in Nex1 ∩ Nex2, otherwise, n1 would belong to
Nex2); and (2) n1 is not causal with respect to any node in
Nex2 (otherwise, n1 would belong to Nex2). These properties
show that we can use Nex to complement t (t is implicit to
Nex). In fact, Nex contains enough information to know how
developed are all branches in the R-track because an R-track
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implicitly induces a Hasse diagram.
Roughly speaking, a node n′ can be causal-consistently

replayed after a node n if n′ happened after n and all causal
nodes with respect to n′ have been already executed. Formally,

first-aftercc(G, Nex) = {n ∈ N | n ∈ Σ ∧ n 6∈ Nex∧
∀ n′ ∈ N ∩ Σ, time(n′) 6= time(n), n′ ; n . n′ ∈ Nex}

The definition for lastcc(G, t) is analogous:

last-beforecc(G, Nex) = {n ∈ Nex | n ∈ Σ ∧
6 ∃ n′ ∈ Nex ∩ Σ, time(n′) 6= time(n) . n; n′}

We can also define a causal-consistent version of function
stepNodes:

stepNodescc(G,N ex ,n) = causalNodes(G,n)\{n′ ∈ N |
(n′ 7→ n′′) ∈ E∗c ∧ n′′ ∈ Σ ∧ n′′ ∈ Nex}

We are now in a position to define a causal-consistent
semantics:

(Forwardcc)

n ∈ first-aftercc(G, Nex) P = {pos(n′) | n′ ∈ stepNodescc(n)}

(G, Nex)
P−−−⇀ (G, Nex ∪ {n} ∪ {ns | (n e ns) ∈ Es})

(Backwardcc)

n ∈ last-beforecc(G, Nex) P = {pos(n′) | n′ ∈ stepNodescc(n)}

(G, Nex)
P

↽−−− (G, Nex \ ({n} ∪ {ns | (n e ns) ∈ Es}))

Example 3.11: Consider the following CSP program:

channel a,b

MAIN = P(a) ‖
{b}

Q(b) ; c -> SKIP

P(x) = (x → b → a → SKIP)≮x 6= c≯(b → SKIP)

Q(x) = c → x → c → SKIP

and the R-track produced by the trace 〈cabcac〉, which can
be seen in Figure 5.

For the sake of clarity, the R-track does not contain program
positions, and it only shows the timestamp of the event nodes
(those in bold). Every area with a set of nodes represent
a graph rewriting step performed by the semantics, which
corresponds to the occurrence of the event in that area. All
the nodes inside an area correspond to the part of the program
that induce this step (thus they are actions that can be done
or undone). The steps have been numbered from 1 to 7. Steps
1 and 2, and steps 4 and 5, are mutually causal-consistent,
and they could be executed in any order. For instance, if we
change steps 4 and 5, then the trace would be 〈cabacc〉,
which is a feasible trace. Similarly, if we change steps 1
and 2, then the trace would be 〈acbcac〉, which is another
feasible trace. Note, however, that in this case, the semantics
would change the nodes that belong to the areas (i.e, the
stepNodes): the first two nodes would become stepNodes
of event a (node 7) and would not be stepNodes of event
c (node 4). Examples of functions first-after , last-before,
causalNodes , and stepNodes are also shown.

We end with a theorem that proves the symmetric property
of the forward and backward transitions. It is often known as

the loop lemma [11].

Theorem 3.12 (Loop): For any forward transition R P−⇀ S,
there exists a backward transition S P

↽− R and conversely.
Proof: Assume that R = (G, Nex

1 )
P−⇀ (G, Nex

2 ) =
S. Then, by definition, there exists a node n ∈ first-
after cc(G, Nex

1 ) such that
• P = {pos(n′) | n′ ∈ stepNodescc(n)}, and
• Nex

2 = Nex
1 ∪ {n} ∪ SYNCn .

Recall that SYNCn = {ns | (n e ns) ∈ Es}. Since n ∈
first-after cc(G, Nex

1 ), we have that
1) n ∈ N ∩ Σ,
2) n /∈ Nex

1 , and
3) ∀n′ ∈ N,n′ ∈ Σ, time(n′) 6= time(n), n′ ; n . n′ ∈

Nex
1 .

For S
P
↽− R, it suffices to show that 4) n ∈

last-beforecc(G, Nex
2 ), and 5) Nex

1 = Nex
2 \ ({n} ∪ SYNCn).

• We first prove that 4) n ∈ last-beforecc(G, Nex
2 ). To this

end, we show that n ∈ Nex
2 and 6 ∃n′ ∈ Nex

2 , n′ ∈
Σ, time(n′) 6= time(n) . n ; n′. It follows from the
definition of first-after cc that first-after cc(G, Nex

1 ) ⊆
Nex

2 , and hence, n ∈ Nex
2 by the construction of Nex

2 .
Assume that there exists some n′ ∈ Nex

2 such that
n′ ∈ Σ, time(n′) 6= time(n), and n ; n′. Since
n′ ∈ Nex

2 = Nex
1 ∪ {n} ∪ SYNCn , we make a case

analysis depending on where n′ belongs to.
– Case that n′ = {n}∪SYNCn . In this case, we have that
time(n′) = time(n), which is a contradiction with
time(n′) 6= time(n).

– Case that n′ ∈ Nex
1 . In this case, n could not be the

first (the first would be n′) which is a contradiction
with n ∈ first-after(Nex

1 ).
Hence, n′ 6∈ Nex

2 . This contradicts that n′ ∈ Nex
2 .

• Next, we prove that 5) Nex
1 = Nex

2 \ ({n} ∪ SYNCn).
By the definition of Nex

2 , we have that Nex
2 \ ({n} ∪

SYNCn) = Nex
1 \ ({n} ∪ SYNCn). It follows from 2)

that Nex
1 \ ({n} ∪ SYNCn) = Nex

1 \ SYNCn . Thus, it
suffices to show that

Nex
1 = Nex

1 \ SYNCn .

It is trival that Nex
1 ⊇ Nex

1 \ SYNCn . For Nex
1 ⊆

Nex
1 \ SYNCn , we show that Nex

1 ∩ SYNCn = ∅.
Assume that there exists some ns ∈ Nex

1 such that
(n e ns) ∈ Es. Since Nex

1 ⊆ Nex
2 , we have that

ns ∈ Nex
2 . Then, we have that (n, ns) ∈ E∗, and hence

n; ns. Since n /∈ Nex
1 , we have that ns 6= n, and hence

time(ns) 6= time(n). It follows 4) that

6 ∃ n′ ∈ Nex
2 ∩ Σ, time(n′) 6= time(n) . n; n′

and hence, n 6; ns. This contradicts the fact that n; ns.
Therefore, by definition, we have that S P

↽− R.
The converse can be proved analogously.

IV. IMPLEMENTATION AND EMPIRICAL EVALUATION

The formalization presented in this paper is an event-based
calculus where every step of the defined semantics goes
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a → b →

c → b → c →

MAIN ||
{b}

7 10

4 10 121

2

P(a)

Q(b)

a → SKIP

14

≮a≠c≯

; c → SKIP

20

SKIP

3 4

5

6
7

stepNodes (G, 7)
causalNodes (G, 7)

first (G, 10)

last (G, 20)

Fig. 5. An R-track from the CSP program described in Example 3.11 produced by the trace 〈cabcac〉.

forward or backward in the R-track until the next external
event. This means that a single step of that semantics can
result in an arbitrary number of rewriting steps (those that fire
internal events) in the standard operational semantics [2].

Our implementation, however, strictly follows the standard
operational semantics, and thus, it can perform (forward or
backward) standard steps (e.g., internal choice) where external
events are not necessarily involved. Therefore, the imple-
mentation is more general than the theoretical setting, and
it goes into the details of handling internal events, and all
rules of the standard semantics. However, this does not mean
that the implementation must necessarily perform standard
steps because the formalization presented has been also imple-
mented, and thus the user can decide to perform (forward or
backward) steps based on external events (as in the theoretical
setting), any events (external and internal) or any single step
of the standard semantics. Hence, the granularity level of the
execution can be parametrised.

The implementation is a tool called ReverCSP that is open
and publicly available (including the source code) at: https:
//github.com/tamarit/reverCSP. It has two main phases:

R-tracks generation. R-track generation can be done with
a random execution or with a user-directed execution.
Thus, the user can choose at any step the applied rule.
The R-track is generated dynamically. This means that
the user can perform, say, 100 random steps, then go
backward, say 10 steps, and then go forward again
selecting a different rule to be applied. Thus, a new R-
track is dynamically generated for each new forward step
performed.

R-tracks exploration. The R-track can be traversed forward
or backward with either the deterministic or the causal-
consistent semantics (see Figure 6). At any step, we can
see the current expression, the trace, and the R-track (they
can be printed as PDF).

The main bulk of the execution (track generation) is per-
formed by csp_tracker, a submodule that executes CSP by
creating a coordinating process that handles the track and
one process for the first process, typically MAIN. The latter
derives the body of the process until it ends or is deadlocked.
Whenever a parallel operator is found during the execution,
two processes are created, and the now parent process is left
to continue its execution if a sequential composition requires
it. Thus, the number of active processes is roughly equal to
the number of CSP processes. The scheduling is left to the
Erlang VM, and is not tuned by csp_tracker in any specific

Current expression:
(P [|{|a|}|] R)

These are the available options:
1 .- P
2 .- R
3 .- Random choice.
4 .- Random forward-reverse choice.
5 .- See current trace.
6 .- Print current R-track.
7 .- Reverse evaluation.
8 .- Undo.
9 .- Roll back.
0 .- Finish evaluation.
What do you want to do?
[1/2/3/4/5/6/7/8/9/0]:

Fig. 6. Main menu of ReverCSP

direction.
When a backwards step is taken, reverCSP traverses the

R-track to reach the appropriate state and display it to the
user. When a forwards step is taken that is present in the
graph, reverCSP traverses the graph instead of re-running the
simulation.

The rest of this section provides technical details about the
implementation so that researchers or developers that want to
implement this technique (e.g., for other language) can see the
rationale and algorithms used. We use a functional language
to describe the implementation.

Given a computation, i.e., an R-track G = (N,Ec, Es),
the set of reversible actions can be obtained with the follow-
ing function call: reversible(Leaves, ∅, ∅) where Leaves =
{n | n ∈ N, 6 ∃ n′ ∈ N . (n 7→ n′) ∈ Ec}, which is defined
in Figure 7, Equation 1.

All parameters of function reversible are subsets of N :
L is the set to be analysed, R is an accumulator parameter
with the reversible actions (the final output), and C is a
list of candidates that should wait for the rest of nodes that
are synchronised with them. Function irp (is relevant point)
should return true or false whether the node is relevant to
stop or not. For instance, for an event node it should return
true , while for a node of a parallelism operator, it should
return false . Function reversible returns a set of sets, where
each set represents an undoable action and all the nodes
involved in that action.

The result of function reversible can be used to undo one
of the undoable actions. The function that removes an action
Sel from an R-track G is defined as follows:

https://github.com/tamarit/reverCSP
https://github.com/tamarit/reverCSP
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reversible(L,R,C) =


R if L = ∅
reversible(L\{n}, R ∪ {Sync ∪ {n}}, C\Sync) if ∃n ∈ L ∧ irp(n) ∧ Sync ∩ C = Sync
reversible(L\{n}, R, C ∪ {n}) if ∃n ∈ L ∧ irp(n) ∧ Sync ∩ C 6= Sync
reversible((L ∪ Prev)\{n}, R, C) if ∃n ∈ L ∧ not(irp(n))

(1)

where Sync = {n′ | n′ ∈ N, (ne n′) ∈ Es}, P rev = {n′ | n′ ∈ N, (n′ 7→ n) ∈ Ec}

sft(s, T, t) =

{
s if ∀n ∈ N . t > time(n)
sft(s′, T, t + 1) if ∃n ∈ N . time(n) ≤ t ∧ ∃s→ s′ = (_, Tc, _, _) ∈ der(s) . tt(T, t) = Tc

sft(s, T, t + 1) if ∃n ∈ N . time(n) ≤ t∧ 6 ∃s→ s′ = (_, Tc, _, _) ∈ der(s) . tt(T, t) = Tc

(2)

tdrs(n, T = (N,Ec, Es)) =


(pos, •) if n = •pos

(next(n), n) if n 6∈ {||, |||}∧ 6 ∃n′ ∈ N.(n 7→ n′) ∈ Ec

tdrs(n′, T ) if n 6∈ {||, |||} ∧ ∃n′ ∈ N.((n 7→ n′) ∈ Ec

∧ 6 ∃n′′ ∈ N.(n 7→ n′′) ∈ Ec ∧ n′′ 6= n′)
(n′l pos(n)(pos(n),p′

l
,p′r)

n′r, n) if n ∈ {||, |||}

(3)

where (nl, nr) = lr(n, T ) ∧ (n′l, pl) = tdrs(nl, T ) ∧ (n′r, pr) = tdrs(nr, T ) ∧ ((p′l = n ∧ pl = •) ∨ (p′l = pl ∧ pl 6= •)) ∧ ((p′r =
n ∧ pr = •) ∨ (p′r = pr ∧ pr 6= •)), and function next(n) returns the expression that follows the expression of node n:

next(n) =


pos(n).2 if n = →
n.Λ if n ∈ ProcessNames
> if n = SKIP
⊥ if n = STOP
pos(n).b if n = u.b

(4)

lr(n, T = (N,Ec, Es)) =



(nl, nr) if ∃nl, nr ∈ N . (n 7→ nl) ∈ Ec ∧ (n 7→ nr) ∈ Ec

∧pos(nl) = pos(n).1 ∧ pos(nr) = pos(n).2
(nl, •pos(n).2) if ∃nl ∈ N . ((n 7→ nl) ∈ Ec ∧ pos(nl) = pos(n).1)

∧ 6 ∃nr ∈ N . ((n 7→ nr) ∈ Ec ∧ pos(nr) = pos(n).2)
(•pos(n).1, nr) if 6 ∃nl ∈ N . ((n 7→ nl) ∈ Ec ∧ pos(nl) = pos(n).1)

∧∃nr ∈ N . ((n 7→ nr) ∈ Ec ∧ pos(nr) = pos(n).2)
(•pos(n).1, •pos(n).2) if 6 ∃nl ∈ N . ((n 7→ nl) ∈ Ec ∧ pos(nl) = pos(n).1)

∧ 6 ∃nr ∈ N . ((n 7→ nr) ∈ Ec ∧ pos(nr) = pos(n).2)

(5)

Fig. 7. Definition of multiple functions used throughout the implementation.

remove(G = (N,Ec, Es), Sel) = (N ′, E′c, E
′
s)

where N ′ = N\(
⋃

n∈Sel

{n} ∪ {n′ | n′ ∈ N, (n 7→ n′) ∈ E∗c } ∪

{n′ | n′ ∈ N, (ne n′) ∈ E∗s})
E′c = Ec\{(n 7→ n′) | (n 7→ n′) ∈ Ec, n 6∈ N ′ ∨ n′ 6∈ N ′}

in the following denoted as: E′c = Ec|N′

E′s = Es\{(ne n′) | (ne n′) ∈ Es, n 6∈ N ′ ∨ n′ 6∈ N ′}
in the following denoted as: E′s = Es|N′

When an action is undone with the remove function we
have a new R-track from which it must be possible to
perform a new action (i.e., step forward). Therefore, we need
a mechanism to regenerate the state of the tracking semantics
given this new R-track. In this way, we can continue the
computation from the concrete state given by this new R-track.
This has been implemented using function sft (state from R-
track). This function uses function der(s), which returns all
possible derivations of state s using the tracking semantics.
Additionally, function tt (R-track in time) is used to calculate
the R-track G′ in a given time t using the R-track G of the
whole computation. Its definition is the following:

tt(G = (N,Ec, Es), t) = (N ′, E′c, E
′
s) = G′

where N ′ = {n | n ∈ N . time(n) ≤ t}
E′c = Ec|N ′

E′s = Es|N ′

We can now define function sft , which allows us to start
the computation in the same point where the computation
associated with the R-track stopped, as can be seen in Figure 7,
Equations 2, 3 and 4.

Finally, function lr (Figure 7, Equation 5) returns the left
and right nodes of a bifurcation operator. In case any (or both)
of the branches was not unfolded, the symbol • is used to
denote this fact. The • is labelled with the first position of the
non-evaluated branch.

A. Empirical evaluation

In order to precisely quantify the performance of ReverCSP,
we conducted several experiments to evaluate the size and
the time needed to produce tracks. For the evaluation, a set
of heterogeneous benchmarks was selected from public CSP
repositories. All of them have been previously used to evaluate
other CSP techniques and tools. The selected benchmarks
ensure that they cover all the CSP syntax, and also that they
have a wide range of possible executions (finite executions
and infinite executions with both finite and infinite nested
parallelism). The source code of the benchmarks can be
found at: https://github.com/mistupv/csp_tracker/tree/master/
benchmarks. Each benchmark includes a header describing it

https://github.com/mistupv/csp_tracker/tree/master/benchmarks
https://github.com/mistupv/csp_tracker/tree/master/benchmarks
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and providing details about the authors and a reference to its
source.

The empirical evaluation strictly followed the method and
guidelines proposed in [13], [14]. The same hardware configu-
ration was used to assess all benchmarks: Intel® Xeon® E5504
Processor (2 Ghz, 4MB Cache, 4 cores) with 16GB RAM. In
order to avoid interference of other programs, all processes
except ReverCSP were stopped while the benchmarks were
running. Every benchmark was run 1001 times. In all cases,
the first iteration was discarded to avoid the influence of
cached data persisting in the disk, or dynamically loaded
libraries stored in physical memory. Thus, we finally obtained
1000 statistical values for each benchmark. This process was
repeated for the 10 benchmarks. In order to study the effect
of statistical dispersion, we computed both the harmonic and
the arithmetic mean. The former was sufficiently low so that
we could use the arithmetic mean in our table results.

Because the benchmarks could produce infinite executions
(e.g. due to livelock processes) we automatically stopped them
after a timeout of 2 seconds. Thanks to the good scalability of
the tool, this threshold was enough to produce long tracks
with many parallel processes and more than 1500 nodes.
This threshold allowed us to compare the track produced
by different CSP specifications (with different number of
synchronizations and parallel processes, and different levels of
complexity, etc.) executed exactly the same time. The results
are shown in Table I.

In the table, we use symmetric 0.99 confidence intervals.
The meaning of the columns is the following: Benchmark
is the name of the benchmark. Runtime is the time that the
benchmark was executed before it eventually ended or before it
was stopped. #Nodes is the number of nodes that compose the
track. #Edges is the number of (control and synchronization)
edges that compose the track.

B. Study of the time and memory overhead

The generation of R-tracks introduces a measurable over-
head in both time and memory, as opposed to simulating
CSP without storing any state information apart from the
necessary to run the following step. To determine the scale
of this overhead, we conducted another empirical evaluation,
measuring the time and memory used.

The benchmark suite used is very similar to the one used
in the performance evaluation, except for a small change in
Buses and the removal of ATM and ABP, and can be found
alongside with the code and appropriate compilation flags to
reproduce the evaluation in the git tags TDPS_bench_time
and TDPS_bench_memory in our repository (https://github.
com/mistupv/csp_tracker). The same hardware configuration
was used to assess all benchmarks: Intel® Xeon® E3-1220 v3
@ 3.10GHz Processor2 with 8GB DDR3 RAM at 1333MHz
(single channel). In order to avoid interference from other
programs, all other non-essential processes were stopped.

Two modes of execution are present in the code: run
and track. The latter is the one used to generate R-tracks,

2See the full specification at https://ark.intel.com/content/www/us/en/ark/
products/75052/intel-xeon-processor-e3-1220-v3-8m-cache-3-10-ghz.html

which can be then interactively traversed by the user. The
former is very similar, but skips all possible track-generating
operations, and simulates a CSP interpreter that executes a
CSP specification as fast as possible.

Each time benchmark was run 1001 times in each mode:
run and track. The same Erlang VM was used for each
block of 1001 benchmarks, but the first iteration was discarded
to avoid the delay introduced by loading the required code and
libraries from disk to RAM.

Each memory benchmark was run 1000 times in each of the
aforementioned modes. In this case, each iteration was run in
its own Erlang VM, as to guarantee that no remnants of the
previous iteration lived on in memory. Before each iteration,
the necessary code and libraries were manually loaded as to
obtain the most precise measurement possible.

Thus, we obtained 1000 statistical values per benchmark
and mode for each metric (time and memory consumption).
A timeout of one second was established, as some processes
are infinitely long, and would not stop otherwise. As a way to
compare both modes of execution, we measured the number
of operations that each process took, so that the track and
run versions could be easily compared. Our results are shown
in Table II.

In the table, we show the 0.99 error margins as a percentage.
The first column is the name of the file; the second and
third show the consumption of kilobytes per operation taken,
for both run and track modes. Memory overhead displays
the ratio, showing that generating R-tracks is several times
more memory-intensive than running the CSP specification.
Microseconds per operation shows the average time needed
per operation for each mode, and time overhead displays the
ratio, with meaning similar to memory overhead.

As can be seen, there is an overhead of up to an order
of magnitude in general, but three of the benchmarks have
overheads of two orders of magnitude for time and three for
memory. These three (Buses, Loop and ProdCons) are
not only infinite but have an ever-increasing number of active
processes, which increases the size of the R-track considerably.
The other benchmarks keep the number of active processes
stable, even if they do run indefinitely.

V. RELATED WORK

Reversibility [7] is the ability of a program to be executed
both forward and backward, thus having the possibility to
go back to past states. This ability has been studied in most
languages (e.g., CSS [15], π-calculus [16], Erlang [17], and
CSP [18], among many others) and has different applications
such as program comprehension and debugging [19], quantum
computing [20], biological systems modelling [21], etc.

In the specific case of debugging, different approaches
have been defined for rollback-recovery [22], [23], whose
most simple instance is the undo button, which restores the
immediate previous state. While reversibility in a sequential
system is understood as the reverse of a set of actions
in the opposite order as they were done (see, e.g., [24]),
reversibility in a concurrent system is not intuitive at all,
because the order of actions is often undefined (e.g., many

https://github.com/mistupv/csp_tracker/releases/tag/TDPS_bench_time
https://github.com/mistupv/csp_tracker/releases/tag/TDPS_bench_memory
https://github.com/mistupv/csp_tracker
https://github.com/mistupv/csp_tracker
https://ark.intel.com/content/www/us/en/ark/products/75052/intel-xeon-processor-e3-1220-v3-8m-cache-3-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/75052/intel-xeon-processor-e3-1220-v3-8m-cache-3-10-ghz.html
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TABLE I
SIZE OF THE TRACKS GENERATED WITH A GIVEN RUNTIME

Benchmark Runtime (ms) #Nodes #Edges

ABP.csp [2208.16 2209.25 2210.34] [1505.61 1506.17 1506.73] [1303.10 1303.63 1304.17]
ATM.csp [630.17 690.18 750.19] [364.09 405.64 447.19] [300.74 334.67 368.61]
Buses.csp [126.40 127.19 127.97] [22.00 22.00 22.00] [18.00 18.00 18.00]
CPU.csp [189.97 190.74 191.51] [87.43 87.76 88.09] [71.23 71.50 71.77]
Disk.csp [209.07 210.10 211.13] [148.50 148.74 148.98] [123.59 123.78 123.78]
Loop.csp [2133.02 2133.99 2134.96] [1537.53 1538.34 1539.14] [1230.05 1230.69 1231.35]
Oven.csp [238.64 241.92 245.20] [157.16 163.37 169.59] [162.68 169.33 175.98]
ProdCons.csp [2134.59 2135.43 2136.27] [1535.43 1536.09 1536.75] [1228.08 1228.61 1229.15]
ReadWrite.csp [2148.76 2149.71 2150.65] [1475.85 1476.56 1477.28] [1252.47 1253.34 1254.22]
Traffic.csp [165.34 166.35 167.36] [61.18 64.37 67.56] [47.73 50.13 52.53]

Average [1018.41 1025.49 1019.76] [689.478 694.90 700.33] [573.77 578.37 582.98]

TABLE II
MEMORY AND TIME CONSUMPTION OVERHEAD INTRODUCED BY R-TRACKS

Benchmark kilobytes per operation Memory microseconds per operation Time
run track overhead run track overhead

Buses.csp 0.26± 0.80% 36.28± 1.19% 140.375 37.62± 0.22% 2312.07± 0.04% 61.466
CPU.csp 11.38± 0.63% 38.51± 1.23% 3.384 22.86± 2.10% 117.63± 1.18% 5.146
Disk.csp 8.83± 0.52% 45.81± 1.85% 5.188 24.63± 1.50% 171.01± 0.79% 6.944
Loop.csp 0.04± 1.33% 33.83± 0.85% 930.505 12.50± 0.19% 1314.21± 0.06% 105.171
Oven.csp 13.77± 0.77% 76.86± 1.88% 5.580 30.66± 1.84% 344.66± 4.43% 11.242

ProdCons.csp 0.04± 1.87% 33.24± 0.86% 890.739 15.03± 0.04% 1326.11± 0.09% 88.215
ReadWrite.csp 13.78± 1.04% 69.94± 0.97% 5.077 707.12± 0.32% 2492.11± 0.31% 3.524

Traffic.csp 37.92± 1.46% 96.18± 1.57% 2.536 53.12± 2.72% 163.20± 2.56% 3.072

actions can happen concurrently). For this reason, reversibility
is particularly useful to debug concurrent languages, because
there is no guarantee that a bug that appears in the original
computation is replayed inside the debugger. This problem
is usually tackled by so-called replay debugging [25]. Our
replay debugger uses a new data structure called track that
allows us to reconstruct all states in the execution in both
directions. Tracks were introduced in [10] as a means to record
executions. The original idea of that paper is that they could
be used for program comprehension and tracing. The idea of
using them for reversibility was proposed in [18]. In this paper
we extend the work done in [18] with several new ideas and a
formal theory about how to use R-tracks for reversibility. This
theory includes a formal reversibility semantics for CSP. With
that purpose, we have slightly extended the original notion
of tracks so that they can be used to replay computations
forward and backward. This new track is called R-track. The
reversible semantics proposed is completely novel with respect
to [10], The new implementation is conservative with respect
to the original tracks because it can generate standard CSP
tracks, which are useful for, e.g., program comprehension; but
it also generates the extended tracks proposed here. With this
extension our debugger can replay the execution in any causal-
consistent order.

An R-track defines a partial order through the causality
relation n1 ; n2, which is clearly reflexive, antisymmetric
and transitive. Therefore, the model proposed based on R-
tracks is a model for true concurrency based on a non-
interleaving semantics which explicitly represents causality in
the R-track. Other semantics for reversibility that are related
to our work are the non-interleaving semantics for CSS [15]

and π-calculus [26].
A system that is similar to ours, but for Erlang, and using

a different notion of tracks, is CauDEr, a causal-consistent
reversible debugger for Erlang [27]. The functionality of
CauDEr is similar to our tool because it allows undoing actions
in a causal-consistent manner. Causal-consistent reversibility
was introduced in [12], with RCCS, a reversible calculus for
CCS. It introduced a mechanism to attach memories to threads
to keep history information. Later interesting approaches are
[19], [23]. A survey that very nicely explains the evolution of
this field can be found in [11].

Other approaches that are related to our work are [28],
[29] and [25]. First, in [28], the authors introduced a modular
framework for defining causal-consistent reversible extensions
of concurrent models and languages. This work has inspired
some of our ideas to define the extended tracks. The work
by Brown and Sabry [29] is another interesting work that
also proposes two semantic reversible models for a CSP-based
language embedded in Scala. They also report that their imple-
mentation was evaluated and showed that a practical reversible
distributed language can be efficiently implemented in a fully
distributed manner. Unfortunately, the implementation is not
publicly available. Finally, the work by Lanese et al. [25]
proposes a novel approach for replay debugging that is called
controlled causal-consistent replay. It is called “controlled” in
the sense that the debugger shows all and only the causes of
an error. This approach is also related to causally-consistent
dynamic slicing [30]. However, while our approach uses tracks
to traverse the computation forward and backward, dynamic
slicing uses a trace to extract the part of the code (the so-
called slice) that could influence a given behaviour. Another
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difference is the target language: pi calculus vs CSP.

VI. CONCLUSIONS

This work introduces R-tracks, an extension of standard
CSP tracks so that they can be used to replay and to reverse
computations. Given an R-track, we propose two calculus
for reversibility: (1) the first one can reverse computations
so that events are executed exactly in the opposite temporal
order in which they happened in the original computation; and
(2) the second calculus can reverse computations according
to the causal-consistency principle. This second calculus is
particularly useful for debugging because one can do or undo
an event and analyze what other events must be executed
before (or after) it (because there exists a causal relation).
In both calculus, we have proven important properties such as
deterministic reversibility and symmetric reversibility.

The extension of the tracks and the calculus proposed have
been implemented in a publicly available debugger for CSP.
This tool has interesting extensions. For instance, it allows the
users to dynamically interweave the reversal of computations
and the generation of tracks. In particular, we have two phases:

1) Execution of the program and generation of the
associated R-track (as a side effect)

2) Exploration of the R-track (both forward and backward)

Our implementation goes beyond the traditional postmortem
analysis: (1) → (2). It allows to do a dynamic (reversible)
execution of CSP from any state: (1) → (2) → (1) → (2) ...
For this, the tool implements a mechanism to obtain an initial
state from a given R-track/timestamp. This state is animated in
the extended semantics of CSP to generate R-tracks, and thus,
the normal execution can continue (generating a new R-track
from the given state).

Another interesting feature of the debugger is that it imple-
ments step-by-step reversibility. Step-by-step means that each
single step can be undone, as opposed, e.g., to checkpointing
where many steps are undone at once. But, it can also work
as a checkpointing debugger. It is enough to introduce a
new event called checkpoint in the specification, and
rollback all the computation steps until the timestamp when
checkpoint happened.
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