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Abstract. Besides the main content, webpages often contain other com-
plementary and noisy data such as advertisements, navigational informa-
tion, copyright notices, and other template-related elements. The detec-
tion and extraction of main content can have many applications, such as
web summarization, indexing, data mining, content adaptation to mo-
bile devices, web content printing, etc. We introduce a novel site-level
technique for content extraction based on the DOM representation of
webpages. This technique analyzes some selected pages in any given web-
site to identify those nodes in the DOM tree that do not belong to the
webpage template. Then, an algorithm explores these nodes in order to
select the main content nodes. To properly evaluate the technique, we
have built a suite of benchmarks by downloading several heterogeneous
real websites and manually marking the main content nodes. This suite
of benchmarks can be used to evaluate and compare different content
extraction techniques.

Keywords: Information Retrieval, Content Extraction, Template Extraction,
Block Detection

1 Introduction

Extracting information from webpages is useful for humans and for many differ-
ent systems. The most important information in a webpage is the main content.
However, the main content is almost always next to other noisy elements such
as banners, footers, main menus, advertisements, etc. The task of extracting the
main content from a webpage consists in isolating the useful information from
the noise, removing the elements that do not contain useful knowledge for the
user (see, e.g., Figure 1).
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Fig. 1. Main content of WISE 2018’s
‘keynote-speakers’ webpage (extracted Fig.2. Main Content DOM nodes ex-
with our web content extraction tool). ample

Our method inputs an arbitrary webpage (the key page) and it outputs a
set of DOM nodes representing its main content. Our approach is site-level, so
it loads and analyzes several other webpages to detect the main content. This
allows it to increase accuracy, because it can detect template (repeated) content.

This approach is divided into three phases:

1. An algorithm selects a set of webpages that belong to the same website of
the key page.

2. For each webpage in the set, an algorithm maps its DOM nodes with the
DOM nodes of the key page. If it finds that a node of the key page is repeated
in another webpage, the algorithm updates a counter, so that it can know
how many times each node appears in other webpages.

3. The set of DOM nodes in the key page that are not repeated in any other
page are added to a set of candidate nodes. These nodes are analyzed in the
following way:

— An algorithm selects only those DOM nodes of the set that do not have
ancestors in the set. They form the reduced set of candidate nodes.

— If there is only one node in the reduced set of candidate nodes, that node
and all its descendants correspond to the main content. However, if there
are several candidate nodes in the set:

e Each candidate node is analyzed to detect the branch of the DOM
tree that more likely contains the main content.

e Finally, the algorithm selects the candidate nodes (DOM nodes that
only appear in the key page) that belong to the main content branch.

2 Main content extraction

This section explains the three phases followed in our method to extract the
main content of a webpage.



2.1 Set of webpages selection

This section proposes an algorithm to identify a set of webpages (in the following
n-SET) from the same website of the key page that very likely share the same
template of the key page. The process of selecting the n-SET is:

1. The algorithm analyzes the key page and extracts a set containing all the
hyperlinks that point to webpages in the same domain.

2. Then, the algorithm sorts the hyperlinks of the set.

3. Finally, the algorithm selects the first n hyperlinks of the sorted set and
collects the set of webpages pointed by these hyperlinks.

The first step is trivial. The DOM tree of the key page is traversed and those
hyperlink nodes (with the HTML A tag) that point to webpages in the same
domain as the key page, and that do not point to the key page are collected.

Once the set of valid hyperlinks of the key page is created, it is necessary to
establish an order of relevance. Thereby, the most related hyperlinks to the key
page will be positioned in the first places. For this, we use a combination of the
two metrics proposed in [3]: the hyperlink distance and the DOM distance.

The final set of webpages (the n-SET) returned in this phase contains those
hyperlinks with a hyperlink distance as closer as possible to zero. Webpages
with the same hyperlink distance are sorted according to their DOM distance,
selecting hyperlinks as far as possible (among all of them) in the DOM tree (see
[2] for details).

2.2 'Webpages mapping

In order to identify the nodes of the key page repeated in other webpages of the n-
SET, we use a tree mapping algorithm called equal top-down mapping (ETDM)
[3]. This mapping analyzes two DOM trees and establishes a correspondence
between their nodes.

After we have built the set of webpages (n-SET), we compute an ETDM
between the key page and each webpage in the n-SET. We have implemented
an algorithm that performs each comparison by traversing the DOM trees top-
down. Specifically, starting at the root, the algorithm tries to map each node of
the key page with the nodes in the other webpage that are at the same depth. If
two nodes can be mapped, it means that both nodes are equal (represented with
n1 £ nsy), and the algorithm updates an attribute (it works as a counter) called
occurrences on the node in the key page. This attribute indicates the number
of times a node is repeated in the webpages of the n-SET. Then, the algorithm
recursively continues with the children of both mapped nodes. When one node
cannot be mapped, the algorithm stops exploring the descendants of this node.

Algorithm 1 inputs a key page and a set of webpages (n-SET), and it outputs
the same key page including a counter for each node. This counter specifies the
number of times a node of the key page appears in the webpages of the n-SET.
This counter is used to identify template nodes of the key page: those where
the counter is greater than zero (i.e., they are repeated in other webpages of the



Algorithm 1 Compute the number of occurrences of each node in the key page

Input: A key page pr = (N1, F1) and a set of n webpages P.
Output: The key page pi equipped with a variable occurrences for each node.
Initialization: Vn € Ny . n.occurrences = 0.

begin
r1 = root(py);
foreach (p = (N2, E2) in P)
r9 = root(p);
if (T] é ’I"g)
r1.0ccurrences = ry.occurrences + 1;
assignOccurrences(ry, r2);
return py;
end

procedure assignOccurrences(node r; € N1, node rp € Na)
foreach (ny € N1, no € Ny . ny £ n,, (r1,m1) € E1 and (r2,n2) € E2)

nj.occurrences = nj.occurrences + 1;
assignOccurrences(ng, ng);

end procedure

Fig. 3. Set of candidate nodes (excerpt from Figure 1)

website). The main content of the webpage will be probably formed by nodes
with occurrences = 0.

The output of this phase is a set of candidate nodes. For instance, Figure 3
shows an example of a key page where grey nodes represent the candidate nodes.
Candidate nodes do not appear in other webpages of the n-SET and, thus, some
of them can be used to represent the main content. This is explained in the
following section.

2.3 Candidate set reduction

The set of candidate nodes can be simplified by representing subtrees of candi-
date nodes with their roots. For instance, in Figure 3, all grey nodes are repre-
sented with the four bold-line nodes. This new set is called the reduced set of
candidate nodes, and it can be computed by exploiting the following theorem.



Algorithm 2 Candidate set reduction

Input: A set of DOM nodes candidatesSet
Output: A reduced set of DOM nodes
reducedSet.

Initialization: reducedSet = {}.

begin
foreach (node in candidatesSet)
cand = node;
while (parent(cand) € candidatesSet)
cand = parent(cand);
candidatesSet = candidatesSet \
subtree(cand);
reducedSet = reducedSet U cand;
return reducedSet;

Algorithm 3 Main content branch
detection

Input: A key page pi, and a set reducedSet
of DOM nodes in py
Output: A DOM node branch.

begin
count = 0;
foreach (n in reducedSet)
node = parent(n);
if |subtree(node)| > count
branch = node;
count = |subtree(node)
return branch;
end

)

end

Theorem 1 (parent-child relation of candidate nodes). Let P = (N, E)
be a webpage and let candidates C N be the set of all candidate nodes of P.
Then, n € candidates = Vn/, (n,n’) € E* . n/ € candidates.

Proof. First, if |descendants(n)| = 0 the claim follows trivially. We prove the
case when |descendants(n)| > 0 by contradiction. We assume that n € candidates
A In' (n,n') € E* . n' & candidates. Because n’ & candidates, there must exist
a webpage P’ with an ETDM mapping M and (n/,n”) € M (for some n’").
Moreover, according to the top-down property of ETDM (see [3]), all ancestors
of n’ also belong to the ETDM mapping M, and therefore, all ancestors of n’
(including n) are not candidates: n & candidates. But this is a contradiction with
the premise n € candidates.

Theorem 1 states an important property that is used by Algorithm 2 to
compute the reduced set of candidate nodes. This algorithm inputs the set of
candidate nodes and, for each node, it explores its ancestors. The ancestor with
lower depth on the DOM tree that belongs to the set of candidate nodes, is
added to a new set of nodes. Finally, the new set of nodes is returned as the
reduced set of candidates.

2.4 Main content branch detection

If the reduced set of candidates only contains one node, then this node corre-
sponds to the main content of the webpage. Therefore, it is not necessary to
execute the following phases and the algorithm returns that node as the main
content of the webpage. If, on the contrary, it contains more than one node, then
we need to further analyze the DOM tree to remove those nodes that are not
main content.

For each parent of a node in the reduced set of candidates, the algorithm
counts its number of descendants and stores the value. The node with more
descendants represents the root node of the main content branch. Considering



Algorithm 4 Candidate set reduction

Algorithm 5 Main content selection

Input: A set of DOM nodes reducedSet and
the branch node branch

Output: A set of DOM nodes
finalReducedSet  only including nodes
that belong to the main content branch

begin
foreach (node in reducedSet)
if (branch ¢ ancestors(node))
reducedSet = reducedSet \ {node}
return reducedSet;

Input: A set of DOM nodes reducedSet
Output: A set of DOM nodes mainCont.

begin
maitnCont = reducedSet;
foreach (ni,n2 in mainCont with
parent(ny) == parent(nz))
mainCont = (mainCont \ {ni,n2})
U{parent(ny)}
return mainCont;
end

end

the number of nodes in a DOM tree, a draw is very difficult, but possible. If it
happens, the node selected is the first one in a deep first traversal because it is
more likely to appear in the webpage without scrolling. The reason of selecting
the parent of each DOM node in the reduced set of candidates is that those
parent nodes appear in other webpages, so they likely belong to the template of
the website or they are probably located in the border between the template and
the main content (according to Theorem 1 all the descendants of these parent
nodes are candidates and, therefore, they do not appear in other webpages).

Algorithm 3 selects the main content branch node of a webpage.

The main content branch is a node used to select a branch of the DOM tree
that contains the main content. All nodes outside this branch are discarded (see
Section 2.5). Of course, it is possible that the selected branch contains several
candidates, and thus they should be further processed to extract the final set of
main content nodes (this is explained in Section 2.6).

For instance, Figure 3 shows that the node selected as the root node of the
main content branch is the dotted-line “DIV”. This “DIV” node is the parent
node of 3 nodes that belong to the reduced set of candidates. Therefore, it is the
root node of the main content branch.

2.5 Discarding candidates

Once the branch that contains the main content is selected, the nodes that do not
belong to that branch can be removed from the reduced set of candidate nodes.
Therefore, for each node in the reduced set of candidate nodes, an algorithm
checks whether the node belongs to the main content branch. If the node does
not belong to that branch, it is removed. In practice, this means that whenever
we find different separate groups of candidate nodes in the DOM tree, we try to
join as many groups as possible by selecting the branch node with Algorithm 3,
and then we discard the other groups.

Ezample 1. In Figure 3, once we have computed the branch node (the dotted-
line node), Algorithm 4 discards the three grey nodes at the top-right of the tree
(because they are not descendants of the branch node).



2.6 Main content selection

Once the candidates that do not belong to the main content branch have been
discarded, all the remaining nodes in the reduced set of candidates are considered
main content. However, sometimes, these nodes can be grouped, e.g., when two
of them are sibling nodes (as in Figure 3).

Therefore, the main content is formed by all nodes in the reduced set of can-
didates except for sibling nodes, which are recursively replaced by their parent.
This is computed with Algorithm 5.

Ezample 2. In Figure 5, after having removed the three grey nodes at the top
right side, only three nodes remain in the reduced set of candidates: the three
bold-line sibling nodes. According to Algorithm 5, the final main content of the
webpage is the dotted-line node, because it is replaced by its three children.

3 Empirical evaluation

We implemented this technique and integrated all the algorithms proposed as
a Firefox’s addon, publicly available at: http://www.dsic.upv.es/~jsilva/
retrieval/Web-ConEx/. For the evaluation, we used the template detection
and content extraction benchmark suite (TECO)!. Traditionally, most authors
of content extraction techniques have measured the recall, precision, and F1
(computed as (2% P* R)/(P+ R), being P the precision and R the recall) of the
retrieved words. This implicitly means that they measure the quality of their
techniques considering that the main content is text. One important advantage
of our technique is that it not only measures the recall, precision, and F1 of the
retrieved words, but also of the retrieved DOM nodes. Therefore, we do not only
consider the main content as text, it can also contain images, video, and other
types of content.

3.1 Precision, recall, and F1 evaluation

To evaluate the precision and recall of our technique, we produced a version of
our Firefox addon that automatically executes our content extraction algorithm
with all the webpages of the benchmark suite. It displays for each benchmark the
recall, precision, and F1 of the retrieved words and the retrieved DOM nodes,
and the total execution time.

The only parameter we needed to determine was the size of the set of web-
pages (the n value of the n-SET) needed by Algorithm 1. In order to develop
our technique and determine the optimum size of the n-SET, we measured the
recall, precision and F1 of the retrieved text words and DOM nodes for different
n-SET sizes.

Table 1 summarizes the results of the performed evaluation experiments, with
a n-SET size from 2 to 8, and with a training set of 15 benchmarks. Each row

! http://users.dsic.upv.es/~jsilva/retrieval/teco/



DOM nodes Words
Size| Recall ‘ Precision ‘Fl Recall ‘ Precision ‘ F1 Runtime

2 76,97 % | 68,15 % | 71,63 %|78,88 % | 72,52 % |74,54 % | 16,32 s.
86,25 % | 85,80 % | 83,53 %[89,24 % | 87,33 % |86,62 % | 23,59 s.
92,02 % | 92,59 % | 90,26 %|95,90 % | 94,76 % |93,71 % | 33,14 s.
85,21 % | 97,91 % | 86,30 %|88,50 % | 99,59 % | 91,61% | 41,31 s.
8521 % | 98,22 % | 86,44 %|88,50 % | 99,91 % |91,76 % | 50,41 s.
8521 % | 98,22 % | 86,44 %|88,50 % | 99,91 % |91,76 % | 59,36 s.
84,80 % | 98,50 % | 86,37 %|88,50 % | 99,91 % |91,76 % | 68,15 .

0 N O U W

Table 1. Determining the optimal size of the n-SET

is the average of repeating all the experiments in the evaluation subset of 15
benchmarks with a different value for n in the n-SET. Column Size represents
the size of the n-SET. In addition, the table shows, for the retrieved DOM nodes
and the retrieved text words, the average Recall, Precision, and F1.

We determined that a set of webpages of size 4 (4-SET) is the best option
because it keeps the best F1 value, both in retrieved DOM nodes (90,26%) and in
retrieved words (93,71%). Table 1 reveals that sets of 2 webpages (2-SET') obtain
low F1 values (around 70%). On the other hand, sets of webpages with 5 or more
webpages obtain similar values of F1. Note that sets of 5 or more webpages do
increase the precision up to almost 100%, but the recall decreases and their F1
values are lower than the F'1 value of the 4-SET. It is also important to highlight
that the size of the set directly affects the performance, because as the size is
increased, more webpages must be loaded, and more ETDM mappings must be
calculated. This is another good reason to select the 4-SET.

In order to evaluate our main content extraction technique, we selected 30
benchmarks from our benchmark suite as the evaluation subset. For the 30
benchmarks, we computed the Recall, Precision, and F1 of the retrieved DOM
nodes and the retrieved words. In addition, we computed the Runtime in seconds.
The results (computed with a 4-SET) are shown in Table 2.

The experiments reveal an average F1 around 88% for retrieved DOM nodes,
and an average F1 over 91% for retrieved words. To the best of our knowledge,
these values are the highest F1 in the state of the art for benchmarks formed
by heterogeneous websites. On the one hand, similar techniques as ours that
also use heterogeneous websites, produce the following results: Insa et al. obtain
an F1 of 74% [11], Gottron et al. 77% [9], and Shanchan et al. 82% [23]. On
the other hand, there are techniques based on evaluating prepared datasets such
as Cleaneval [5], BIG5, MYRIAD40, MSS, etc. Other techniques evaluate RSS
feeds, or prepared websites (collections of automatically generated webpages
that share the same template). These techniques usually obtain high F1 values:
Adam et al. obtain an F1 value of 93% [1], Zhao et al. 88% [15], Pasternack et
al. 95% [16], and Qureshi et al. 94% [17]. Obviously, the comparison of different
techniques should not be done using different datasets, thus, we have compared
the techniques against the same benchmarks suite. Results are shown in Table 3,
and explained in Section 4.



DOM nodes Words

Benchmark Rec. ‘ Prec.‘ F1 Rec.‘ Prec.‘ F1 Runtime
wise2018.connect .rs 100,00 %] 95,63 %] 97,76 %|100,00 %] 98,69 %| 99,33 %| 33,57 s.
www.javiercelaya.es 100,00 %| 84,59 %| 91,65 %|100,00 %|100,00 %|100,00 %| 27,01 s.
www.trendencias . com 99,91 %| 71,18 %)| 83,13 %|100,00 %| 82,29 %| 90,28 %| 189,32 s.
www.turfparadise.com 98,59 %| 92,51 %| 95,45 %|100,00 %|100,00 %|100,00 %| 36,89 s.
wiw. u-tokyo. ac. jp 100,00 %| 92,38 %| 96,04 %|100,00 %|100,00 %|100,00 %| 12,61 s.
www.savethechildren.net 16,67 %(100,00 %| 28,57 %| 21,90 %[100,00 %| 35,93 %| 38,90 s.
college.harvard. edu 100,00 %| 84,29 %| 91,47 %|100,00 %| 88,21 %| 93,74 %| 89,64 s.
Www.raspberrypi.org 100,00 %| 82,94 %| 90,67 %|100,00 %| 86,36 %| 92,68 %| 11,82 s.
www.annmalaspina.com 100,00 %1100,00 %|100,00 %|100,00 %|100,00 %|100,00 %| 10,04 s.
dublin.ie 100,00 %| 94,59 %| 97,22 %|100,00 %|100,00 %|100,00 %| 29,20 s.
WWW.amateurgourmet . com 100,00 %| 90,09 %| 94,79 %|100,00 %| 97,09 %| 98,52 %| 708,39 s.
www.museodelprado.es 98,43 %| 97,67 %| 98,05 %| 99,32 %|100,00 %| 99,66 %| 18,89 s.
wuw.rfet.es 99,90 %| 96,97 %| 98,41 %| 99,73 %| 97,64 %| 98,68 %| 128,88 s.
www.centralparknyc.org 71,23 %| 72,22 %| 71,72 %|100,00 %| 58,59 %| 73,89 %| 121,43 s.
manytools.org 100,00 %| 66,19 %| 79,65 %|100,00 %| 91,49 %| 95,56 %| 32,49 s.
clotheshor. se 100,00 %)| 100,00 %|100,00 %|100,00 %|100,00 %|100,00 %| 7,47 s.
www.unicef.org 100,00 %| 99,48 %| 99,74 %[100,00 %| 97,56 %| 98,77 %| 61,82 s.
www.news-medical.net 99,59 %| 77,71 %| 87,30 %|100,00 %| 88,85 %| 94,09 %| 104,72 s.
teachreal.wordpress.com 99,29 %| 67,57 %| 80,41 %[100,00 %| 90,70 %| 95,12 %| 37,90 s.
www. grandcentralterminal . com|100,00 %| 97,95 %| 98,96 %|100,00 %|100,00 %|100,00 %| 77,00 s.
www.cleanclothes.org 100,00 %| 88,12 %| 93,69 %[100,00 %| 91,94 %| 95,80 %| 58,37 s.
riotimesonline.com 99,74 %| 63,46 %| 77,57 %|100,00 %| 65,90 %| 79,45 %| 140,09 s.
www. ox . ac . uk 96,93 %100,00 %| 98,44 %|100,00 %|100,00 %|100,00 %| 80,31 s.
www. filmaffinity.con 99,80 %|100,00 %| 99,90 %|100,00 %|100,00 %|100,00 %| 72,31 s.
Wi . coiicy.org 97.70 %|100,00 %| 98,84 %| 99,47 %|100,00 %| 99.73 %| 43.38 s.
www.thelawyer.com 91,31 %| 82,66 %| 86,77 %| 94,47 %| 86,92 %| 90,53 %| 281,72 s.
www.toureiffel.paris 95,37 %|100,00 %| 97,63 %| 99,71 %|100,00 %| 99,86 %| 38,55 s.
institute-events.mit.edu 88,76 %| 96,34 %| 92,40 %| 94,35 %|100,00 %| 97,09 %| 83,40 s.
www. w3schools . com 99,76 %|100,00 %| 99,88 %|100,00 %|100,00 %|100,00 %| 734,78 s.
stackoverflow.com 5,97 %| 98,05 %| 11,26 %| 2,76 %| 94,92 %| 5,37 %|1237,59 s.

92,08 %[ 89,53 %[ 87,91 %] 93,72 %[ 93,90 %[ 91,14 %[ 151,62 s.]
83,80 %[ 75,70 %[ 73,54 %] 84,18 %[ 81,41 %] 79,47 %[ 113,68 s.]

‘ Average - using metrics

‘ Average - random pages

Table 2. Evaluation of the precision, recall, F1, and runtime

We also wanted to evaluate the usefulness of the analyses performed in Sec-
tion 2.1. If we select the pages in the n-SET randomly (instead of using the
hyperlink distance and DOM distance metrics), then our technique decreases its
F1 value more than 10% (see the last two rows of Table 2). “using metrics” is the
average when using these metrics, while “random pages” do not use the metrics
and it selects the pages randomly. Experiments reveal that, in retrieved nodes,
the F1 decreases more than about 15%; being about 12% in retrieved words.
Regarding the algorithm runtime, the random selection of pages is 38 seconds
faster (on average).

3.2 Performance evaluation

Column Runtime in Table 2 and Figure 4 show the time needed to extract the
main content from different webpages. 50% of the benchmarks took less than 60
seconds but, as we expected, usually, the larger (in terms of DOM nodes) the
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Fig. 4. Relation between webpage size and runtime

webpages are, the more time the algorithm needs to process them. For larger
webpages (those with thousands of DOM nodes) the algorithm takes minutes. We
observed that the runtime not only depends on the number of DOM nodes of the
website, but it also depends on their structure and features, such as their number
of children, their relative position in the DOM tree, their HTML attributes, etc.
For that reason, the chart in Figure 4 is irregular, and the runtime does not
strictly grow with the number of DOM nodes.

4 Comparison with other algorithms

We wanted to compare our technique with other well-known algorithms ([24,
20,21, 19, 3]). Obviously, it is not possible to compare different content extrac-
tors by just comparing the results reported in the bibliography, because each
report uses a different measure (e.g., words, characters, DOM nodes...) and also
because their evaluations were done with different benchmarks. Unfortunately,
some implementations are proprietary or not available, so we decided to reim-
plement them from scratch. All of them are now available as open-source at:
http://users.dsic.upv.es/~jsilva/retrieval/Web-TemEx/
We compared the performance and accuracy of the following techniques:

SST (2003) [24]: This algorithm introduced a new data structure called Site
Style Tree (SST) to represent a collection of webpages. The SST stores in-
formation about the DOM nodes in the selected set of webpages. The most
repeated nodes or groups of nodes are more likely to belong to the template
of the key page.

RTDM-TD (2006) [20]: This algorithm inputs a set of webpages and com-
pares their DOM trees using a top-down variant of the tree edit distance
(TED) algorithm. The intersection of the DOM trees (the nodes repeated in
all webpages) is considered as the template.
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IWPTD (2008) [21]: This algorithm divides the DOM trees of the webpages
into a set of subtrees whose root nodes are associated with concrete HTML
tags (i.e., TABLE, DIV, UL, etc.). Then, it compares the text segments
inside the subtrees of all the webpages. The text segments that appear in 5
or more webpages are considered template segments. Finally, it computes a
ratio to decide whether a subtree belongs to the template or not.

RBMTD (2009) [19]: This algorithm is similar to RTDM-TD but, in this
case, it uses a bottom-up variant of the tree edit distance (TED) algorithm.
While comparing the DOM trees, it introduces a restriction to classify a
common subtree as template: those subtrees that appear in all webpages
must be exactly in the same position.

TemEx (2015) [3]: This algorithm selects a set of webpages from the website
and uses a mapping between their DOM trees to determine the number of
times a node is repeated across the webpages in the set. A node is considered
to belong to the template if it is repeated in ¢ webpages, being t a threshold
determined empirically.

We extracted the main content from the test set of 30 benchmarks using all
algorithms (see Table 3). Regarding the recall, precision, and F1, the exper-
iments reveal that our algorithm obtains the best F1 values for both, retrieved
DOM nodes and retrieved words. The second best F1 values for both retrieved
DOM nodes and words is achieved by TemEx. RBMTD is a very conservative
algorithm. It achieved 100% recall in all experiments. So, it is a good choice
if retrieving the whole main content is critical. Another interesting observation
is that, in all cases, the F1 values are better if they are measured in retrieved
words instead of retrieved DOM nodes. This means that these algorithms are
more oriented to retrieve text, but they sometimes miss some image or container
(e.g., a DIV or a TABLE) that do belong to the main content. This fact can be
observed because we have used both measures to compare the benchmarks. In
the case of RBMTD this difference is higher than 15%.

Given these results, those systems that need a high Recall should use RBMTD
or RTDM-TD, those systems that need a high Precision should use our algo-
rithm or TemEx, and those systems that need high performance should use
IWPTD.

DOM nodes Words

Algorithm| Rec. ‘ Prec. ‘ F1 Rec. ‘ Prec. ‘ F1 Runtime
SST 66,40 %|42,28 %|48,08 %| 70,25 %|50,22 %|54,25 %|554,26 s.
RTDM-TD 99,81 %|40,74 %|53,64 %[100,00 %|55,25 %|68,72 %| 92,55 s.
IWPTD 68,33 %|62,53 %|61,24 %| 81,19 %|68,87 %|72,55 %| 21,03 s.
RBMTD 100,00 %|44,20 %|56,46 %|100,00 %|58,94 %|71,55 %|151,26 s.
TemEx 97,17 %|76,19 %|82,52 %| 98,59 %(82,17 %|87,97 %| 63,37 s.
Our algorithm 92,08 %|89,53 %|87,91 %| 93,72 %(93,90 %|91,14 %|151,62 s.

Table 3. Empirical evaluation of six web content extraction algorithms
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With respect to the computation time, it is significantly different for each
algorithm. IWPTD is the quickest one, it takes an average of about 21 seconds
per benchmark. In contrast, TemEx takes an average of about one minute per
benchmark. Our algorithm is slow compared to the others, it takes more than
2,5 minutes per benchmark. This is due to the fact that a 4-SET was used in the
configuration (it had to find 4 webpages in the website and compare the key page
with them). Reducing this number to 3 would speed up the algorithm potentially
reducing the runtime around 30% at the cost of 7% F1 (see Table 1). The slowest
algorithm is SST, whose computation time is extremely high compared to the
others, above 9 minutes per benchmark on average.

5 Related work

Besides the techniques explained in the previous section, there are other in-
teresting techniques related to our work. We overview some of them in this
section. Content extraction, template extraction, menu detection, etc. are in-
teresting topics due to their relation to web mining, searching, indexing, and
web development. There are many different approaches that try to face these
problems (see, e.g., [23,10,22,7,11]). Some of these techniques were presented
in the CleanEval competition [5], which proposed a collection of examples to
be analyzed with a gold standard. This collection of examples was prepared for
boilerplate removal and content extraction.

Content Extraction and template extraction are very close disciplines. While

content extraction tries to isolate the main content pagelets? of the webpage,
template extraction tries to isolate the template of the webpage. These disciplines
are considered an instance of a more general discipline called Block Detection,
which tries to detect all pagelets that exist in a webpage. In the area of block
detection, researchers use three main different approaches to solve the problem:
(1) Using the textual information of the webpage (i.e., the HTML code). The
main idea is that the main content on a webpage has more density of text
with less labels. For instance, Ferraresi et al. [8] proposed the main content as
the largest contiguous text area with the least amount of HTML tags. In the
same way, Weninger et al. [22] defined the Content Extraction via Tag Ratios
(CETR). This method analyzes the HTML code and computes a ratio (CETR)
by counting the number of characters and labels inside each label. Kohlschiitter
et al. [14,12] proposed the exploitation of densitometric features based on the
observation of the more common terms in webpage templates.
(2) Using a rendered image of the webpage on the browser. Burget et al. [6]
proposed an approach based on the idea that the main content of a webpage
is often located in the central part and it is often visible without scrolling (see,
e.g., Figure 1). Kohlschiitter et al. [13] concluded that this kind of techniques
are not so widespread as others because rendering webpages for classification is
a computational expensive operation.

2 Bar-Youssef et al. [4] defined a pagelet as a self-contained logical region with a well
defined topic of functionality. Accordingly, webpages are composed of pagelets.
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(3) Using the representation of the webpage as a DOM tree. Bar-Yossef et al.
[4] proposed a method for template detection based on the analysis of the DOM
tree. This approach counts the frequent pagelet item sets. Vieira et al. [20], Yi
et al. [24] and Alarte et al. [3] proposed techniques based on finding common
subtrees in the DOM trees of a set of webpages from the same website. These
common subtrees between webpages of the same website are defined as noisy
information or template. Yi et al. [24] introduced a data structure called Site
Style Tree (SST). The SST summarizes a set of DOM trees of different webpages
of the same website. Every DOM node in the webpages is represented in a single
tree (the SST), and the repeated nodes (those appearing in different webpages)
are identified by using counters in the SST nodes. The most repeated nodes in
the SST (those with highest counter values) are more likely to belong to the
template of the website.

Vieira et al. [20] proposed the use of optimal mappings between DOM trees.
This mapping (RTDM-TD) finds duplicated nodes across webpages from the
same website. RTDM-TD (restricted top-down mapping) algorithm was proposed
by Reis et al.[18].

6 Conclusions

Our work presents a new technique for content extraction from heterogeneous
websites. In contrast to other content extraction techniques, our approach is
based on DOM nodes, and it allows for extracting not only text as main content,
but also images, videos, animations, and other types of content. As it is a site-
level technique, it uses the information of several webpages to extract the main
content. In particular, it analyzes the key page and extracts its hyperlinks. Once
extracted, the hyperlinks are sorted in order to select the webpages that can
provide more information about the main content of the key page. We measured
that a set of 4 webpages (4-SET) obtains the best values of F1 for both, retrieved
DOM nodes and retrieved words. To select the webpages that should be analyzed
we propose the use of two metrics (hyperlink distance and dom distance). The
use of these metrics produce (as an average) an increase of 10% F1. To compare
the DOM nodes of the webpages we use an ETDM mapping. Once the webpages
are compared, we have information about the number of times each DOM node
appears in them. In our algorithms, we consider that a DOM node that only
appears in the key page more likely belongs to its main content. This could
be relaxed. However, we repeated our experiments with other numbers (i.e.,
considering that the key page’s nodes could be repeated 2, 3, or 4 times in other
webpages) and the results were worst in all cases.

The idea of mapping the DOM nodes in order to infer the branch of the DOM
tree that probably contains the main content is simple but effective. Usually, the
main content of a webpage is not repeated on other webpages of the same website,
so identifying the non-repeated nodes can lead us to find the main content.
Moreover, the main content usually concentrates a large amount of information
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that is structurally close. The identification of the main content branch follows
this idea.
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