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A Web template is a resource that implements the structure and format of a website, making it ready for
plugging content into already formatted and prepared pages. For this reason, templates are one of the main
development resources for website engineers, because they increase productivity. Templates are also useful
for the final user, because they provide uniformity and a common look and feel for all webpages. However,
from the point of view of crawlers and indexers, templates are an important problem, because templates
usually contain irrelevant information, such as advertisements, menus, and banners. Processing and storing
this information leads to a waste of resources (storage space, bandwidth, etc.). It has been measured that
templates represent between 40% and 50% of data on the Web. Therefore, identifying templates is essential
for indexing tasks. There exist many techniques and tools for template extraction, but, unfortunately, it is not
clear at all which template extractor should a user/system use, because they have never been compared, and
because they present different (complementary) features such as precision, recall, and efficiency. In this work,
we compare the most advanced template extractors. We implemented and evaluated five of the most advanced
template extractors in the literature. To compare all of them, we implemented a workbench, where they have
been integrated and evaluated. Thanks to this workbench, we can provide a fair empirical comparison of all
methods using the same benchmarks, technology, implementation language, and evaluation criteria.
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1 INTRODUCTION

Web template extraction. A web template (in the following just “template”) is a predesigned
resource that implements the structure for the comprehensive layout and display features of a
website. It is often implemented with HTML and CSS and gives designers ways to plug content
(e.g., text and images) into prepared containers, providing a basis for composing new webpages
that share a common look and feel [4, 15] (see Figure 1).

Templates are good for web development, because many tasks can be automated thanks to the
reuse of components [14, 15]. In fact, many websites are maintained automatically by code gener-
ators that generate webpages using templates. Templates are also good for users, who can benefit
from intuitive and uniform designs with a common vocabulary of coloured and formatted visual
elements [4, 53].

Besides, templates are also important for crawlers and indexers, because they usually judge the
relevance of a webpage according to the frequency and distribution of terms and hyperlinks (in the
following just “links”) [7, 54]. Since templates contain a considerable number of common terms and
links that are replicated in a large number of webpages, relevance may turn out to be inaccurate,
leading to incorrect results (see, e.g., References [4, 54, 57]). Template extraction helps indexers
to isolate the main content. This allows for enhancing indexers by assigning higher weights to
the really relevant terms. Once templates have been extracted, they are processed for indexing—
templates can be analyzed only once for all webpages that share the same template. Moreover,
links in templates allow indexers to discover the topology of a website (e.g., through navigational
content such as menus), thus identifying the main webpages. Gibson et al. [15] determined that
templates represent between 40% and 50% of data on the Web and that around 30% of the visible
terms and links appear in templates. This justifies the importance of template removal [25, 49, 54,
57] in web mining and search.

Other important fields where template extraction is particularly useful are boilerplate removal
[12, 16, 46], wrapper generation [32, 43, 60], wrapper induction [40, 59], wrapper maintenance [29,
39], and automated data extraction (see, e.g., References [16, 27, 31]).

This article fills a gap in the area of web template extraction: It surveys for the first time, and
from an empirical point of view, the main web template extractors. In particular, it uses concrete
measures and focussed experiments to compare the template extractors. The main objective of
this study is to help developers and researchers to choose one template extractor according to
their needs.

Motivation. The requirements of a template extractor depend on the specific use and system
where the template extractor will be inserted. Some systems require high precision, others require
high recall, and for others efficiency is crucial. An analysis of the current literature about template
extraction reveals that there are several different approaches, and each technique presents its own
precision, recall, and runtime. Unfortunately, there does not exist a publicly available comparison
of template extractors. One could make an exercise of literature review and produce a table that
collects the precision, recall, efficiency, time trendlines, asymptotic costs, and so on, reported by
the authors of each technique; but, unfortunately, this information is mostly useless, because this
comparison would be unfair, biased, imprecise, and inaccurate. The reason is that each technique
has been implemented with a different language and with different components that affect the
efficiency. But also, they have been evaluated with different evaluation criteria (e.g., counting re-
trieved words [53, 54] vs. characters [25] vs. DOM nodes [2] vs. text blocks [47, 55]) and with a
different collection of benchmarks. Using different benchmarks to compare template extractors
is unacceptable, because some techniques used artificial webpages [6] (automatically generated
webpages sharing exactly the same template), while others used real webpages implemented by
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Fig. 1. Template (right) of ACM’s “about” webpage (left) extracted with the template extractor TemEx.

heterogenous designers [2, 54]. Similarly, some used random webpages [26, 56, 57], possibly using
different templates, while others manually provided webpages that implement exactly the same
template [53, 54]. Other authors used the CleanEval [5] benchmark suite [46, 55].

Currently, there is no objective evidence, empirical data, or widely accepted (subjective) consen-
sus about the current state of template extraction tools (regarding precision, recall, performance,
scalability, and accepted technologies; i.e., HTML, Javascript, CSS, etc.). Moreover, the results re-
ported in the bibliography are incomparable.

We wanted to compare all techniques with the same benchmarks and with the same accuracy
measures, but we could not access the implementation of any tool even when they were reported
as free. We asked the authors of the most known and cited template extractors to provide us their
tools with very few positive answers. Unfortunately, very few systems are open-source, or even
otherwise (freely) available. In many papers, it is stated that a prototype was developed, but we
were not able to access the tool.

To solve this, we reimplemented from scratch the main template extraction systems in the liter-
ature [2, 53, 54, 56, 57]. All of them are now available as open-source at http://www.dsic.upv.es/~
jsilva/retrieval/Web-TemEx/extractors.html. Actually, our implementation is not a template ex-
tractor but a workbench for template extraction that includes several extraction facilities, includ-
ing a set of template extractors. It is able to work offline (with a repository of websites) and online
(it is integrated into the Firefox browser as a toolbox that allows for automatically extracting
the template of a given website). One interesting property is that the loading of the webpages,
the transformation from HTML to DOM trees, the renderization, and so on, is orthogonal to the
analysis of the webpages. Therefore, these features can be used by different template extraction
algorithms. This is an important contribution, because other researchers can now evaluate and
compare their work using a common evaluation criterion but also a common workbench so that
technology or external factors such as loading time do not influence the comparison.

Our experiments reveal the algorithm that produces the best recall, F1, and accuracy.! More-
over, our workbench solves one important problem of previous approaches: while previous algo-
rithms select a set of webpages from a given website randomly, the new workbench implements a
novel method to detect those webpages of a website that share the same template, thus increasing
precision.

In this article, we describe the process used to select, implement, and compare the template
extraction techniques, and the obtained results. In this process, we developed several tools that
contribute to the advance of the web template extraction research area.

IThe F1 metric is computed as (2 P * R)/(P + R), P being the precision and R the recall. The accuracy metric is computed
as the number of correct classifications (e.g., DOM nodes classified either as template or not-template) divided by the total
number of classifications.

ACM Transactions on the Web, Vol. 13, No. 2, Article 9. Publication date: March 2019.


http://www.dsic.upv.es/jsilva/retrieval/Web-TemEx/extractors.html
http://www.dsic.upv.es/jsilva/retrieval/Web-TemEx/extractors.html

9:4 J. Alarte et al.

The main contributions of our work are the following:

(1) A comparison and empirical evaluation of the main web template extraction tools.
(2) An open-source and publicly available implementation of five web template extraction
tools.
(3) A workbench for web template extraction that includes:
e All necessary infrastructure to load webpages, analyze and transform DOM trees, and
visualize webpages.
e Interfaces to add new template extraction algorithms to the workbench.
o All necessary infrastructure to evaluate, test, and compare template extraction
algorithms.
(4) A repository of benchmarks specific for template and content extraction.

Structure of the article. In Section 2, we describe the tools that participate in our study. In
Section 3, we describe our workbench and give details about its implementation and about how it
is being distributed. In Section 4, we compare all the tools from different perspectives, including
recall, precision, computation time, scalability, and asymptotic costs. The comparison of template
extractors is done with a benchmark suite that we specifically produced for this purpose. This suite
is also described in Section 4. Finally, Section 5 concludes.

2 SELECTION AND DESCRIPTION OF WEB TEMPLATE EXTRACTORS
2.1 Methodology for the Selection of Template Extractors

In this section, we describe the process followed to identify and select the template extractors that
participate in the study. We first formulate research questions and define inclusion and exclusion
criteria. Then, we describe the processes of search and screening of primary studies.

(1) Research questions. Two research questions were formulated to identify the current state
of the art in template detection and boilerplate removal methods:

e RQ1: What methods for template detection and boilerplate removal have been devel-
oped? This research question intends to provide an overall perspective of the existing
template detection and boilerplate removal methods, with special emphasis on those
that have been developed over the last 15 years.

e RQ2: What are the main characteristics of each template detection and boilerplate re-
moval method? This question enhances the previous one, giving a deeper understanding
of the template detection and boilerplate removal methods.

(2) Search process. We conducted a search process to assess the body of knowledge related to
template extraction and to systematically deal with the research questions. This search
process was strict and unbiased, and it involved the most relevant databases in the
computer science area: Science Direct, Springer Computer Science, Web of Science, SCO-
PUS, IEEE Explore, Citeseer X, ACM Digital Library, Arxiv, and Google Scholar.

For the search, we created the following search string:

(template OR boilerplate OR noise)
AND (detection OR extraction OR removal OR cleaning)
AND (“web page” OR webpage)

The search string was based on the analysis of several keywords from relevant liter-

ature, which was found by searching relevant articles and by analyzing their related

bibliography.
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Table 1. Assessment Criteria

AC1

Is the paper based on research?

AC2

Is there a clear statement of the aims of the research?

AC3

Was the research design appropriate to address the aims of the research?

AC4

Was the data analysis sufficiently rigorous?

AC5

Is there a clear statement of findings?

AC6

Is the study of value for research or practice?

This query turned out to be extremely wide. For instance, ScienceDirect returned more

than 6,000 documents, so we filtered the results by refining the search string:
((“template detection” OR “noise elimination”) AND web) OR “cleaning web page”

[Title/abstract/keywords]

As a result of the search process, 278 studies were identified. Excluding unavailable, non-

related to the topic, and duplicated results, we obtained 40 papers.

(3) Inclusion and exclusion criteria. To address the research questions, the following inclusion
and exclusion criteria were defined:

IC1: Those papers that use the DOM tree to represent the webpages.
IC2: Those papers published in a conference rated with A in the GGS Conference Rating.?
IC3: Those papers that describe a site-level technique.
EC1: Those papers that have less than 15 cites.’

(4) Quality assessment. Each paper was evaluated using our own adaptation of a quality check-
list that can be used across multiple study types proposed in Reference [22] (see Table 1).

Zhttp://gii-grin-scie-rating.scie.es/.
3The number of cites was extracted from the corresponding editorial where the paper was published (e.g., ACM). If the
number of cites was not available, then it was extracted from Google Scholar.
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We used 6 quality assessment questions based on the original 11 questions proposed by
the authors:

2.2 Search Results

After the primary screening process, we selected a total of 40 papers, and we excluded 238 from
the nine sources. The QUORUM flow chart of the reviewing process is depicted in Figure 2. Table 2
shows the list of selected papers with the metadata used in the selection process. We read in depth
the full text of each selected paper to decide whether to include this method in our study (and,
thus, implement it). The papers that met the inclusion criteria and did not meet the exclusion cri-
teria were selected. Finally, four papers were selected and, additionally, we included our template
extraction method, called TemEx [1]. The final selection are the rows with grey background in
Table 2. All of them are described below:

SST (2003) [57]: This algorithm introduces a data structure called Site Style Tree (SST) to
represent a collection of webpages. The SST can be seen as the union of all DOM trees it
represents. Each DOM node present in one webpage is represented in the SST in the same
position, and moreover, brotherhood relations are kept, so that groups of sibling nodes
are explicitly represented in the SST. Those groups of nodes repeated in more than one
webpage are represented in the SST with a counter. Hence, the SST provides information
about the repetition of groups of nodes. The most repeated groups of nodes are more likely
to belong to the template (a threshold is used to select them). Evaluation experiments were
carried out with five commercial websites producing an F1 of 75.1%. No information is
provided about the measure unit used.

e Main goal: Removing noisy blocks from webpages. They call “noisy blocks” those
that are not main content (navigation pans, advertisements, copyright and privacy
notices, etc.).

e Technologies used: The authors do not provide any information about the program-
ming language used, nor the different technologies or layouts accepted by the tool
(the use of iframes, flash, javascript, etc.).

e Benchmarks used in their evaluation: Real webpages from five commercial websites:
Amazon, CNet, PCMag, J&R, and ZDnet.

e Limitations/Problems: The main limitation of this technique is that it needs a large
amount of webpages (authors used 500) to build the SST of each website. Moreover,
the evaluation was done with homogeneous websites.

RTDM-TD (2006) [54]: This algorithm compares a set of webpages by identifying what parts
of their DOM trees are exactly equal in all webpages. Those DOM nodes repeated in all
webpages are the template. To compare a set of DOM trees, it uses a top-down variant
of the tree edit distance (TED) algorithm. Roughly, they randomly pick two webpages
and compute their TED. All mapped nodes represent the current template. Then, they
iteratively compute the TED between the current template and another random webpage
until a predefined number of webpages have been processed. Evaluation experiments
were carried out with “a few dozen” of manually selected webpages. The F1 reported
with 10 websites is “higher than 95%” in 9 out of 10 websites, and “above 85%” in the
other one. It was calculated by counting the number of correctly retrieved words of the
template.

e Main goal: Removing templates found in collections of webpages to enhance web
IR and web mining methods. First, the algorithm detects the template of a small
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Table 2. Selected Papers That Describe Web Template Extraction Tools

Article | Year Venue Core | LS | MA | JCR | Cites | DOM | P-L/S-L
[4] 2002 WWWwW A++ | A++ | A++ - 387 No S-L
[57] 2003 SIGKDD A++ | A++ | A++ - 507 Yes S-L
[54] 2006 CIKM A A++ | A+ - 95 Yes S-L
[33] 2006 CSCWD B B C - 4 No S-L
[30] 2006 DEXA B - B - 25 Yes S-L
[20] 2006 IKE C - - - 10 | No SL
[7] 2006 SAC B - N - 71 Yes S-L
(6] 2007 WWW A++ | A++ | A++ - 120 Yes P-L
[23] 2007 PKDD A | A | Ar | - 10 | No* SL
[38] 2007 WAC5 - - - - 37 No P-L
[12] 2008 LREC C A A - 54 No P-L
(5] 2008 LREC C A A - 111 No N/A
[56] 2008 WWW A++ | A++ | A++ - 23 Yes S-L
[24] 2009 WWW A++ | A++ | A++ - 34 No P-L
[41] 2009 KSE B - - - 11 No S-L
[53] 2009 WWWwW A++ | A++ | A++ - 21 Yes S-L
[25] 2010 WSDM A+t | A+ | A+ | - | 484 | No P-L
[14] 2011 IC3K C C - - 1 No S-L
[44] 2011 ICCSIT - - C - 1 Yes P-L
[21] 2011 IEEE TKDE - - - 01 | 6 | No SL
[19] 2012 )CSE - - - - 8 Yes S-L
[35] 2012 JACR - - - - 1 Yes S-L
[3] 2013 Inf. sci. - - - Q1 15 Yes S-L
[52] 2013 | Inf. proc. & man. - - - Q1 41 No P-L
[45] 2013 JCA - - - - 4 No P-L
[42] 2013 JRTE - - - - 11 | Yes P-L
[36] 2013 ICGCE - - - - 2 Yes S-L
[28] 2014 | App. mech. & mat. - - - Q4 0 Yes S-L
[48] 2014 | Wir. per. comm. - - - Q3 6 No P-L
[13] 2014 ICDM A++ | A++ | A - 2 Yes S-L
[9] 2014 ICACNI - - - - 1 Yes SL
[10] 2014 ICACCI - - - - 9 No S-L
[18] 2014 [JCA - - - - 3 Yes S-L
[50] 2015 JCA - - - - 3 Yes S-L
[11] 2015 ICA - - - 6 No P-L
(8] 2015 IJETCR - - - - 1 Yes S-L
[1] 2015 PSI B C C - 3 Yes S-L
[17] 2017 GJPAM - - - Q4 1 Yes S-L
[51] 2018 Clus. comp. - - - Q2 0 No P-L
[58] 2018 WISE A B | B N 0 Yes PL
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set of sample webpages. Then, it removes the derived template from the remaining
pages in the collection.

o Technologies used: Not reported.

e Benchmarks used in their evaluation: Real webpages from 10 websites: the 5 web-
sites used in Reference [57] (Amazon, CNet, PCMag, J&R, and ZDnet), and other 5
well-known websites (CNN, E-Jazz, Encyclopedia Mythica, UBL, and Wikipedia).

o Limitations/Problems: To achieve an F1 value near 95% they use 25 webpages. Com-
puting a top-down mapping between the DOM trees of 25 webpages can take a long
time depending on the amount of DOM nodes of the webpages. Furthermore, the
evaluation was done with only 10 websites.

IWPTD (2008) [56]: This algorithm divides the DOM trees of the webpages into several

subtrees whose roots are the DOM nodes associated with concrete HTML tags (i.e., DIV,
TABLE, UL, etc.). Then, it compares the text segments (DOM nodes of type #text) inside
the subtrees of all the webpages. If a text segment appears in five or more webpages, then
itis considered as a template segment. Finally, a subtree is considered a template subtree if
the ratio between the length of all its template segments and all its text segments is higher
than 0.7. Evaluation experiments were carried out with five websites and 400 random
webpages for each website, producing a precision of 98% and a recall of 80%. The article
does not describe how these measures are computed.

e Main goal: Crawling. Implementation of an incremental framework to detect tem-
plates in which a page is processed as soon as it has been crawled.

e Technologies used: Not reported.

e Benchmarks used in their evaluation: Authors selected five webpages from the
dataset used in Reference [34]. They do not provide any information about which
webpages were selected.

o Limitations/Problems: The evaluation was done with only five websites.

RBM-TD (2009) [53]: This approach is similar to RTDM-TD, but they use a bottom-up variant

of the TED algorithm (instead of the top-down variant). During the comparison of DOM
trees, it introduces a restriction to classify a common subtree as template: those subtrees
repeated in all webpages must be exactly in the same position (i.e., the path from the
root to them must be the same in all webpages). Evaluation experiments were carried out
with 24 manually selected webpages and ensuring that all of them implement the same
template. The F1 reported with 10 websites is close to 90%. It was calculated by counting
the number of correctly retrieved words of the template.

e Main goal: Template removal to improve webpage indexing and processing.

e Technologies used: Not reported.

e Benchmarks used in their evaluation: The same 10 real websites used in [54]: Ama-
zon, CNet, PCMag, J&R, ZDnet, CNN, E-Jazz, Encyclopedia Mythica, UBL, and
Wikipedia.

o Limitations/Problems: The main limitation is that the evaluation was done with
only 10 websites, and also the 24 webpages used were not randomly selected, but all
of them implementing the template (this scenario is easier for a template extractor).

TemEx (2015) [2]: As in RTDM-TD and RBM-TD, this algorithm also uses a mapping between

the DOM trees to determine what nodes belong to all webpages, but it does not force a
node to belong to all webpages, only to a subset, as in SST. In this respect, this algorithm
is more democratic, because it uses a number of votes to determine that a node has been

ACM Transactions on the Web, Vol. 13, No. 2, Article 9. Publication date: March 2019.



A Benchmarking and Comparison for Five Template Extractors 9:9

RTDM-TD IWPTD

Hyperlink
Analysis

1
z%»ﬂ

= |/
Domain’s ﬁ' II HTML
hierarchy v =

‘| Complete Web 's
Subdigraph HTML code /

F==w r ol ¢ Cﬁ%
Extraction HTML to DOM ¢ o
\ - = » “l  Keypage's
\ -
o1 To.ggle
Evaluation View
—r 1/

[Detection of candidates] \I Evaluation T Toggle View ]/

\

1 — O >

T

1
12 o|k-

Y

DOM tree

o

o

o

(-]

Fig. 3. Workbench architecture.

repeated in enough webpages to be considered as part of the template. This provides a
degree of tolerance, because we can classify a set of DOM nodes as part of the template
even if there exist webpages that do not contains these nodes. This can in some cases
reduce precision, but it often raises recall (which is the main problem of all techniques).
The F1 reported with 75 websites is 86.94%. It was calculated by counting the number of
correctly retrieved nodes of the template.

e Main goal: Reusing templates by website developers.

e Technologies used: Implementation done with Javascript and distributed as a Firefox

add-on.
e Benchmarks used in their evaluation: 100 real heterogeneous websites.
e Limitations/Problems: The execution time of the mapping is the bottleneck.

It is worth noting that the F1 values reported by each tool are incomparable, because they
were evaluated with different evaluation sets. In Section 4, we provide a fair comparison of these
techniques.

3 A WORKBENCH FOR TEMPLATE EXTRACTION

Our implementation is really a workbench with several features for template extraction. It is avail-
able at http://www.dsic.upv.es/~jsilva/retrieval/ Web-TemEx/.

What is interesting for template extraction developers is that the workbench is parametric with
respect to the algorithm used for template extraction, and it provides an API so that a template
extraction algorithm can access all the workbench resources. We describe our workbench by using
the architecture shown in Figure 3.

In this figure, each module is represented with a 3D white box, and the input and output of the
module is connected to it with dashed arrows. For instance, the Hyperlink Analysis module
inputs the URL of a website, and it outputs a data structure representing the domain’s hierarchy.

All modules have been organized in four grey areas that implement a particular functionality.
The areas are: Detection of candidates, HTML to DOM, Toggle View, and Evaluation. There
is one module coloured in black that implements the template extraction functionality. This black
module should be replaced with one concrete algorithm such as one of the five already imple-
mented and drawn at the top of the figure. Each grey area is described separately:
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Detection of candidates: In the general case, a template extractor inputs a webpage and

it outputs its template by comparing the webpage with other webpages that implement
the same template. Therefore, the template extraction process should be divided into two
different phases: (1) Exploring the website to identify webpage candidates that probably
implement the template, and (2) comparing the webpage with the candidates.
Unfortunately, none of the described algorithms implement the first phase. In their exper-
iments, candidates were taken randomly from the website IWPTD [56]), randomly from
a predefined set of webpages, all of them implementing the same template (SST [57]), or
manually; again, all of them implementing the same template (RBM-TD [54], RTDM-TD
[53]).
Contrarily, our workbench uses a hyperlink analysis to automatically identify webpages
that very likely implement the web template. Compared to the random selection, this
analysis highly improves the recall and precision of the second phase (for all algorithms),
and compared to the manual selection, it allows the system to work online (it just needs
a URL to automatically explore the website following links). Moreover, this phase signif-
icantly improves performance by reducing the number of webpage candidates needed to
find the template. According to our experiments (see Section 4), collecting the webpage
candidates takes less than 100ms in 90.67% of benchmarks. What is especially interesting
is that it is orthogonal to the second phase, and thus it can be used by all algorithms, thus
the workbench performs this phase for all template extraction algorithms.

HTML to DOM: One important problem to compare the results reported from the differ-
ent tools was that they were evaluated with different criteria, or the evaluation criterion
was not reported [56, 57]. Traditionally, the papers in the web template extraction litera-
ture measure how good the template extractor is with two measures: text or DOM nodes
retrieved. The precision can be very different if we measure the number of extracted tem-
plate characters, the number of words, the number of HTML tags, and so on. Therefore,
the evaluation criterion must be fixed to compare the tools.

Those papers that use text in their measures (precision, recall...), can be further classi-
fied: those that measure paragraphs, those that measure words, and those that measure
characters. In principle, one could think that words are better than paragraphs and char-
acters are better than words, because, e.g., by measuring words, one can detect that a
word that should have been retrieved is missing in a paragraph, but this would not be
possible by measuring paragraphs (the whole paragraph is marked as retrieved or not).
The same happens with words and characters.

However, in general, it does not make sense to only extract a subset of the characters
in a word. Moreover, measuring retrieved characters is strongly dependent on how many
characters have a word. That is, if a template word “computer” is not retrieved, this would
produce a penalty higher than if a word “hello” is not retrieved. Simply because it has more
characters. This may distort the measures.

All these problems related to text are often solved by using DOM nodes instead, because
each individual block of text appearing in the HTML source code is represented with a
DOM node of type #text. Therefore, this measure is specially interesting for template
extraction, because templates reuse HTML labels and their blocks of text. It is extremely
rare to find a template that only reuses a portion of a text in a DOM node. For these
reasons, DOM nodes are more appropriate to evaluate template extractors. Therefore, the
workbench includes a module to automatically transform every webpage to its associated
DOM tree.

ACM Transactions on the Web, Vol. 13, No. 2, Article 9. Publication date: March 2019.



A Benchmarking and Comparison for Five Template Extractors 9:11

Toggle View: Once the template has been extracted, the workbench allows for graphically
showing it directly on the browser and toggling the view by swapping from the original
webpage to the extracted template and vice versa (in Figure 1, the “Toggle View” button
is the pink one located in the top right toolbox. Clicking this button makes the browser
to swap between the webpages on the left and right).

Evaluation: The workbench includes a module to evaluate the produced template (precision,
recall, F1, and extraction time). The algorithms only have to generate a template, and the
workbench compares this template with the gold standard and generates a report with
the results. For instance, the confidence intervals in Tables 4 and 5 (they will be explained
in Section 4.2) were generated from the information obtained by the workbench.

4 EMPIRICAL EVALUATION

The empirical evaluation of template extractors can be done with our workbench, because it has
been extended with evaluation features (e.g., it can monitor the time or memory used). Therefore,
it allows for comparing all algorithms: implemented in the same language, using the same webpage
candidates and the same number of them,* and with the same evaluation criterion. Of course, we
should also use the same benchmarks. Nevertheless, there does not exist a benchmark suite for
template extraction.

Each described system uses a different benchmark suite. Unfortunately, these benchmarks are
not usable for comparison. The reason is that their webpages are in some cases artificial (generated
ad hoc to use the same template); but even if they are real websites, they are not heterogenous
(e.g., in Reference [54] all benchmarks were product description webpages) or outdated (i.e., using
old versions of HTML, frames, etc.). We consider that our comparison must be done with real
online current webpages that use heterogeneous technologies (<table>-based designs, <div>-
based designs, CSS, HTML 5, Javascript, etc.). Therefore, we produced a new benchmark suite for
template extraction. This benchmark suite was constructed before we implemented and compared
the template extractors.

4.1 The Benchmark Suite

We produced a dataset of 100 real and heterogeneous webpages (ikea.com, bbc.com, etc.) with
different layouts and page structures, including different languages (English, German, French, and
Spanish) to allow for the testing of language-independent features. Table 3 shows the benchmarks
classified into five categories.

The suite was constructed following this procedure:

(1) We selected from the CleanEval suite those webpages that are still maintained, thus, ob-
solete benchmarks were discarded. 20 benchmarks come from CleanEval.

(2) We asked several researchers to select real webpages for us (hence, the engineers that ex-
tracted the template did not select the benchmarks). Around 150 webpages were selected.

(3) From that set of webpages, we randomly selected a subset of 80 benchmarks.

(4) For each webpage (considered as the key page),
(a) we followed its links and collected all webpages in a maximum distance of three clicks,

thus forming a net where the center is the key page. This is useful for both page-level

4Phase 1 in our algorithm (i.e., detecting the webpage candidates to extract the template from them) has been integrated
into the workbench. Therefore, even though the other techniques select the candidates randomly (thus, producing worse
results on average), we made the comparison of all the techniques by sharing for all algorithms exactly the same candidates
produced by the workbench. Hence, the comparison is completely fair, because they all use the same webpages to compute
the template.
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Table 3. Benchmark Classification

Category Number of pages
Companies/Shops 29
Forums/Social 16
Personal websites/Blogs 17
Media/Communication 17
Institutions/Associations 21

and site-level techniques: page-level techniques only use the key page, and site-level
techniques use the key page and a set of webpages accessible from it. Collecting web-
pages not accessible from the key page or further than three clicks would be useless
for template extraction.

(b) Every single HTML tag of the webpages was manually classified as mainContent, tem-
plate, notContent, and/or notTemplate. Therefore, the suite is useful for both content
and template extraction. This labelling was implemented with HTML classes so that it
can be used by any technique (not only DOM-based techniques). For instance, given a
main content node, it was labelled by including it in an HTML class called mainCon-
tent, so the node and all its descendants are marked as main content nodes. Moreover,
this labelling does not influence the original aspect or structure of the webpages, and
it is automatically processable. Finally, the webpages and all their resources (images,
media, CSS, Javascript, etc.) were localized so that all links reference their local copy
to ensure independency of the benchmark with respect to the evolution of the online
websites.

(c) This process was done by three engineers, that later put their results in common to
avoid errors and produce the final labelling.

With this suite, researchers can evaluate or compare their technique very easily thanks to the
labelling and because the suite also includes scripts to automate the analysis of webpages. It is
open-source, free, and publicly available at http://www.dsic.upv.es/~jsilva/retrieval/teco/.

4.2 Evaluation of Tools

Our evaluation dataset is composed of 75 benchmarks selected randomly from the benchmark
suite. We extracted the template from the evaluation dataset using all algorithms, and we compared
their efficacy and performance. To evaluate the efficacy of the methods, we use the recall, the
precision, the F1 measure, and the accuracy. The use of these measures is explained and justified
in Section 8.3 of Reference [37].

Recall, precision, F1, and accuracy. For each algorithm, we computed the 0.99 confidence
interval across the arithmetic mean of the recall, precision, F1, and accuracy from the different
75 benchmarks. In all the experiments, the evaluation unit was the DOM node. Therefore, Recall
shows the number of correctly retrieved nodes divided by the number of nodes in the gold stan-
dard; Precision shows the number of correctly retrieved nodes divided by the number of retrieved
nodes; F1 shows the F1 metric; and accuracy shows the accuracy metric. The results obtained
are summarized in Table 4. In the table, we use the notation [, b .] that represents a symmetric
0.99 confidence interval between a and ¢ with centre in b.

Several conclusions can be extracted from Table 4. First, we see that SST is strictly worst than
IWPTD, and IWPTD is, in turn, strictly worst than TemEx. Similarly, RTDM-TD is strictly worst
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Table 4. Comparison of Template Extraction Tools

Benchmark Recall Precision
X,1-a=99% o X,1-a=99% o
SST [10.6044.80 43.02] | 13.83 | l[6.715% 57 ¢2.03] | 26.42
RTDM-TD [5.06 15.67 55.35] | 32.65 | [05.4397.86100.00] | 8.17
IWPTD [67.16 73-3170.47] | 20.70 | [60.20 68.1876.17] | 26.84
RBM-TD [20.1341.1255.11] | 40.31 | [100.00 100.00 100.00] | 0.00
TemEx [86.78 91.46 96.15] 15.76 [84.82 89.47 94.12] 15.63
Benchmark F1 Accuracy
X,1—a =99% o X,1—a =99% o

SST [40.1245.2150.30] | 17.10 | [41.8145.58 49.3¢] | 12.69
RBM-TD [33.32 46.18 59.04] 43.24 [62.04 67.46 72 59] 18.25
TemEx [84.38 88.46 92_54] 13.71 [32.10 85.87 89.63] 12.67

than RBM-TD. TemEx produced the best recall, accuracy, and F1; while RBM-TD produced the
best precision. In fact, the precision of RBM-TD is 100%. Thus, this algorithm should be selected
for those applications where precision must be maximized (e.g., in template removal one can use
RBM-TD with a high confidence that no content will be removed). Nevertheless, RBM-TD is not
the best option when an application needs to maximize the amount of template that should be
detected. In this case, TemEx should be selected, because it showed the best recall. TemEx also
produced the best F1, thus it has the best balance between precision and recall.

The range of the confidence intervals reveals that all methods can be strongly influenced by
the concrete analyzed website. This is quantified by the standard deviation computed for each
algorithm, which is between 14% and 43%. Websites that implement several templates or websites
that do not implement any template usually obtain the lowest metric values.

We observed that some of the template extractors are sensible to the type of webpages from
which they extract the template. This is logical, because webpages of a particular type (e.g., forums)
often share some specific features. For instance, “forum” webpages usually contain a lot of text; in
“shops” there usually exist many images; in “blogs” many webpages have been generated with a
content management system (CMS) and, thus, the template is often rigid; and so on. To study this
phenomenon, we analyzed the performance of the algorithms with different types of webpages
following the classification in Table 3. This is shown in Table 5, which presents the mean F1 of
the different benchmark categories for each algorithm. On the one hand, RTDM-TD and RBM-TD
vary significantly depending on the evaluated benchmark category. On the other hand, IWPTD
and SST are fairly constant and their F1 does not seem to depend on the benchmark category. The
highest value in the table corresponds to TemEx in the “Institutions/Associations” category. In this
particular category, TemEx is about 91% F1. Contrarily, in category “Media/Communication” the
F1 is about 78%. The corresponding results for accuracy are shown in Table 6.

Computation time. Regarding the computation time, the webpage loading, hyperlink analysis,
CS extraction, and HTML to DOM times are the same in all tools, because they use the same
workbench. The algorithm computation time is completely different in all tools. While IWPTD and
TemEx are the quickest algorithms, the others are significantly slower. Table 7 shows the mean
of the execution time of each algorithm for the 75 evaluation benchmarks. IWPTD is extremely
quick, it only takes an average of about 2s per benchmark. TemEx is not as quick as IWPTD, it
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Table 5. Benchmark Groups F1 Comparison
Category RTDM-TD RBM-TD IWPTD
X,1-a=9%| o | X,1-a=99% | o | X,1-a=99% | o
Companies/Shops [0.00 16.9533.96] | 32.36 | [28.17 51.50 74.82] | 44.36 | [65.17 73.95 82.73] | 16.70
Forums/Social [5.0841.72 78.36] | 47.18 | [9.8843.9177.93] | 43.81 | [18.39 44.66 70.94] | 33.84
Personal websites/Blogs | [0.00 20.57 48.11] | 37.04 | [27.25 60.57 93.90] | 44.81 | [46.75 63.50 80.24] | 22.52
Media/Communication [0.005.70 18.22] | 16.84 | [0.0028.7160.24] | 42.41 | [60.96 71.0281.08] | 13.53
Institutions/Associations | [¢.81 5.389.94] 7.09 | [15.85 42.08 ¢3.31] | 40.73 | [51.00 67.0083.00] | 24.85
Category TemEx SST
X,1-a=99% o X,1-a=99% o
Companies/Shops [81.28 88.52 95.77] 13.78 | [41.2248.985¢.74] | 14.76
Forums/Social [83.14 92.82 100.00] | 12.47 [21.62 40.15 58 ¢7] 23.85
Personal websites/Blogs [75.34 87.09 9g.84] 15.80 [33.1942.10 51.01] 11.99
Media/Communication [67.32 79.53 91.74] 16.42 [32.83 43.96 55.08] 14.96
Institutions/Associations | [gs.58 93.09 97.59] 6.99 [33.30 46.31 59 32] 20.21
Table 6. Benchmark Groups Accuracy Comparison
Category RTDM-TD RBM-TD IWPTD
X1-a=9% | 0 | X,1-a=99% | o | X,1-a=99% | o
Companies/Shops [48.14 55.22 62.31] | 13.48 | [60.13 69.8679.59] | 18.50 | [60.80 68.04 75.29] | 13.78
Forums/Social [50.7567.3183.87] | 21.33| [51.83 66.0480.26] | 18.30 | [44.52 57.4270.32] | 16.61
Personal websites/Blogs | [44.99 58.43 71.87] | 18.08 | [59.75 75.22 99.69] | 20.81| [55.61 63.88 72.14] | 11.11
Media/Communication | [49.69 50.37 51.04] | 0.91 | [47.98 60.76 73.54] | 17.19 | [56.24 64.94 73 ¢5] | 11.71
Institutions/Associations| [50.07 50.76 51.45] | 1.07 | [53.79 64.06 74.34] | 15.96 | [57.30 66.93 76.56] | 14.95
Category TemEx SST
X,1-a=99% o X,1-a=99% o
Companies/Shops [78.57 85.34 92.11] 12.88 [40.93 47.63 54.33] 12.74
Forums/Social [82.0391.60 100.00] | 12.32 [32.13 45.79 59.44] 17.58
Personal websites/Blogs [75.47 85.17 94.87] 13.04 [32.56 40.84 49.12] 11.14
Media/Communication [62.28 78.18 83.03] 13.31 [34.27 40.60 46.93] 8.51
Institutions/Associations [82.60 89.00 95 40] 9.94 [42.26 49.68 57.09] | 11.51

takes an average of about 42s for each benchmark. However, 73% of the benchmarks take less
than 10s. SST, RBM-TD and RTDM-TD are relatively slow algorithms, their computation time is
significantly higher, and above 1min.

Scalability. Scalability has been empirically evaluated by measuring the evolution of the com-
putation time with regards to the growth of the DOM trees (i.e., their number of nodes). Here again,
IWPTD and TemEx are significantly better than SST, RBM-TD, and RTDM-TD. This is shown in
Figure 4, which draws the computation time trendline of each algorithm with respect to the num-
ber of nodes of the key page. While the trendlines of RTDM-TD, RBM-TD, and especially SST are
quadratic, the trendlines of IWPTD and TemEx are linear with a gentle incline. Therefore, in terms
of scalability, IWPTD and TemEx are better than the other algorithms.
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Table 7. Benchmark Classification

9:15

Phase X,1-a=99% o
Webpage Loading [0.00 1309.21 4000_40]11’15 9048.11ms
Hyperlink Analysis [0.00 91.69 59365 ]ms 376.50ms
CS Extraction [0.00 617.55 5164.8¢Jms | 5202.26ms
HTML to DOM [()_00 1403.52 4084.52]1’1’15 9013.86ms
Template extractor )_(, 1—-a=99% o
SST [63.58 144.25 224.93]5 271.24s
RTDM-TD [39.37 127.34 215.31]5 295.77s
IWPTD [1.04 2.22 3.40]8 3.98s
RBM-TD [17_31 116.70 216.09]5 334.15s
TemEx [0_00 42.83 89.38]S 156.50s
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Fig. 4. Time trendlines associated with DOM sizes.

Asymptotic costs. Thanks to the fact that we reimplemented the algorithms, we can also study
their scalability from a theoretical perspective. Concretely, we analyzed their asymptotic costs

based on their source codes. The following measures were obtained:

e SST € O(W * (n? + T)), n being the number of nodes in the key page, W the maximum
width of the Site Style Tree, and T the size of the Site Style Tree.

e RTDM-TD € O(n?), n being the number of nodes in the key page.

e IWPTD € O(n + T'logT), n being the number of nodes in the key page and T the number

of text segments obtained.

e RBM-TD € O(n?), n being the number of nodes in the key page.
e TemEx € O(n* W), n being the number of nodes in the key page and W the maximum

width of the DOM tree.

The asymptotic cost analysis confirms the empirical results. IWPTD and TemEx have linear
growth while RTDM-TD, RBM-TD, and SST have quadratic growth. The cost of IWPTD is the
best. It is practically O(n), because the number of text segments is always significantly lower than
the number of nodes. TemEx also has a linear growth. The other three algorithms (RTDM-TD,
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RBM-TD, and SST) have a quadratic cost, RTDM-TD and RBM-TD being asymptotic cost o(n?),
which is better than the cost of SST.

5 CONCLUSIONS

This work presents a comparison of template extractors in terms of precision, recall, F1, accuracy,
efficiency, and scalability. The motivation of this work is that current template extractors were
incomparable from an empirical point of view due to the different benchmarks and measures used
in the articles/webpages/reports where they were described. To compare them, we reimplemented
from scratch the five most important tools in the bibliography. For the comparison, we imple-
mented a workbench with all the necessary infrastructure to load, analyze, and process online
webpages, so that all algorithms can work now online and with modern webpages.

The workbench includes a new analysis able to automatically select the webpage candidates to
be processed by the template extractors. This is especially useful, because it allows the process to
be completely automatic (the workbench itself navigates the website to find the candidates). More-
over, because it is independent of the selected algorithm, all present and future template extractors
can use this phase. In addition, we produced a collection of benchmarks to perform the comparison
of all tools with the same suite (our study revealed that no current benchmark suite was adequate,
modern, and fair). After the comparison, we have an empirical evidence about the precision and
recall of all tools, and also about their runtimes and scalability. TemEx produced the best average
recall, accuracy, and F1. Meanwhile, the RBM-TD algorithm produced the best precision. The scal-
abilities of the tools are very different. IWPTD is the most scalable algorithm with a linear growth.
TemEx also showed a linear growth, while the other algorithms showed to be quadratic.

In consequence, we now have enough information to decide which template extractor to use
according to our specific needs: If time is crucial, e.g., because we want no analyze thousands
or millions of webpages, then IWPTD is the best candidate due to its linear growth. However,
this algorithm has a F1 of 66%. If time is not crucial, then TemEx should be selected, because its
scalability is similar but it has a F1 of more than 88%. If time is not crucial and we are interested in
retrieving only template elements (this is useful in filtering and boilerplate removal techniques),
then RBM-TD should be selected, because it has the best precision (100% with all the benchmarks
of our suite). In any other case, i.e., if recall, accuracy, or F1 should be maximized, then TemEx is
the best option (91.46% recall and 88.46% F1).

The comparison of the tools has been also performed considering different types of websites
(forums, companies, etc.), so that one can decide which template extractor to use depending on
the type of website considered. This has also been done in the design of TemEx, so that the internal
ponderations used by TemEx can be also parameterized for a specific kind of website. The design
and evaluation of TemEx has produced several side results such as an empirical evaluation of how
different are the templates of two webpages when they are pointed or not from the main menu,
when they have a specific distance in the directory tree of the website, and when they are pointed
from links located at a specific distance in the key page’s DOM tree.
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