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Abstract

The granularity level of the traditional program dependence graph (PDG) for composite data structures (tuples, lists,
records, objects, etc.) is inaccurate when slicing their inner elements. We present the constrained-edges PDG (CE-
PDG) that addresses this accuracy problem. The CE-PDG enhances the representation of composite data structures
by decomposing statements into a subgraph that represents the inner elements of the structure, and the inclusion and
propagation of data constraints along the CE-PDG edges allow for accurate slicing of complex data structures. Both
extensions are conservative with respect to the traditional PDG, in the sense that all slicing criteria (and more) that
can be specified in the PDG can be also specified in the CE-PDG, and the slices produced with the CE-PDG are always
smaller or equal to the slices produced by the PDG. An evaluation of our approach shows a reduction in the size of the
slices of around 10%.
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1. Introduction

The Program Dependence Graph (PDG) [1, 2] repre-
sents the statements of a program as a collection of nodes,
and their control and data dependencies as edges. The
PDG is used in program slicing [3, 4], a technique for
program analysis and transformation whose main objec-
tive is to extract from a program the set of statements,
the so-called program slice [5], that affect the values of a
set of variables v at a program point p (⟨p, v⟩), which is
known as the slicing criterion [1]. Program slicing is ap-
plied in many disciplines such as software maintenance [6],
debugging [7], code obfuscation [8], and program special-
ization [9], among others.

The original PDG is not able to handle all the features
that most modern programming languages offer. There-
fore, several extensions and enhancements of the PDG
have been proposed to represent features like arbitrary
control-flow [10, 11]; exception handling [12, 13]; interpro-
cedural behaviour [14, 15]; or concurrency [16, 17]; among
others. Nevertheless, there is still a largely unaddressed
problem that is a source of imprecision and that affects
all programming languages: the slicing of composite data
structures. Finite composite data structures can be at-
omized [18] and then sliced as usual, however, infinite or
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recursive data structures cannot be atomized and slicing
them is therefore imprecise.

In this paper, we propose a general method that solves
the problem of accurately representing and slicing any
composite data structure, even if it is recursive (infinite
data structures can be also sliced) or if it is collapsed
and expanded again (we solve the slicing pattern matching
problem [19], which is explained in Section 2). The key
ideas are (i) to expand the PDG with new nodes to pre-
cisely represent the subexpressions of the data structures,
and (ii) to introduce the concept of constrained edges:
we label the PDG edges with information about the data
structures so that this information can be used at slicing
time to know exactly which edges should be traversed. We
call the new resulting graph the Constrained-Edges PDG
(CE-PDG). Finally, (iii) we provide a new slicing algo-
rithm that takes advantage of constrained edges, limiting
the traversal when necessary, and obtaining more accurate
slices in the presence of composite data structures.

The main goal of our technique is to handle recursive
data structures in combination with pattern matching to
make program slicing field-sensitive in order to improve the
accuracy of slicing programs with composite data struc-
tures.

This paper is an extended version of work [20] pre-
sented at the 20th International Conference on Software
Engineering and Formal Methods (SEFM 2022). In this
version, we extend the technical results with new formal-
izations, theoretical results, and their proofs. Moreover,
we provide extended examples, showing that, e.g., other
state-of-the-art techniques, such as atomization, cannot
solve the addressed problem. The slicing algorithm pro-
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posed has been revised and is more efficient and precise
than the one presented before. All experiments have been
repeated to evaluate the new performance, which has im-
proved by one order of magnitude.

The rest of the paper is structured as follows: Section 2
demonstrates the problems in slicing composite data struc-
tures. Section 3 gives a short introduction to program slic-
ing with basic definitions. Section 4 presents the CE-PDG
and how it is used for slicing. Section 5 presents an im-
plementation and an empirical evaluation of the proposed
technique. It is followed by a discussion of related work
(Section 6) and conclusions (Section 7).

2. Slicing Composite Data Structures

In this section, we show the inaccuracy problems caused
by the traditional PDG when it is used to slice programs
with complex data structures.

It is important to remark that these problems can be
studied and solved at the level of the PDG (i.e., for in-
traprocedural programs). Because we can present the fun-
damental ideas and solutions of field-sensitive slicing at
this level, we omit the more complex representation in the
System Dependence Graph (SDG) [21] (i.e., for interpro-
cedural programs). In this way, we keep the presentation
easier to understand, avoiding the complexity introduced
by the SDG (procedure calls, input/output edges, sum-
mary edges...). Of course, an extension of our work for
the SDG is possible and will increase the precision of our
technique by propagating dependencies throughout proce-
dures.

Example 1 (PDG’s Composite Data structures).
Consider the four fragments of code with different data
structures shown in Figure 1. We are interested in the
values computed at the slicing criterion (the underlined
variable in blue). The only part of the code that can af-
fect the slicing criterion (i.e., the minimal slice) is coloured
in green. Nevertheless, the slice computed with the tradi-
tional PDG contains the whole program in the four cases.

The complexity of these structures, together with the
lack of granularity of the PDG (each node of the PDG
represents a statement) results in a lack of accuracy when
slicing these structures. Slicing algorithms cannot remove
unnecessary inner components of statements using only
the information of the PDG. Unfortunately, this is only
one part of the imprecision, because all variables wrongly
captured by the slice trigger a snowball effect, effectively
including in the slice all the parts of the program that
potentially influence them. For instance, in Figure 1c, in-
cluding in the slice variable arg implies also including in
the slice each expression that is passed as argument to foo.

In some cases, it is possible to solve the situation with
a program transformation [22, 23, 24]. For instance, in
Figure 1a we could replace person = {"John",36}; by:

1 foo() {
2 struct S {
3 string name;
4 int age;
5 };
6 S person = {"John",36};
7 int maxAge = person.age;
8 std::cout << maxAge;
9 }

(a) Records (C++)

1 enum Light {
2 Red = 0,
3 Yellow = 1,
4 Green = 2
5 }
6 void Main() {
7 Light pass = Light.Yellow
8 | Light.Green;
9 Console.WriteLine(pass);

10 }

(b) Enums (C#)

1 void foo(int arg){
2 int[] nums = {2,arg,27};
3 int x = nums[2];
4 System.out.println(x);
5 }

(c) Arrays (Java)

1 class Person:
2 def __init__(self,name,age):
3 self.name = name
4 self.age = age
5 p1 = Person("John", 36)
6 print(p1.age)

(d) Objects (Python)

Figure 1: Slicing composite data structures (slicing criterion under-
lined and blue, minimal slice in green).

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(a) Original Program

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(b) PDG Slice

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(c) Minimal Slice

Figure 2: Slicing Erlang tuples (slicing criterion underlined and blue,
slice in green)

person.name = "John"; person.age = 36;. Or, simi-
larly in Figure 1c, we could replace nums = {2,arg,27};
by nums[0] = 2; nums[1] = arg; nums[2] = 27;. This
transformation, called atomization [18], decomposes data
structures in simpler assignments for each of their com-
ponents. It uses the qualified name person.age or the
indexed array nums[0] as the name of an independent
variable [24]. Note that only finite data structures can be
atomized. An alternative approach uses the AST nodes
of a program as PDG nodes [19]. Unfortunately, despite
solving several problems, these approaches are also impre-
cise because they are unable to resolve the most problem-
atic constructs: recursive (infinite) data types and pattern
matching. Let us illustrate the problem induced by pat-
tern matching with an example.

Example 2 (Pattern matching). Consider the fragment
of Erlang code in Figure 2a, where we are interested in
the values computed at variable C (the slicing criterion is
⟨4, C⟩). The only part of the code that can affect the val-
ues at C (i.e., the minimal slice) is coloured in green in
Figure 2c. Nevertheless, the slice computed with the PDG
(shown in Figure 2b) contains the whole program. This
is again a potential source of more imprecisions outside
this function because it wrongly includes in the slice the
parameters of function foo and, thus, in calls to foo their
arguments and the code in which they depend are also
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ENTER

Z = {[8],A} {[C],D} = Z

Control Edges
Flow Edges

X {A,B} = {X,Y}Y

Figure 3: Erlang program and corresponding PDG.

included.
Consider Figure 3, which represents the PDG of the

code in Figure 2, where the slicing criterion is the node
marked with a bolded border. In the example, a whole
data structure (the tuple {[8],A}) has been collapsed to
a variable (Z) and then expanded again ({[C],D}). There-
fore, the list [C] depends on the list [8]. Nevertheless, the
traditional PDG represents the equality as a whole, mak-
ing [C] flow dependent on Z, and in turn, Z flow depends
on A. Because flow dependence is transitive, slicing the
PDG wrongly infers that C depends on A (A is wrongly
included in the slice for C), and this lack of precision is
propagated to parameter X.

This problem worsens in the presence of recursive data
types. For instance, trees or objects (consider a class A
with a field of type A, which produces a potentially infi-
nite data type) can prevent the slicer from knowing stati-
cally what part of the collapsed structure is needed. Späth
et al. [25, pp. 2–3] present an interesting discussion and
example about this problem.

3. Background: The Program Dependence Graph

This section briefly summarizes the theoretical back-
ground of the PDG that is needed to keep the paper self-
contained. Extended explanations about the applications
of the PDG can be found in program slicing surveys [4, 24,
3]. Readers already familiar with the PDG can skip this
section.

Given a program, two kinds of dependencies can be de-
fined over it to construct the PDG [2]: control dependence
and flow dependence (aka data dependence).

Definition 1 (Control Dependence). Let G be a CFG
(Control-Flow Graph). A node n1 post-dominates a node
n2 in G if all paths in the CFG from n2 to the Exit node
of the CFG traverse n1. Node n1 is control dependent on
node n2 if and only if n1 post-dominates one but not all
of n2’s successors.

Definition 2 (Flow Dependence). A node n2 is flow
dependent on a preceding node n1 if (1) n1 defines a vari-
able x, (2) n2 uses x, and (3) there exists a control-flow
path from n1 to n2 where x is not defined.

Definition 3 (Program Dependence Graph). Given a
procedure p, its Program Dependence Graph (PDG) is a
graph G = (N,E), where there is a node in N to represent
each statement in p; and E is a set of edges that represent
all control and flow dependencies between the nodes in N .

4. Constrained-Edges Program Dependence Graph

This section introduces the CE-PDG, in which the key
idea is to expand all PDG nodes where a composite data
structure is defined or used. This expansion augments
the PDG with a tree representation for composite data
structures. We describe how this structure is generated
and we introduce a new kind of dependence edge used to
build this tree structure. For this, we formally define the
concepts of constraint and constrained edge, describe the
different types of constraint, and how they affect the graph
traversal in the slicing process.

4.1. Extending the PDG
Figure 2b shows that PDGs are not accurate enough

to differentiate the elements of composite structures. For
instance, the whole statement in line 4 is represented by
a single node, so it is not possible to distinguish the data
structure {A,B} nor its internal subexpressions. This can
be solved by transforming the PDG into a CE-PDG. The
transformation consists of three steps.

Step 1. The first step is to decompose all nodes that con-
tain composite data structures so that each component is
represented by an independent node. As in most ASTs,
we represent data structures with a tree-like representa-
tion (similar to the one used in object-oriented programs
to represent objects in calls [26, 27]). The decomposition
of PDG nodes into CE-PDG nodes is straightforward from
the AST. It is a recursive process that unfolds the compos-
ite structure by levels, i.e., if a subelement is another com-
posite structure, it is recursively unfolded until the whole
syntax structure is represented in the tree. The CE-PDG
only unfolds data types to the level they are represented
in the source code, thus unfolding is always finite (unlike
atomization). In contrast to the PDG nodes (which repre-
sent complete statements), the nodes of this tree structure
represent expressions. Therefore, we need a new kind of
edge to connect these intra-statement nodes. We call these
edges structural edges because they represent the syntac-
tical structure of the program.

Definition 4 (Structural Edge). Let G = (N,E) be a
CE-PDG where N is the set of nodes and E is the set of
edges. Given two CE-PDG nodes n, n′ ∈ N , there exists
a structural edge n 99K n′ if and only if:

• n contains a data structure for which n′ is a subcom-
ponent, and

• ∀n′′ ∈ N : n 99K n′ ∧ n′ 99K n′′ → n ̸99K n′′.

Structural edges point to the components of a com-
posite data structure, composing the inner skeleton of its
abstract syntax tree. More precisely, each field in a data
type is represented with a separate node that is connected
to the PDG node that contains the composite data struc-
ture. For instance, the structural edges of the CE-PDG in
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Z = {[8],A} {[C],D} = Z
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Figure 4: CE-PDG of the code in Figure 2.

Figure 4 represent the tuples of the code in Figure 2. The
second condition of the definition enforces the tree struc-
ture as otherwise “transitive” edges could be established.
For example, without the second condition a structural
edge between {[C],D} = Z and C could exist.

Step 2. The second step is to identify the flow dependen-
cies that arise from the decomposition of the data struc-
ture. Clearly, the new nodes can be variables that flow-
depend on other nodes, so we need to identify the flow
dependencies that exist among the new (intra-statement)
nodes. They can be classified according to two different
scenarios: composite data structures being (i) defined and
(ii) used. In Figure 2 we have a definition (line 4), a use
(line 3) and a definition and use in the same node (line 2).
The explicit definition of a whole composite data struc-
ture (e.g., a tuple in the left-hand side of an assignment,
see line 4) always defines every element inside it, so the
values of all subelements depend on the structure that im-
mediately contains them. Hence, the subexpressions de-
pend on the structure being defined (i.e., flow edges follow
the same direction as structural edges. See {[C],D}=Z in
Figure 4). Conversely, the structure being used depends
on its subexpressions (i.e., flow edges follow the opposite
direction than structural edges. See Z={[8],A} in Fig-
ure 4). Additionally, because the decomposition of nodes
augments the precision of the graph, all flow edges that
pointed to original PDG nodes that have been decom-
posed, now point to the corresponding node in the new
tree structure. An example of a flow edge that has been
moved due to the decomposition is the flow edge between
the new A nodes. In the original PDG, this flow edge linked
the nodes {A,B}={X,Y} and Z={[8],A}.

Step 3. The last step to obtain the CE-PDG is labelling
the edges with constraints that are later used during the
slicing phase. The idea is that the slicing algorithm tra-
verses the edges and collects the labels in a stack that is
used to decide what edges should be traversed and what
edges should be ignored. We call the new labelled edges
constrained edges because the labels act as constraints for
the graph traversal.

For the sake of simplicity, and without loss of gener-
ality, we distinguish between tuples and functional (alge-
braic) lists. The position in a tuple is indicated with an

integer, while the position in a list is indicated with head
(H) or tail (T ). The case of objects, records, or any other
structure can be trivially included by just specifying the
position with the name of the field.

Definition 5 (Constraint). A constraint C is a label
defined with the following grammar:

C ::= ∅ | ∗ | Access
Access ::= Tuple | List
Tuple ::= {int | }int
List ::= [Pos | ]Pos

Pos ::= H | T

where int is a positive integer.

The meaning of each kind of constraint is the following:

Empty Constraint (n ∅−→ n′). It specifies that an edge
can always be traversed by the slicing algorithm.

Asterisk Constraint (n ∗−→ n′). It also indicates that an
edge can always be traversed; but it ignores all the
collected restrictions so far, which means that going
forward, the whole data structure is needed. This
kind of constraint is the one used in control and
structural edges, which are traversed ignoring the
previous constraints collected.

Access Constraint (n
opposition−−−−−−→ n′). It indicates that an

element is the position-th component of another data
structure that is a tuple if op=Tuple or a list if
op=List . op also indicates whether the element is
being defined (“{”, “ [”) or used (“}”, “ ]”).

Example 3 (Labeling edges). All edges in Figure 4 are
labelled with constraints. Because B is the second element
being defined in the tuple {A,B}, the constraint of the flow
dependence edge that connects them is {1 . Also, because
8 is the head in the list [8], the constraint of the flow
dependence edge that connects them is ]H .

At this point, the reader can see that the constraints
can be used to accurately slice the program in Figure 2a.
In the CE-PDG (Figure 4), the slicing criterion (C) is the
head of a list (indicated by the constraint [H ), and this
list is the first element of a tuple. When traversing back-
wards the flow dependencies, we do not want the whole Z,
but only the head of its first element (i.e., the cumulated
constraints [H {0 ). Then, when we reach the definition of
Z, we find two flow dependencies ([8] and A). But look-
ing at their constraints, we exactly know that we want to
traverse first }0 and then ]H to reach the 8. So far, no
structural edge is traversed during the slice in the above
example. Structural edges represent the syntactical struc-
ture of composite data structures in trees. Therefore, after
a structural edge has been traversed, no flow edges are al-
lowed to be traversed (note that every structural edge has
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P ::= CO

C ::= }iC | ]pC | RC | ∅C | ∗P | ϵ
R ::= {iR }i | [pR ]p | ∅R | ϵ
O ::= {iO | [pO | RO | ∅O | ∗P | ϵ

(a) Realizable paths grammar

W ::= O ′

O ′ ::= {iO ′ | [pO ′ | ϵ

(b) Stack words

Figure 5: Grammars defining allowed constraints (p ∈ {H,T} and
i ∈ Z).

a corresponding flow edge in the same or opposite direc-
tion). The slice computed in this way is composed of the
grey nodes, and it is exactly the minimal slice in Figure 2c.

The CE-PDG is a generalization of the PDG because
the PDG is a CE-PDG where all edges are labelled with
empty constraints (∅). In contrast, all edges in the CE-
PDG are labelled with different constraints:

• Structural and control edges are always labelled with
asterisk constraints.

• Flow edges for definitions inside a data structure are
labelled with opening ({,[) access constraints.

• Flow edges for uses inside a data structure are la-
belled with closing (},]) access constraints.

• The remaining data edges are labelled with empty
constraints.

The behaviour of access constraints and asterisk con-
straints in the graph traversal is further detailed in the
next section, where we also formalize the slicing algorithm
that performs the traversal of the CE-PDG.

4.2. Constrained traversal
In this section, we show how constraints can improve

the accuracy of the slices computed with the CE-PDG. In
order to represent the paths of the CE-PDG that can be
traversed, we use a grammar. The label of an edge can
be seen as a terminal. Therefore, by traversing the edges
we build words. But not all edges can be traversed; paths
are only realizable when the word induced by the path be-
longs to a language for which the grammar is shown in
Figure 5a. The realizable path grammar is modelled after
the grammars by Reps et al. [28]. In this grammar, P is
the initial symbol, C, R, and O represent sequences that
contain closing, resolved, and opening constraints, respec-
tively. ∅ and ∗ stand for empty and asterisk constraints,
respectively.

The key point of this grammar is resolved constraints.
A resolved constraint is an opening constraint followed by
the complementary closing constraint (e.g., {2 followed by
}2 ). The paths of the CE-PDG that can be traversed are
formed by any combination of closing constraints followed
by opening constraints. Any number of empty constraints

(∅) can be placed along the path. On the other hand,
asterisk constraints (∗) always ignore any constraints al-
ready collected. Therefore, after traversing an asterisk
constraint, the paths that can be traversed are the same
as if no constraint was previously collected. The reason
behind this behaviour is later detailed in Example 6.

Example 4 (Traversing constraints). Consider Figure 4
again and the slicing criterion (C). To compute the slice
we traverse edges backwards, tracing a path from C to 8
formed by the following sequence of constraints: [H{0∅}0]H ,
which can be derived from the grammar in Figure 5a:

P
P→CO−−−−−→ CO

C→ϵ−−−→ O
O→RO−−−−−→ RO

O→ϵ−−−→ R

R→[HR]H−−−−−−−→ [HR]H
R→{0R}0−−−−−−→ [H{0R}0]H

R→∅R−−−−−→ [H{0∅R}0]H
R→ϵ−−−→ [H{0∅}0]H

Opening access constraints can be seen as queries that
can be solved along the path traversal. Let us explain
this view with an example. Consider Figure 2 again and
assume that we are interested in the value of variable A
in line 2. In this case, A is being defined. Since A is in-
side a particular position of the composite structure (po-
sition 0 inside the tuple {A,B}), it can only receive a value
from the same position in an analogue composite struc-
ture. This may happen in the same statement or in any
other previous one. For this reason, we metaphorically
“open” a query to find the value of variable A, and indicate
it with the corresponding structure and position symbols
({0). When we reach the statement level, we notice that
the expression giving value to the whole data structure
is an analogue data structure (the right-hand side of the
equality, tuple {X,Y}). Thus, the expression that gives
value to variable A must be inside this data structure. Be-
cause we are looking for a specific position with an open
query ({0), we can choose the element we are interested in
between the possible ones (X, reachable through }0), “clos-
ing” this query. As a result, we reach a state where the
pending query has been “resolved”, and we can now focus
on another open query, if any. To sum up, with this point
of view, each variable definition contained in a composite
structure is considered as the opening of a flow dependence
query, and each variable use inside an analogous structure
as the closing of this flow dependence query. Then, every
time a query is successfully closed we say that the opened
query has been resolved.

To ensure that only realizable paths are visited, the
slicing algorithm uses a stack to store the word generated
by traversing the CE-PDG. When a node is selected as the
slicing criterion, the algorithm starts from this node with
an empty stack (⊥) and accumulates constraints with each
edge traversed. Only opening constraints impose a restric-
tion on the symbols that can be pushed onto the stack:
when an opening constraint is on the top of the stack, the
only closing constraint accepted to build a realizable word
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Table 1: Processing edges with a stack. x and y are positions (int
or H/T ). ∅ and ∗ are empty and asterisk constraints, respectively.
S is a stack, ⊥ the empty stack.

Input Stack Edge Constraint Output Stack
(1) S ∅ S
(2) S {x or [x S{x or S[x
(3) ⊥ }x or ]x ⊥
(4) S{x or S[x }x or ]x S
(5) S{x or S[x }y or ]y error
(6) S ∗ ⊥

is its complementary closing constraint. Therefore, the
only information necessary to determine whether an edge
can be traversed is the sequence of non-resolved (opening)
constraints at the top of the stack. They form the words
that remain in the stack when a path is traversed (see the
grammar in Figure 5b).

Example 5 (Evolution of the stack). To produce the
derivation shown in Example 4 we start from the slicing
criterion with an empty stack that is filled and emptied
during the traversal:

⊥ [H−→ [H
{0−→ [H{0

∅−→ [H{0
}0−→ [H

]H−→ ⊥

All words in the stack are only formed from opening access
constraints, as defined by the grammar in Figure 5b.

Table 1 shows how the stack is updated in all possi-
ble situations. The constraints are collected or resolved
depending on the last constraint added to the word (the
one at the top of the Input stack) and the new one to
be treated (column Edge Constraint). All cases shown in
Table 1 can be summarized in four different situations:

• Traverse constraint (cases 1 and 3): The edge
is traversed without modifying the stack.

• Collect constraint (case 2): The edge can be
traversed by pushing the edge’s constraint onto the
stack.

• Resolve constraint (cases 4 and 5): There is an
opening constraint at the top of the stack and an
edge with a closing constraint that matches it (case
4), so the edge is traversed by popping the top of the
stack; or they do not match (case 5), so the edge is
not traversed.

• Ignore constraints (case 6): Traversing the edge
empties the stack.

Previous examples have shown the behaviour of access
and empty constraints. Example 6 shows a program in
which asterisk constraints are necessary to select all the
nodes that are needed.

ENTER Control Edges
Flow Edges

if (foo(X))YX = {V,W}

{A,_} = Y

A

A _

{0
{1

Structural Edges

* *

*

* ***

1 bar(X={V,W},Y) ->
2 if (foo(X)) ->
3 {A,_} = Y
4 end,
5 A.

V W
}0

}1* *

Step Start Node Edge Node Reached Stack
0 - - - (5,A) ⊥
1 (5,A) flow ∅ (3,A) ⊥
2 (3,A) flow {0 (3,{A,_} = Y) {0
3a (3,{A,_} = Y) flow ∅ (1,Y) {0
4a (1,Y) control * (1,ENTER) ⊥
3b (3,{A,_} = Y) control * (2, if(foo(X))) ⊥
4b (2, if(foo(X))) flow ∅ (1,X={V,W}) ⊥
5b (1,X={V,W}) flow }0 (1,V) ⊥
5c (1,X={V,W}) flow }1 (1,W) ⊥

Figure 6: Erlang function, associated CE-PDG, and slice step by
step.

Example 6 (The need for asterisk constraints). Consider
the Erlang function and its associated CE-PDG in Fig-
ure 6, where variable A in line 5 is the slicing criterion.
Consider also the table in Figure 6, where the most rel-
evant steps of the backward traversal of the graph are
shown. Each row represents the traversal of one edge,
except the initial row, which represents the selection of
the first node (the slicing criterion). In the table, column
Step represents the number of the current step during the
traversal. Different alternative paths are shown with let-
ters (a,b,c). Columns Start Node and Node Reached
represent the start and end nodes (line,expression) when
traversing the current edge, Edge represents the type and
constraint of the traversed edge; and Stack represents the
stack computed after traversing the edge.

After reaching {A,_} = Y (step 2), the stack contains
the opening constraint {0, and there are two possible paths:
(a) a flow path to the parameter variable Y (step 3a), and
(b) a control path to the if condition (step 3b). Let us
focus on the second path to show the necessity of asterisk
constraints. When we traverse the control edge, all the
constraints stacked due to the traversal of previous flow
edges must be dropped from the stack (case 6 in Table 1).
The reason is simple: when we reach a statement by a
control edge, we are no longer interested in the value of
the uses of variables that the traversal has accumulated
in the stack, but in the value of the variables used in this
controller statement. The fact is that keeping the previ-
ous stack constraints may result in erroneous slices. For
instance, consider a scenario where, if we do not empty the
stack in step 3b, we would reach the X={V,W} statement
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with the stack {0, and the traversal would only reach the
first element of the tuple (V ) traversing }0. Therefore, W
would be never included in the slice because it can only be
reached traversing the constraint }1 that does not match
the constraint of the stack. In contrast, emptying the stack
in step 3b when traversing the control edge forces the slice
to correctly include both V and W . Note also that the
constraint {0 collected in step 2 is not entirely useless. It
is still used in the flow path to Y (we only want the first
component of Y ).

4.3. Subsumed constraints
The inclusion of constraints in the PDG’s edges induces

interesting properties that we can take advantage of. An
important property is that the constraints of some stacks
subsume the constraints of other stacks. The subsumed
constraints can be ignored, thus, improving the efficiency
and the precision in the slicing traversal.

When we reach a node of a data structure with a non-
empty stack, we are explicitly requiring a part of the data
structure represented by the stack. For instance, if we
reach a list with the constraint [T we require the whole tail
of the list, but not the head. Therefore, if we later reach
the same data structure with a stack [H [T , which requires
only the second element of the list (the head of the tail),
we can ignore the second stack because it is subsumed by
the previous one.

In general, the number of cumulated constraints in a
stack when we reach a data structure indicates the depth
where the element that we are searching for is located.

Example 7. Consider the tuple {{{1, 2}, {3, 4}}, {{5, 6},
{7, 8}}}, that we reach with the following four stacks:

⊥: If the stack is empty, we need all the elements of the
data structure.

{0: We need the whole tuple in position 0: {{1, 2}, {3, 4}}.

{1: We need the whole tuple in position 1: {{5, 6}, {7, 8}}.

{1, {0: We need a part of element 0, but not all. We only
need the element in position 1: {3, 4}.

The following inter-relations exist: {0 ⊆ ⊥, {1 ⊆ ⊥, {1, {0
⊆ ⊥, and {1, {0 ⊆ {0.

The above example reveals an important property: if
we reach a node with two different stacks and the first is a
suffix of the second, then the second stack can be ignored.
This relationship imposes an order among stacks.

Definition 6 (Stack ordering). Given two stacks S and
S′, S′ ⊆ S if and only if S is a suffix of S′.

This ordering is a partial order because it is reflexive
(S ⊆ S), antisymmetric (S1 ⊆ S2∧S2 ⊆ S1 ⇐⇒ S1 = S2)
and transitive (S1 ⊆ S2 ∧ S2 ⊆ S3 =⇒ S1 ⊆ S3).

We can use this property to sometimes stop the traver-
sal of the CE-PDG: The traversal is stopped when a node

Algorithm 1 Intraprocedural slicing algorithm for CE-
PDGs
Input: The slicing criterion node nsc .
Output: The set of nodes that compose the slice.

1: function slicingAlgorithmIntra(nsc)
2: slice ← ∅; processed ← ∅
3: workList ← {⟨nsc ,⊥, []⟩}
4: while workList ̸= ∅ do
5: select some state ∈ workList ;
6: newItems = {}
7: ⟨node, stack , traversedEdges⟩ ← state
8: for all edge ∈ getIncomingEdges(node) do
9: ⟨node′, type,_⟩ ← edge

10: if getLastEdgeType(traversedEdges) = structural then
11: if type = flow then
12: continue for all
13: newStack ← processConstraint(stack , edge, traversedEdges)
14: if newStack ̸= error then
15: if ∄(node′, s, t) ∈ processed ∪ workList
16: | s is suffix of newStack then
17: w ← ⟨node′,newStack , traversedEdges ∪ {edge}⟩
18: works ← works ∪ {w}
19: processed ← processed ∪ {state}
20: for all (n, s, t) ∈ works do
21: workList ← workList \ {(n′, s′, t′) ∈ workList |
22: n = n′ ∧ s is suffix of s′}
23: workList ← workList ∪ works
24: slice ← slice ∪ {node}
25: return slice

26: function processConstraint(stack , edge, traversedEdges)
27: ⟨_,_, constraint⟩ ← edge
28: ⟨op, position⟩ ← constraint
29: if constraint = AsteriskConstraint then ▷ Case 6
30: return ⊥
31: if edge ∈ traversedEdges then ▷ Check cycles
32: loop ← findLoop(traversedEdges) ▷ Check loops
33: if loop ̸= error ∧ isIncreasingLoop(loop, edge) then
34: return ⊥ ▷ Inc. loop replaced by * constraint
35: if constraint = EmptyConstraint then ▷ Case 1
36: return stack
37: else if op = { ∨op = [ then ▷ Case 2
38: push(constraint , stack)
39: else if stack = ⊥ then ▷ Case 3
40: return ⊥
41: else if op = } ∧ top(stack) = ⟨{, position⟩ then ▷ Case 4
42: pop(stack)
43: else if op = ] ∧ top(stack) = ⟨[, position⟩ then ▷ Case 4
44: pop(stack)
45: else ▷ Non-matching closing constraint ▷ Case 5
46: return error
47: return stack

is reached with a stack, and this node has been already
reached by another previous stack that is a suffix of the
new one. Note that this includes the case where a stack
is empty because the empty stack is always a suffix of any
other stack. Hence, when a node is traversed with the
empty stack, it must not be traversed again.

4.4. The slicing algorithm
Algorithm 1 illustrates the process to slice the CE-

PDG. It works similarly to the standard algorithm [29],
traversing backwards all edges from the slicing criterion
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and collecting nodes to form the final slice. The algo-
rithm uses a work list with the states that must be pro-
cessed. A state represents the (backward) traversal of an
edge. It includes the node reached, the current stack, and
the sequence of already traversed edges (line 7). In ev-
ery iteration, the algorithm processes one state. First, it
collects all edges that target the current node (function
getIncomingEdges in line 8). If the previously tra-
versed edge is structural, we avoid traversing flow edges
(lines 10–12) and only traverse structural or control depen-
dence edges. The reason for this is that structural edges
are only traversed to collect the structure of a data type so
that the final slice is syntactically correct (for instance, to
collect the tuple to which an element belongs). Flow edges
are not further traversed to avoid collecting irrelevant de-
pendencies of the structural parent. The function pro-
cessConstraint checks the existence of a loop (reaching
an already traversed edge) during the slicing traversal and
implements Table 1 to produce the new stack generated
by traversing the edge to the next node (line 13). If the
edge cannot be traversed according to Table 1 (line 14), or
because the new stack is subsumed (see Section 4.3) by one
in the previously processed states or the work list (line 16),
then the reachable node is ignored. Otherwise, the node is
stored together with the new stack (line 18). Finally, the
state is added to a list of processed states, used to avoid
multiple evaluations of the same state (line 19), the work
list is updated (removing any element that would be sub-
sumed by new items – lines 20–22, and then adding said
items – line 23), and finally the current node is included
in the slice (line 24).

The function processConstraint computes a new
stack for all possible types of constraint, taking into ac-
count Table 1 and Section 4.5 (loop detection and avoid-
ance). It checks first for an asterisk constraint and returns
an empty stack (line 29). Then, the condition in line 31
checks the existence of a cycle (reaching an already tra-
versed edge) during the slicing traversal. The function
findLoop (line 32) returns the shortest suffix of the se-
quence of traversed edges that form the last loop, while
function isIncreasingLoop (line 33), whose rationale is
extensively explained in Section 4.5, consequently empties
the stack when needed. If no dangerous loop is detected,
the function checks for each of the cases in Table 1, pushing
or popping elements from the stack accordingly (lines 35–
47).

Example 8 (Applying Algorithm 1). Consider function
foo in the code of Figure 2a again, the selected slicing cri-
terion (⟨4, C⟩), and its CE-PDG, shown in Figure 4. The
slicing process starts from the node that represents the
slicing criterion (the expanded representation of the CE-
PDG allows us to select C, the bold node, inside the tuple
structure, excluding the rest of the tuple elements). Al-
gorithm 1 starts the traversal of the graph with an empty
stack (⊥). The evolution of the stack after traversing each

flow edge is the following:

⊥ [H−→ [H
{0−→ [H{0

∅−→ [H{0
}0−→ [H

]H−→ ⊥

Due to the traversal limitations imposed by row 5 in Ta-
ble 1, node A is never included in the slice because the
following transition is not possible: [H{0

}1−→ error.
The slicing algorithm will also traverse the structural

edges reaching the traversed nodes and generate new states
in the worklist with empty stacks due to the asterisk con-
straint, however, no flow dependence edge is traversed af-
ter a structural edge (lines 10–12) and therefore despite the
node Z={[8],A} being encountered with an empty stack,
the flow edge to A is not traversed.

As already noted, the resulting slice provided by Algo-
rithm 1 is exactly the minimal slice shown in Figure 2c.

4.5. Dealing with loops
In static slicing we rarely know the values of variables

(they often depend on dynamic information), so we cannot
know how many iterations will be performed in a program
loop1 (see the programs in Figure 7, where the value of
max is unknown). For the sake of completeness, we must
consider any number of iterations, thus program loops are
often seen as potentially infinite. Program loops produce
cycles in the PDG. Fortunately, the traversal of cycles in
the PDG is not a problem, since every node is only vis-
ited once. In contrast, the traversal of a cycle in the CE-
PDG could produce a situation in which the stack grows
infinitely (see Figure 7d2 and its CE-PDG in Figure 9),
generating an infinite number of states. Fortunately, not
all cycles produce this problem:3 To keep the discussion
precise, we need to formally define when a cycle in the
CE-PDG is a loop.

Definition 7 (Loop). A cyclic flow dependence path P =

n1
C1←−− n2 . . .

Cn←−− n1 is a loop if P can be traversed more
than once with an initially empty stack (⊥) following the
rules of Table 1.

Example 9 (Cycles vs. loops). Cycles that are not loops
are not dangerous because the cycle’s edges constraints
prevent us to traverse them infinitely. The code in Fig-
ure 7a contains a cycle that is not a loop because it can
be traversed only once with an empty stack. This can be
observed in Figure 8, where we have the flow dependence

cycle: (6, x)
}0←− (6, a)

∅←− (5, a)
{0←− (5, d)

∅←− (4, d)
{1←−

1Note the careful wording in this section, where we distinguish
between “program loops” (while, for...), “cycles” (paths in the PDG
that repeat a node), and “loops” (repeated sequence of nodes during
the graph traversal).

2It is easier to see how the stack changes by reading the code
backwards from the slicing criterion.

3The interested reader has a developed example for each
kind of loop, which includes their CE-PDGs, in the techni-
cal report at https://mist.dsic.upv.es/techreports/2023/02/
case-studies-field-sensitive.pdf.
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1 read(max);
2 x = init_tuple();
3 for(int i=0; i<max; i++){
4 {e,d} = x;
5 {a,b} = d;
6 x = {a,5};
7 }
8 {c,d} = x;
9 print(c);

(a) A cycle but not a loop

1 read(max);
2 read(b);
3 x = init_tuple();
4 for(int i=0; i<max; i++){
5 a = {x,i};
6 x = {a,b};
7 }
8 {c,d} = x;
9 print(c);

(b) Loop: decreasing stack size

1 read(max);
2 x = init_tuple();
3 for(int i=0; i<max; i++){
4 {a,b} = x;
5 x = {a+i,b+i};
6 }
7 {c,d} = x;
8 print(c);

(c) Loop: same stack size

1 read(max);
2 x = init_tuple();
3 for(int i=0; i<max; i++){
4 {e,d} = x;
5 {a,b} = d;
6 x = {a,b};
7 }
8 {c,d} = x;
9 print(c);

(d) Loop: increasing stack size

Figure 7: Slicing flow-dependence cycles in the CE-PDG (slicing
criterion underlined and blue, slice in green).

ENTER

{c,d} = x

d

{0
{1

Control Edges
Flow Edges

* *

***

read(max);

Structural Edges

x = init_tuple(); int i = 0 i < max

i++

c

*

* * *

{e,d} = x; {a,b} = d; x = {a,5};

*

d

{1* *

e b

{1* *

a 5

* *

a

}1}0{0{0

Figure 8: CE-PDG of Figure 7a. The cycle is represented with bold
red edges.

(4, x)
∅←− (6, x). But this is not a loop because no mat-

ter the stack we enter the cycle with, when {1 is pushed
on the stack, the cycle cannot be entered again, as the }0
constraint cannot be matched against the top of the stack.

There exist three kinds of loops:

1. Loops that decrease the size of the stack in each iter-
ation (Figure 7b) can only produce a finite number
of states because the stack will eventually become
empty. Such loops can be traversed collecting the
elements specified by the stack, without a loss of
precision.

2. Loops that maintain the stack’s size constant in each
iteration (Figure 7c) are also not a problem because
traversing the loop multiple times does not generate
new states. Again, they can be traversed as many
times as required by the stack, without a loss of pre-
cision.

3. Loops that increase the size of the stack in each it-
eration (Figure 7d) produce an infinite number of

Entry

x = init_tuple() i = 0

x = {a,b}

{c,d} = x

c d

a b
Control Edges
Flow Edges

Structural Edges

read(max) i < max print(c)

{a,b} = d

a b

i++

Flow Loop Edges

{e,d} = x

e d

{0 {1{0 {1

{0 {1

}0 }1

Figure 9: CE-PDG of Figure 7d. The increasing loop is represented
with bold red edges.

states because the stack grows infinitely. This can
be observed in the CE-PDG (Figure 9) of the code
in Figure 7d, where we can see the increasing loop:

(6, x)
}1←− (6, b)

∅←− (5, b)
{1←− (5, d)

∅←− (4, d)
{1←−

(4, x)
∅←− (6, x)

We formally define a special kind of loop which is the
only one with potential danger: the increasing loop.

Definition 8 (Increasing loop). A loop L is an increas-
ing loop if the number of opening constraints along L is
greater than the number of closing constraints.

Identifying increasing loops. To detect the increasing
loops (those that can grow the stack infinitely) we have
designed the pushdown automaton (PDA) shown in Fig-
ure 10. The input of this automaton is the sequence of
constraints that form a dependence cycle. The PDA tracks
two stacks (for closing and opening constraints) across two
states. Initial state 0 represents the case where all open-
ing constraints of the sequence are balanced by the corre-
sponding closing constraint. When a closing constraint is
reached, the PDA pushes the constraint into the closing
stack (pushc). When an opening constraint is processed,
the PDA pushes the opening constraint into the opening
stack (pusho) and moves to state 1. Final state 1 represents
the case where an opening constraint has been processed
but not balanced yet. In state 1, when a closing constraint
that matches a previous opening constraint (condition Mo)
is processed, we pop the opening constraint from the stack
(popo). If the popped element of the opening stack is the
last element of the stack (condition Eo), the PDA returns
to state 0. Finally, if a path is accepted by this automaton,
the path forms an increasing loop if and only if:

the reversed stack Sc is a prefix of So and they
are not equal.

The rationale of this condition is that it ensures that, in
each iteration, there are more opening constraints (those in
So) than closing constraints (those in Sc), and all the clos-
ing constraints close some but not all opening constraints
(because they are a prefix), thus the number of opening
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0

start

1

}i, ]i
pushc(i)

{i, [i
pusho(i)

}i, ]i
popo()
Mo ∧ Eo

{i, [i
pusho(i)

}i, ]i
popo()

Mo ∧ ¬Eo

∅ ∅

Mo ≡ top(So) = i
Eo ≡ len(So) = 1

Figure 10: Pushdown automa-
ton to recognize increasing
loops.

state = 0
So = ⊥
Sc = ⊥

state = 0
So = ⊥
Sc = 1

state = 1
So = 1
Sc = 1

state = 1
So = 1, 1
Sc = 1

}1

∅ {1

∅

{1

∅

Figure 11: States produced by
the PDA in Figure 10 with the
word }1∅{1∅{1∅

constraints grows infinitely. Note that asterisk constraints
(*) do not appear in the PDA because they cannot appear
in an increasing loop (an asterisk constraint empties the
stack and thus the same state would be repeated).

Example 10 (Detecting an increasing loop). Consider
the dependence cycle formed from lines 4, 5, and 6 of Fig-
ure 7d (see its CE-PDG in Figure 9): (6, x)

}1←− (6, b)
∅←−

(5, b)
{1←− (5, d)

∅←− (4, d)
{1←− (4, x)

∅←− (6, x), which con-
tains the word: }1∅{1∅{1∅.

Now, if we parse this word with the PDA we produce
the sequence of states shown in Figure 11. The final state
is an accepting state, and the reverse of Sc (1) is a prefix of
So (1, 1) (but they are not equal), so this path corresponds
to an increasing loop. Moreover, the PDA also detects that
this loop adds {1 (the remainder of So once the prefix is
removed) to the stack in every iteration.

More formally, an increasing loop n1
C1←−− n2

C2←−− . . .
Cn←−−

n1 can be identified because C1C2 . . . Cn belongs to the
language induced by the PDA and the two final stacks
computed with the PDA (Sc and So) satisfy that reverse(Sc)
is a prefix of So and reverse(Sc) ̸= So.

Detecting loops. When a loop is detected, the PDA
can determine whether it is increasing. Fortunately, it is
not necessary to preprocess the CE-PDG to detect the
loops. The loops can be detected at slicing time during
the traversal (with Algorithm 1). The strategy proposed
in [20] to detect a loop and prevent traversing it infinitely
was:

1. To traverse the CE-PDG backwards following all the
edges until we traverse the same edge twice.

2. If the same node is reached with the same stack
twice, then the traversal of this node is stopped.

3. Otherwise, use the PDA to determine whether the
loop is increasing.

4. If the loop is increasing, the constraint of the tra-
versed edge is considered as an asterisk constraint
(which empties the stack). This ensures that a loop
is only traversed at most twice (the second time that
the stack is emptied, the state is repeated) and slic-
ing is ensured to terminate.

The new algorithm (Algorithm 1) modifies point 2: the
traversal of a node is stopped if this node has been pre-
viously reached with a stack that is a suffix of the current
stack (see Section 4.3). This change significantly reduces
the number of times that the PDA is triggered as can be
seen in Example 11.

Example 11 (Increased efficiency of Algorithm 1).
Consider the CE-PDG in Figure 13 and let c be the slicing
criterion. A traversal with the approach of [20] is shown
in the following table:

Step Start Node Edge Node Reached Stack
0 - - - c ⊥
1 c flow {0 {c,d}=x {0
2 {c,d}=x flow ∅ x {0
3 x flow {0 {x,a}=b {0{0
4 {x,a}=b flow ∅ b=x {0{0
5 b=x flow ∅ x {0{0
6 x flow {0 ⇝ ∗ {x,a}=b ⊥
7 {x,a}=b flow ∅⇝ ∗ b=x ⊥
8 b=x flow ∅⇝ ∗ x ⊥
9 x flow {0 ⇝ ∗ {x,a}=b ⊥

In step 6, the edge x ← {x, a} = b is visited for the
second time and, thus, the PDA is triggered to determine
whether the loop is increasing, which it is. Therefore, the
edge’s constraint is ignored, and an asterisk constraint is
applied instead (emptying the stack). The same happens
in steps 7, 8, and 9. In step 9, for the first time, a node
{x, a} = b is visited twice with the same stack and, thus,
the traversal terminates.

In contrast, if we use Algorithm 1, steps 6–9 are never
executed; and the PDA is never triggered. This happens
because, in step 5, we visit node x for the second time with
the stack {0{0. The first visit to x (step 2) was done with
the stack {0, which is a suffix of the new stack. Therefore,
the traversal terminates at step 5.

Skipping steps 6–9 also skip the traversal of x = init_tuple()
with the empty stack (see step 7) and subsequent traver-
sals from this node with the empty stack.

Not only the efficiency, but also the precision of Al-
gorithm 1 is augmented with respect to [20]. This is ex-
plained in Example 12.

Example 12 (Increased precision of Algorithm 1).
Continuing Example 11, after step 4, where we reach node
b = x with the stack {0{0, we can exit the loop and reach
node x = init_tuple() with the stack {0{0. This means
that we only want the first element of the first element of
the tuple assigned to x. Nevertheless, with the approach of
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[20], after step 7, we can exit the loop again and reach the
same node (x = init_tuple()) with a different stack (the
empty stack). Unfortunately, this means that we want the
whole tuple, which is clearly imprecise.

Only increasing loops can produce non-termination.
For this reason, Algorithm 1 detects loops (lines 31–32)
and checks whether they are increasing with function isIn-
creastingLoop (line 33). This function uses the PDA
of Figure 10 to determine whether the loop is increasing
and in such a case the stack is emptied (line 34), i.e., the
traversal continues unconstrained.

At this point, the reader might be wondering whether
the PDA is actually needed, because Example 12 showed
that even with an increasing loop, the PDA was not used.
However, with some loops, the PDA is necessary. This is
illustrated in Example 13.

Example 13 (Necessity of the PDA). Consider again
the CE-PDG in Figure 13 and this time let d be the slic-
ing criterion. A traversal with Algorithm 1 is shown in the
following table:

Step Start Node Edge Node Reached Stack
0 - - - (d) ⊥
1 (d) flow {1 ({c,d}=x) {1
2 ({c,d}=x) flow ∅ (x) {1
3 (x) flow {0 ({x,a}=b) {1{0
4 ({x,a}=b) flow ∅ (b=x) {1{0
5 (b=x) flow ∅ (x) {1{0
6 (x) flow {0 ⇝ ∗ ({x,a}=b) ⊥
7 ({x,a}=b) flow ∅⇝ ∗ (b=x) ⊥
8 (b=x) flow ∅⇝ ∗ (x) ⊥
9 (x) flow {0 ⇝ ∗ ({x,a}=b) ⊥

In this case, the algorithm would never stop the traver-
sal because there is never a previous stack that is a suffix
of the current stack. To stop the traversal we need the
PDA. In step 6, we visit for the first time a previously
visited edge (we find a cycle). At this point, the PDA is
triggered and it determines that this is an increasing loop.
Therefore, the PDA forces the change of the loop edges’
constraints to ∗. This makes us stop the traversal at step
9 because the same node ({x, a} = b) is visited twice with
the same stack (⊥) (one is a suffix of the other).

Theorem 1 ensures termination of the whole slicing pro-
cess.

Theorem 1 (Termination of slicing). Let G = (N,E) be
a CE-PDG and let nsc ∈ N be a slicing criterion for G.
Algorithm 1 terminates when it slices G with respect to
nsc.

The proof of this theorem can be found in Section 4.7.
The reader could think that it would be a good idea to

identify all increasing loops at CE-PDG construction time.
Unfortunately, finding all cycles has an average complexity
O(N2EL), where L is the number of cycles. The maxi-
mum number of cycles in a graph is exponential (L = 2N ),

1 ...
2 for(int i=0; i<max; i++){
3 b = x;
4 {x,a} = b;
5 }

(a) Increasing loop

b = x;

{x, a} = b;

b = x;

x = b1;

a = b2;

b1 = x1;

b2 = x2;

x = b1;

a = b2;

b1 = x1;

b2 = x2;

x1 = b11;

x2 = b12;

a = b2;

(b) The first steps of atomization for the increasing loop

Figure 12: Infinite unfolding of atomization.

and thus the worst-case complexity is O(2N ) [30]. Our
approach avoids the problem of finding all loops. We just
treat them on demand, when they are found by the slicing
algorithm (i.e., we do not search for loops, we just find
them during the CE-PDG traversal). So we only process
those loops found in the slicing process; and processing a
loop has a linear cost (in the worst case O(N), if the loop
includes all program statements).

4.6. Recursive data structures: constrained traversal ver-
sus atomization

In this section we show that our technique is not only
an alternative to atomization but a fundamental improve-
ment that solves an important problem that cannot be
solved with atomization. Atomization cannot handle re-
cursive data types such as lists, trees, linked lists (often
implemented via a node that contains a value and a refer-
ence to another node), etc. The fundamental problem is
that atomization would need to infinitely unroll the recur-
sive data type.

Example 14 (Recursive unfolding cannot be atomized).
Consider the program in Figure 12a, in which a recursive
tuple x is unfolded in a loop. The inside of the loop cannot
be atomized, as the loop contains two instructions: b = x
and {x, a} = b. Atomization would convert structures to
multiple assignments. However, the depth of x and thus b
is unknown.

Consider the atomization sequence shown in Figure 12:
A first step (second column) is to split the pattern match-
ing assignment into two separate assignments for x and a.
However, b1 and b2 are not defined, so we must split b’s
assignment. The result (third column) still has undefined
variables (x1 and x2). Defining those would require split-
ting b1 (last column), resulting in a situation analogous to
the first split, starting an infinite loop.

In contrast, the CE-PDG represents each field explic-
itly, performing the unfolding process as many times as
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Figure 13: The CE-PDG for a program (Figure 12a) with recursively
unfolding data structures.

required during the slicing traversal and thus, yielding to
the correct slice, as can be seen in Figure 13.

4.7. Proof of Algorithm 1’s termination
In this section, we prove Theorem 1 by showing that

the traversal of all non-increasing loops is terminating with
any initial stack. And the same happens with all loops
with an asterisk constraint. Because emptying the stack is
equivalent to traversing an asterisk constraint, then emp-
tying the stack of increasing loops is enough to ensure that
their traversal is also terminating with any initial stack.

In Section 4.5 we define loops and increasing loops
(Definitions 7 and 8), the remaining kinds of loops can
be defined in a similar fashion:

Definition 9 (Decreasing loop). A loop L is a decreas-
ing loop if the number of closing constraints along L is
greater than the number of opening constraints.

Definition 10 (Balanced loop). A loop L is a balanced
loop if the number of closing and openings constraints
along L is the same.

It is important to note here that, according to defini-
tions 8, 9, and 10, a loop can only be decreasing, balanced,
or increasing.

We also need to prove some properties of a loop that
are needed to prove the theorem. These properties are
captured by the following lemmas.

Lemma 1. Let L be a non-increasing loop and S be a
stack. The traversal of L with S is terminating.

Proof. Non-increasing loops can be decreasing loops (Defi-
nition 9) or balanced loops (Definition 10). We prove each
case separately.
Decreasing loops. First of all, for any initial stack, a
first traversal of all the edges of L must be possible to ex-
plore this scenario. Otherwise, there cannot be a traversal
loop due to unmatched constraints. Moreover, according
to Definition 9 the path of L contains more closing con-
straints than opening constraints. When slicing the graph,
and before iterating into a decreasing loop, there are two
stack possibilities: the empty stack or a stack with a se-
quence of opening constraints at the top (see Figure 5b):

Empty stack (⊥). Since the constraint in L can be in
any order, we need to consider two different scenar-
ios:

1. There is no suffix of L where the number of
opening constraint is greater than the number
of closing constraints (e.g., [{0, {0, }0, }0, }0]).
Since L is a decreasing loop, in this scenario
we can summarise L as a sequence of n closing
constraints. In this case, according to case 3 of
Table 1, pushing any number j of closing con-
straint to an empty stack results in the empty
stack.

⊥ }i,∀i∈1..j−−−−−−→
∗
⊥ and ⊥ ]i,∀i∈1..j−−−−−→

∗
⊥

Then, the same node is reached twice with the
same stack (⊥) and a second traversal is not
processed as indicated by line 22 in Algorithm 1.

2. There is a suffix of L where the number of open-
ing constraints is greater than the number of
closing constraints (e.g., [}0, }0, {0, {0, }0]). In
this scenario, there are always closing constraints
that are consumed by the initial empty stack
(⊥) according to case 3 of Table 1. On the other
hand, the final part of L pushes more open-
ing constraints than closing constraints and the
stack calculated after the first traversal of the
loop is not empty. As L is a decreasing loop,
all the constraints pushed in the first traversal
are consumed at the beginning of the second
traversal. Finally, the final part of L gener-
ates the same sequence of positive constraints
at finishing the second traversal. Therefore, as
the same node is reached twice with the same
stack, the traversal stops.

⊥ L−→ S
L−→

∗
S

Stack with a sequence of opening constraints ([CO1
,

. . . , COn
]). Cases 4 and 5 of Table 1 represent the

two possibilities that can occur when pushing a clos-
ing constraint to a non-empty stack: the closing con-
straint balances the opening constraint at the top of
the stack or it fails.

• According to case 5, if the closing constraint
does not balance the opening constraint at the
top of the stack, the traversal is aborted by an
error. Hence, the traversal is finite.

[. . . , {i]
}j ,∀i ̸=j−−−−−→ error and [. . . , [i]

]j ,∀i ̸=j−−−−→ error

• On the contrary, case 4 shows that if the clos-
ing constraint balances the opening constraint
at the top of the stack, the constraint is popped
and the traversal continues. Since the num-
ber of elements of the stack is finite (an infi-
nite stack would have been forever growing in
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an increasing loop), popping each opening con-
straint on the top of the stack with a closing
constraint of the loop sequence will result in
an empty stack at some point of the traversal.
Note that this point of the traversal is not nec-
essarily after traversing the whole loop L, but
can be after traversing any intermediate edge
of the loop. As the processing of any decreas-
ing loop L with an empty stack (⊥) has already
been proved terminating, then we can state that
the traversal is finite.

[{1, . . . , {n]
L−→

m

S
L−→

∗
S

Balanced loops. With the same reasoning as in the de-
creasing loops, we differentiate two scenarios according to
the initial form of the stack:

Empty stack (⊥). Since the constraint in L can be in
any order, we need to consider the same two scenar-
ios we did before:

• There is no suffix of L where the number of
opening constraint is greater than the number of
closing constraints (e.g., [{0, {0, }0, }0]). Since
L is a balanced loop, in this scenario we can
summarise L as an empty sequence of constraints.
The result of iterating into a balanced loop of
this type is the same stack, since each itera-
tion of the loop itself balances the opening con-
straints with their complementary closing con-
straints. Hence, the initial node of the graph
will be reached twice with the same stack, and
the traversal will be stopped as indicated by
line 22 in Algorithm 1.

⊥ ∅−→
∗
⊥

• There is a suffix of L where the number of open-
ing constraints is greater than the number of
closing constraints (e.g., [}0, }0, {0, {0]). In this
scenario, there are always closing constraints
that are consumed by the initial empty stack
(⊥) according to case 3 of Table 1. On the other
hand, the final part of L pushes more open-
ing constraints than closing constraints and the
stack calculated after the first traversal of the
loop is not empty. As L is a balanced loop,
all the constraints pushed in the first traversal
are consumed at the beginning of the second
traversal. Finally, the final part of L generates
the same stack when the traversal of L finishes.
Therefore, as the same node is reached twice
with the same stack, the traversal stops.

⊥ L−→ S
L−→

∗
S

Stack with a sequence of opening constraints ([CO1
,

. . . , COn
]). Cases 4 and 5 of Table 1 represent the

two possibilities that can occur when pushing a clos-
ing constraint to a non-empty stack: the closing con-
straint balances the opening constraint at the top of
the stack or it fails.

• According to case 5, if the closing constraint
does not balance the opening constraint at the
top of the stack, the traversal is aborted by an
error. Hence, the traversal is finite.

[. . . , {i]
}j ,∀i ̸=j−−−−−→ error and [. . . , [i]

]j ,∀i ̸=j−−−−→ error

• On the contrary, case 4 shows that if the clos-
ing constraint balances the opening constraint
at the top of the stack, the constraint is popped
and the traversal continues. Since the number
of opening and closing constraints in L is the
same, if any constraint from the stack is con-
sumed by the initial closing constraints it will
be restored later by the corresponding opening
constraint contained in L. Then, the stack ob-
tained after traversing L will be the same. As
a result, since the same node is reached twice
with the same stack, the traversal finishes.

[{1, . . . , {n]
L−→

∗
[{1, . . . , {n]

Finally, note that if we consume every open-
ing constraint during the traversal of the clos-
ing constraints at the beginning of L, we will
find ourselves in the previous scenario where
the stack was empty and, thus, the traversal
finishes too.

Lemma 2. Given a CE-PDG increasing loop L. There
exists a stack S for which it is possible to infinitely traverse
L with S.

Proof. Following the same reasoning that we did in some
particular decreasing loops, each iteration of an increasing
loop can be summarised as a sequence of opening con-
straints of the form [{1, ..., {n] independently of the se-
quence of constraints. Case 2 of Table 1 shows that open-
ing constraints can always be traversed independently of
the top of the stack. For this reason, the loop can be
infinitely traversed generating an infinite stack.

S
{i−→

∗
S ++ [{1, ..., {n, {1, ..., {n, . . . ]

Lemma 3. Given a CE-PDG increasing loop L, a stack
S that allows Algorithm 1 to iterate at least once into it,
and a loop L′ which corresponds to L but replacing any ac-
cess constraint by an asterisk constraint, then L′ is not an
increasing loop and it is not possible to infinitely traverse
L′ with S.

Proof. According to Definition 8, a cyclic flow dependency
path is an increasing loop if the sequence of constraints
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generated by traversing it belongs to the language induced
by the PDA in Figure 10. The PDA cannot reach the final
state if an asterisk constraint exists in L, thus, it cannot be
an increasing loop. Moreover, the traversal of an asterisk
constraint described in case 6 of Table 1 always results in
an empty stack (⊥). Therefore, if an asterisk constraint is
included in an edge of L, then the second time that this
edge is traversed the same node will be reached again with
the same stack (⊥). Therefore, a second traversal is never
done as indicated by line 22 in Algorithm 1.

Finally, we can prove Theorem 1:

Proof. The traversal of any sequence of nodes that is not
a cycle (i.e., that does not represent a loop in the pro-
gram) trivially terminates. Only loops can produce non-
termination in Algorithm 1. But all loops are detected
by the algorithm in line 22. According to Lemma 1, the
traversal of all non-decreasing loops always terminates. On
the other hand, as shown in Lemma 2 increasing loops can
produce non-termination. However, all of them are de-
tected by the PDA in Figure 10. When a increasing loop
is detected by the algorithm the stack is emptied.

We know by case 6 in Table 1 that including an asterisk
constraint in a path is equivalent to emptying the stack.
Therefore, according to Lemma 3 it is not possible to in-
finitely traverse the increasing loops found in the traversal
made by the algorithm. Hence, Algorithm 1 always termi-
nates.

4.8. Properties of the CE-PDG
In this section, we prove two important properties of

the CE-PDG. We prove that it represents an improvement:
slices are equal or smaller in size when compared to the
PDG. We also prove that the slices produced contain all
relevant elements.

Theorem 2 (Precision of the CE-PDG). Let P be a pro-
gram, let G = (N,E) and G′ = (N ′, E′) be their cor-
responding PDG and CE-PDG. Let each edge in E be la-
belled with an empty constraint (∅) and each edge in E′ be
labelled according to Section 4.1. Let sc represent each pos-
sible slicing criterion in the PDG, and slice be a function
that applies Algorithm 1 for the given graph and slicing
criterion.

∀sc ∈ N | slice(G′, sc) ⊆ slice(G, sc)

According to Theorem 2, the slices produced by the
CE-PDG are at least as precise as the ones produced by
the PDG. To prove Theorem 2, we first prove two lemmas:

Lemma 4 (CE-PDG node equivalence). Let G = (N,E)
be a PDG, and G′ = (N ′, E′) be a CE-PDG. Let E′

s ⊂ E′

be the set of structural edges in G′, let E′∗
s be the reflexive

and transitive closure of E′
s and let subtree(n) = {n} ∪

{m | (n,m) ∈ E′∗
s}.

∀n′ ∈ N ′ | ∃!n ∈ N | n′ = n ∨ n′ ∈ subtree(n)

Proof. Trivial, by construction of the CE-PDG. The CE-
PDG has the following two properties:

1. ∀n ∈ N . n ∈ N ′

2. ∀n′ ∈ N ′, n /∈ N . n′ ∈ subtree(n′′), n′′ ∈ N

Additionally, each node in the PDG is unique because each
represents a different statement (even if two statements
have the same code). Therefore, a node can either be
common to both graphs (given 1), or represents a member
of a data structure in a given node (given 2), fulfilling
either the first or the second part of the lemma.

We use Lemma 4 to create a function N :: N ′ → N ,
defined as N (x) = y ∈ N | x = y ∨ x ∈ subtree(y), given
a node from a CE-PDG, returns its matching node in the
corresponding PDG.

Lemma 5 (CE-PDG edge equivalence). Let G = (N,E)
be a PDG, G′ = (N ′, E′) be a CE-PDG, and n′

a, n
′
b ∈ N ′

be two nodes in G′.

∀(n′
a, n

′
b) ∈ E′ | (N (n′

a),N (n′
b)) ∈ E ∨N (n′

a) = N (n′
b)

Proof. The condition will be true if any of the ∨ operands
is true, so we can analyse them separately.

There are two different possibilities for the condition
(N (n′

a),N (n′
b)) ∈ E to hold:

1. The edge exists between the same nodes in the CE-
PDG and in the PDG: n′

a, n
′
b ∈ N .

2. The edge exists in the PDG and its source and/or
target in the CE-PDG points to a data structure
node n′, with n′ /∈ N .

On the other hand, there is one possibility for the condition
N (n′

a) = N (n′
b) to hold:

3. The edge does not exist in the PDG, but connects
a data structure element to its parent or vice-versa,
both nodes represents the same statement n ∈ N ,
with N (n′

a) = n and N (n′
b) = n.

The CE-PDG features three kinds of edges, all of them
backed by one of the previous three cases:

• Control edges (case 1): these edges remain unchanged
in the CE-PDG.

• Flow edges: these can be classified according to their
label (which can be an access or empty constraint).

– Empty constraints (cases 1 and 2): these edges
connect a variable definition to a usage. If the
source and target are not members of a data
structure, they remain unchanged (case 1). Oth-
erwise, the source and/or target points to a data
structure element (case 2).

– Access constraints (case 3): these edges connect
a member of a data structure to its parent or
vice-versa.
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• Structural edges (case 3): these edges connect a node
that contains a data structure to a member of that
data structure.

Thus, all edges present in the CE-PDG either corre-
spond to a edge in the PDG (cases 1 and 2) or represent
a reflexive edge (case 3), which has no effect on program
slicing.

We can now prove Theorem 2:

Proof. The PDG and CE-PDG are equivalent node by
node (Lemma 4) and edge by edge (Lemma 5), so the
slices produced by them would be equivalent. However, the
PDG is labelled only with empty constraints and does not
contain structural edges. For this reason, in some cases,
the constraints present in the CE-PDG (see case 5 in Ta-
ble 1 or line 45 in Algorithm 1) and the combination of
structural and flow edges (lines 10-12 in Algorithm 1) do
not allow the traversal to continue, making CE-PDG slices
smaller. Thus, every slice produced by the CE-PDG will
be equal to or smaller than the equivalent slice produced
by the PDG.

For the next theorem we need to provide a formal def-
inition of complete slice:

Definition 11 (Complete slice). Let P be a program,
G = (N,E) its PDG, and n ∈ N a slicing criterion for P .
A set of nodes S ⊆ N is a complete slice if and only if the
sequence of values produced in the variables of n when P
is executed is a prefix of the sequence of values produced
in n when S is executed.

Lemma 6. Let P be a program. Let G = (N,E) be
the PDG of P , G′ = (N ′, E′) be its corresponding CE-
PDG, and sc ∈ N ′ be a slicing criterion. Not traversing
flow edges after structural edges during the computation of
slice(G′, sc) does not affect the completeness of said slice.

Proof. In the CE-PDG, a structural edge is only traversed
by the slicing algorithm (Algorithm 1) after reaching a
node inside a data structure. This node can either be a
definition or a usage. We prove that the traversal restric-
tion applied to the CE-PDG (Algorithm 1, lines 10-12)
generates complete slices in both situations:

• The reached node (n′ ∈ N ′) is a definition. Let
n = N (n′) be the CE-PDG node with the whole
data structure that contains n′. According to the
CE-PDG construction algorithm (Section 4.1), there
is a path ps from n to n′ formed by structural edges
(labelled with asterisk constraints), but also another
parallel path pf from n to n′ formed by flow edges
(labelled with their associated opening constraints).
Both paths are traversed by Algorithm 1 and both
of them reach the same nodes in the data struc-
ture. If we reach n′ from sc with a stack S and
we traverse ps from n′, then the stack will be emp-
tied (see Table 1, case (6)) with the first structural

edge; thus traversing flow edges after the structural
edges would be done with an empty stack (this would
cause the algorithm to lose the context accumulated
in the stack, which, in turn, would probably lead it
to collect nodes that do not affect the slicing crite-
rion). However, if we traverse pf we will reach the
same nodes in the data structure but with a properly
updated stack S′ (see Table 1, case (2)). Moreover,
Algorithm 1 traverses all flow edges from the nodes
in pf with the proper stacks. Therefore, the traversal
of flow edges (with an empty stack) after traversing
structural edges is unnecessary and can be ignored,
preserving completeness.

• The reached node (n′ ∈ N ′) is a use. Let n =
N (n′) be the CE-PDG node with the whole data
structure that contains n′. According to the CE-
PDG, when n′ is a use, there is only one path ps
from n to n′, formed by structural edges. Travers-
ing ps is only necessary to include in the slice the
hierarchical structure of n′ inside the data structure.
Therefore, there is no need to traverse flow edges
after reaching a node with structural edges because
the value of n′ cannot depend on the nodes reachable
through structural edges. In fact, if the value of n′

depends on a node n0, then there must exist a flow
edge (n0, n

′) in the graph, and this edge is traversed
by Algorithm 1. Thus, the traversal of flow edges
after traversing structural edges is unnecessary and
can be ignored, preserving completeness.

Theorem 3 (Completeness of the CE-PDG). Let P be
a program. Let G be the PDG of P , G′ be its corre-
sponding CE-PDG, and sc ∈ N ′ be a slicing criterion.
If slice(G,N (sc)) is a complete slice, then slice(G′, sc)
is also a complete slice.

Proof. The CE-PDG slicing algorithm contains two traver-
sal limitations compared to the standard PDG slicing al-
gorithm : (i) flow edges are not traversed after a structural
edge is traversed and (ii) the traversal limitation imposed
by access constraints. As proved in Lemma 6, limitation
(i) does not affect completeness. On the other hand, to
prove limitation (ii) we consider all possible situations that
concern the management of access constraints. We divide
them into two different cases:

1. slice(G,N (sc)) does not include any node that
contains a data structure. This case is trivially
proved using Lemmas 4 and 5. The nodes without
data structures and the edges connecting them in
the PDG remain unchanged in the CE-PDG. Then,
during the algorithm, the same edges are traversed
and the same nodes are included in the slice in both
graphs (slice(G,N (sc)) = slice(G′, sc)). Thus,
since the PDG slice is complete, the CE-PDG slice
is also complete.
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2. slice(G,N (sc)) includes at least one node with
a data structure. Inside this case, we consider two
different scenarios:

(i). No element included in the slice has been de-
fined inside a data structure (e.g. {A,B} = X or X
= {A,B}). According to Table 1, only opening con-
straints (associated to definitions inside data struc-
tures) are pushed into the stack (case (2)). Opening
constraints at the top of the stack are the ones that
can limit the traversal during the CE-PDG slicing al-
gorithm (see case (5) in Table 1). However, since no
opening constraint is collected during the traversal
(because all elements included in the slice have been
defined outside a data structure), we reach a scenario
similar to the previous case. The elements outside
data structures are connected by flow and control
dependencies in the same way in both the PDG and
CE-PDG (as stated in Lemma 5 (case 1)). Addition-
ally, since closing constraints can be traversed while
the stack is empty, the elements inside data struc-
tures which are used are also included in the slice,
ensuring the CE-PDG to include the same code as
the PDG. Thus, the PDG and the CE-PDG include
the same code in the slice, resulting in the complete-
ness of the CE-PDG slice.

(ii). At least one element in the slice has been de-
fined inside a data structure (e.g. {A,B} = X). In
this case, an opening constraint is pushed into the
traversal stack, enabling the possibility to limit the
traversal. When slicing the CE-PDG after pushing
one (or more) opening constraints, there are two pos-
sible situations:

(a) No closing constraints are reached during the
same CE-PDG traversal inside the procedure.
In this case the traversal is not limited by the
CE-PDG, and the slice includes only those el-
ements in the data structures that contain the
definitions included, which are reached by flow
dependences. In this case, the CE-PDG makes
possible to exclude the elements defined in the
same data structure that are not reached by
flow edges, which do not influence the slicing
criterion. Thus, slice(G′, sc) ⊆ slice(G,N (sc)),
being both complete.

(b) Other closing constraints are reached during the
same CE-PDG traversal inside the procedure.
We prove this case by induction on the depth d
of the definition inside its data structure. In the
proof, S represents the value of the stack before
reaching this node, Oi represents the opening
constraint with index i, and Ci represents the
closing constraint with the same index i.

(Base case: d = 1). First, in the case where
the definition is at depth level 1, the traver-
sal collects the constraint at the flow edge (Oi)
and pushes it into the stack (S,Oi). When
reaching the data structure with closing con-
straints, only the edge with the complementary
constraint (Ci) is traversed (case (4) in Table 1).
As a result, the element required at the data
structure with uses is the one at the same po-
sition that the one at the data structure with
definitions. Since no more elements are required
to compute the value of the slicing criterion,
and according to the flow dependences defined
at the CE-PDG (which are extracted from the
flow dependences of the PDG), the CE-PDG
slice is complete.

(Induction hypothesis: d = n). We assume as
the induction that completeness holds for defi-
nitions inside data structures located at depth
level n, which generates a sequence of opening
constraints SO.

(Inductive case: d = n+1). We prove that the
theorem holds for any expression with depth
n + 1. When a definition node inside a data
structure at depth n+1 is reached with an ini-
tial stack S, the traversal of the flow edge with
constraint Oj pushes it to the slice resulting
in the stack S,Oj . Then, the traversal reaches
depth n and, according to the induction hy-
pothesis it includes to the stack a sequence of n
opening constraints (SO). As a result the stack
results in the new stack S,Oj , SO. Consider-
ing the induction hypothesis, when the algo-
rithm reaches a data structure that contains a
use, it pops this sequence of constraints reach-
ing depth level n and preserving completeness
(then, the stack becomes S,Oj again). Hence,
we are in the same situation as the base case,
where only the edge with the complementary
constraint (Cj) is traversed according to case
(4) in Table 1, generating a complete slice.

5. Implementation and empirical evaluation

Comparing our implementation against other slicers is
not the best way to assess the proposed stack extension to
the PDG because we would find big differences in the PDG
construction time, slicing time, and slicing precision due
to differences in the libraries used, different treatments for
syntax constructs such as list comprehensions, guards, etc.
Therefore, we would not be able to assess the specific im-
pact of the stack on the slicer’s precision and performance.
The only way to do a fair comparison is to implement a
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single slicer that is able to build and slice the PDG with
and without constraints.

All the algorithms and ideas described in this paper
have been implemented in a slicer for Erlang called e-Knife.
e-Knife can produce slices based on either the PDG or the
CE-PDG. Thus, it allows us to know exactly the addi-
tional cost required to build and traverse the constraints,
and the extra precision obtained by doing so. e-Knife is a
Java program with 13355 LOC (excluding comments and
empty lines). It is an open-source project and is publicly
available4.

Additionally, anyone can slice a program via a web
interface5, without the need to build the project locally.
Large or very complex programs may run into the mem-
ory and time limitations that are in place to avoid abuse.

To evaluate e-Knife, we used Bencher6, a program slic-
ing benchmark suite for Erlang. All the benchmarks were
interprocedural programs, so we have created a new in-
traprocedural version of them (by inlining functions). This
intraprocedural version has been made publicly available
(every benchmark in Bencher has a link to its intrapro-
cedural version). To evaluate the techniques proposed
throughout this work, we have built both graphs (PDG
and CE-PDG) for each of the intraprocedural benchmarks.
Then, we sliced both graphs with respect to all possible
slicing criteria7, which guarantees that there is no bias in
the selection of slicing criteria.

The benchmarks were run on a Intel Xeon E-2136 CPU
running Debian Linux 11 with 32GB of DDR4 RAM avail-
able. All processes were stopped, except for init and sshd.
We strictly followed the methodology proposed by Georges
et al. [31]. Each program’s graph was built 1001 times, and
the graphs were sliced 1001 times per criterion. To ensure
real independence, the first iteration was always discarded
(to avoid the influence of dynamically loading libraries to
physical memory, data persisting in the disk cache, etc.).
From the 1000 remaining iterations, we retained a window
of 10 measurements when steady-state performance was
reached, i.e., once the coefficient of variation (CoV, the
standard deviation divided by the mean) of the 10 itera-
tions falls below a preset threshold of 0.01 or the lowest
CoV if no window reached it. It is with these 10 iterations
that we computed the average time taken by each opera-
tion (building each graph or slicing each graph w.r.t. each
criterion).

The results of the experiments performed are summa-
rized in Table 2. The two columns (PDG, CE-PDG) dis-
play the average time required to build each graph. Build-
ing the CE-PDG, as in the PDG, is a quadratic operation;
and the inclusion of labels in the edges is a linear operation

4https://mist.dsic.upv.es/git/program-slicing/
e-knife-erlang

5https://mist.dsic.upv.es/e-knife-constrained/
6https://mist.dsic.upv.es/bencher/
7Each variable use or definition in all functions that contain com-

plex data structures.

w.r.t. the amount of nodes in the graph. Thus, building
the CE-PDG is only slightly slower than its counterpart.
The other columns are as follows (average values are w.r.t.
all slicing criteria):

DSs: the number of data structure access constraints in
the CE-PDG. It is a metric to measure the amount
and size of the composite data structures.

Function: the name of the function where the slicing cri-
terion is located.

#SCs: the number of slicing criteria in that function.

PDG, CE-PDG: the average time required to slice the
corresponding graph.

Slowdown: the average additional time required (with
95% error margins), when comparing the CE-PDG
with the PDG. For example, on average (last row),
the computation of each slice is 3.54 times slower in
the CE-PDG.

Red. Size: the average reduction in the sizes of slices
(with 95% error margins)8. It is computed as (A −
B)/A where A is the size (number of AST nodes) of
the slice computed with the standard (field-insensiti-
ve) algorithm and B is the size (number of AST
nodes) of the slice computed with the field-sensitive
algorithm (Algorithm 1). This way of measuring the
size of the slices is much more precise and fair. LOC
is not proper because it can ignore the removal of
subexpressions. PDG/CE-PDG nodes is also not a
good solution because the CE-PDG includes nodes
and edges not present in their PDG counterparts,
therefore they are incomparable.

The averages shown at the bottom of the table are the
averages of all slicing criteria and not the averages of each
function’s average.

The first 13 benchmarks (set A) are benchmarks with
complex data structures but without cycles, while the rest
of the benchmarks (set B) do contain cycles. In set A, each
slice produced by the CE-PDG is around four times slower.
However, this has little impact, as each slice consumes just
hundreds of milliseconds. As can be seen in each row, gen-
erating the graph is at least 3 orders of magnitude slower
than slicing it. This increase in time is offset by the aver-
age reduction of the slices, which is 11.27%. This reduction
goes up to 37.14% in function main/1 from bencher1A, as
it contains complex data structures that can be efficiently
sliced with the CE-PDG. Therefore, our technique reduces
the size of the slices by 11.27 ± 2.91% at almost no cost
(only a few µs).

8The minimum value for Red. Size is 0, even if some error margins
hint at otherwise. The slices produced by the PDG can never be
smaller than those produced by the CE-PDG.
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Table 2: Summary of experimental results for Bencher, comparing the PDG (without constraints) to the CE-PDG (with constraints).

Graph Generation Slice
Program PDG CE-PDG DSs Function #SCs PDG CE-PDG Slowdown Red. Size

bench1A.erl 3230.08ms 3233.42ms 515

getLast/2 26 59.12µs 269.26µs 5.68± 1.38 14.88± 3.16%
getNext/3 174 228.10µs 1014.41µs 4.62± 0.29 13.09± 1.57%
getStringDate/1 11 22.56µs 164.10µs 8.62± 2.05 8.67± 3.88%
main/1 57 800.96µs 1644.59µs 2.21± 0.20 37.14± 6.97%

bench3A.erl 37.53ms 37.54ms 4 tuples/2 22 30.36µs 100.91µs 3.36± 0.20 5.46± 2.03%
bench4A.erl 53.22ms 53.26ms 20 main/2 31 64.19µs 163.78µs 2.65± 0.19 20.79± 5.38%
bench5A.erl 32.87ms 32.90ms 8 lists/2 18 44.67µs 136.81µs 3.12± 0.17 6.51± 2.02%

bench6A.erl 236.33ms 236.42ms 37 ft/2 34 65.87µs 249.55µs 4.11± 0.28 8.71± 2.45%
ht/2 16 20.37µs 77.71µs 4.07± 0.25 10.79± 3.69%

bench9A.erl 117.30ms 117.45ms 16 main/2 18 136.84µs 210.77µs 1.47± 0.07 1.38± 1.04%
bench11A.erl 15.10ms 15.13ms 6 lists/2 16 35.92µs 108.67µs 2.92± 0.33 6.47± 2.15%

bench12A.erl 1042.13ms 1042.94ms 103

add/4 26 78.11µs 273.66µs 5.02± 1.13 15.38± 4.13%
from_ternary/2 9 17.28µs 86.14µs 6.18± 1.84 3.56± 2.61%
main/3 39 75.28µs 196.66µs 4.02± 0.79 8.43± 6.19%
mul/3 21 41.43µs 143.00µs 4.95± 1.17 2.74± 1.27%
to_ternary/2 13 57.37µs 126.01µs 4.13± 1.91 1.02± 1.32%

bench14A.erl 2300.65ms 2301.05ms 75 main/2 81 73.50µs 284.47µs 3.89± 0.34 8.62± 2.46%
bench15A.erl 1182.25ms 1182.66ms 44 main/4 71 165.03µs 268.53µs 3.84± 0.75 1.72± 1.53%
bench16A.erl 159.12ms 159.26ms 16 word_count/5 36 59.85µs 130.93µs 2.67± 0.23 7.72± 2.68%
bench17A.erl 44.94ms 45.05ms 8 mug/3 19 41.23µs 92.11µs 2.43± 0.22 5.59± 3.02%
bench18A.erl 49.41ms 49.52ms 8 mbe/2 19 58.36µs 117.12µs 2.28± 0.23 7.38± 4.59%

Totals and averages for set A 757 164.67µs 491.93µs 3.88± 0.50 11.27±2.91%
bench1B.erl 2640.65ms 2643.99ms 493 main/1 273 1538.26µs 6648.83µs 4.24± 0.23 24.02± 1.93%
bench2B.erl 73.61ms 73.62ms 2 main/2 17 79.86µs 168.92µs 3.07± 0.70 0.43± 0.58%
bench3B.erl 35.16ms 35.17ms 4 tuples/2 18 51.44µs 133.12µs 2.57± 0.07 4.33± 1.21%
bench4B.erl 26.49ms 26.52ms 20 main/2 39 89.57µs 240.93µs 2.66± 0.17 13.11± 3.79%
bench5B.erl 18.31ms 18.34ms 8 lists/2 11 54.50µs 136.21µs 2.50± 0.10 6.88± 0.85%
bench6B.erl 54.35ms 54.42ms 25 tuples/2 42 46.94µs 129.73µs 3.01± 0.22 8.25± 1.62%
bench8B.erl 87.29ms 87.39ms 16 main/2 42 204.09µs 607.50µs 3.06± 0.18 0.73± 0.68%
bench9B.erl 34.89ms 34.95ms 10 main/2 17 187.93µs 294.62µs 1.51± 0.06 1.16± 0.85%
bench10B.erl 97.22ms 97.39ms 18 main/1 35 263.35µs 656.71µs 2.85± 0.26 2.23± 1.15%
bench11B.erl 12.95ms 12.98ms 8 lists/2 13 45.68µs 118.99µs 2.56± 0.13 8.02± 2.08%
bench12B.erl 294.70ms 295.25ms 79 main/3 88 917.43µs 2692.51µs 3.23± 0.40 2.61± 2.67%
bench13B.erl 27.08ms 27.11ms 4 main/0 22 135.10µs 253.26µs 1.92± 0.11 0.48± 0.39%
bench14B.erl 147.19ms 147.48ms 49 main/2 51 112.06µs 371.92µs 3.21± 0.44 13.34± 4.49%
bench15B.erl 217.26ms 217.49ms 38 main/4 65 286.95µs 495.93µs 2.70± 0.41 8.78± 2.84%
bench16B.erl 102.53ms 102.62ms 16 word_count/5 40 131.26µs 349.56µs 3.11± 0.26 4.14± 1.53%
bench17B.erl 57.63ms 57.64ms 8 mug/3 19 166.01µs 352.78µs 2.11± 0.09 4.96± 2.38%
bench18B.erl 62.95ms 63.03ms 8 mbe/2 19 273.12µs 629.87µs 2.34± 0.11 0.05± 0.10%

Totals and averages for set B 811 704.73µs 2735.10µs 3.30± 0.26 11.79±2.05%
Totals and averages 1568 444.00µs 1652.14µs 3.54± 0.38 11.54±2.47%

If we consider programs with cycles (set B), due to the
analysis of loops, the slowdown is around three to four
times slower (the slowdown is 3.30) and the reduction in
the size of the slices is 11.79 ± 2.05. If we consider all
benchmarks, our technique reduces the size of the slices
by 11.54% with a slowdown of 3.54. This is a good result:
for many applications (e.g., debugging) reducing the sus-
picious code over 11.54% with the cost of increasing the
slicing time by only a few milliseconds is a good trade-off
to make.

Regarding the effect of data structures on the results,
we can see that benchmarks with more data structures
have the potential to produce more precise slices with the
CE-PDG.

5.1. Slicing larger programs
Although Bencher is useful because it contains chal-

lenging slicing programs specifically designed to test pro-
gram slicers, and because it helps determine whether a
slicer is complete by comparing the slices produced by
a given implementation against a known minimal slice.
However, the size of its benchmarks is rather small, with
files ranging from 12 to 114 LOC. To test the efficiency of
the CE-PDG on larger programs with more complex func-
tions, we have performed an experimental evaluation of the
erlsom Erlang library, which implements an XML parser9.
This library contains 13k LOC across 22 source files. The
evaluation followed the same methodology and process as
Bencher’s evaluation, generating over 4k graphs and ana-
lysing over 35 million slices. The results can be seen on
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Table 3: Summary of experimental results for the erlsom library, comparing PDG to the CE-PDG.

Graph Generation Slice
Program LOC PDG CE-PDG DSs #SCs PDG CE-PDG Slowdown Red. Size

erlsom.erl 182 0.279s 0.280s 100 172 29.48ms 49.69ms 1.68 ± 0.55 5.85± 8.17%
erlsom_add.erl 28 0.224s 0.224s 34 60 46.87ms 81.74ms 1.69 ± 0.84 4.23± 12.19%
erlsom_compile.erl 693 25.662s 25.665s 1002 1335 57.09ms 102.70ms 1.71 ± 0.58 7.00± 10.72%
erlsom_example_value.erl 270 1.515s 1.518s 299 349 35.59ms 49.64ms 1.51 ± 0.78 11.31± 12.18%
erlsom_lib.erl 939 6.729s 6.736s 754 881 87.35ms 159.15ms 1.67 ± 0.66 11.41± 8.81%
erlsom_parse.erl 893 84.991s 84.995s 891 1224 134.94ms 232.84ms 1.67 ± 0.48 14.21± 7.62%
erlsom_parseXsd.erl 504 52.615s 52.629s 1608 50 20.00ms 34.38ms 1.65 ± 0.39 0.24± 3.67%
erlsom_pass2.erl 605 15.463s 15.467s 695 1166 52.07ms 81.51ms 1.60 ± 0.59 10.47± 9.81%
erlsom_sax.erl 74 0.818s 0.818s 60 111 44.70ms 71.36ms 1.59 ± 0.63 6.96± 9.04%
erlsom_sax_latin1.erl 1140 18.396s 18.401s 733 1564 54.80ms 96.75ms 1.69 ± 0.68 9.69± 9.35%
erlsom_sax_latin9.erl 1140 18.527s 18.532s 734 1559 55.02ms 96.84ms 1.69 ± 0.68 9.84± 9.46%
erlsom_sax_lib.erl 160 0.591s 0.593s 272 261 43.76ms 92.83ms 1.97 ± 0.61 9.00± 7.38%
erlsom_sax_list.erl 1140 18.703s 18.711s 1249 1806 60.69ms 135.42ms 1.91 ± 1.64 10.77± 8.09%
erlsom_sax_utf8.erl 1140 21.556s 21.561s 736 1600 56.13ms 98.26ms 1.69 ± 0.68 9.51± 9.42%
erlsom_sax_utf16be.erl 1140 21.521s 21.526s 736 1600 55.80ms 97.75ms 1.68 ± 0.68 9.51± 9.42%
erlsom_sax_utf16le.erl 1140 20.414s 20.420s 748 1664 66.19ms 109.91ms 1.66 ± 0.68 9.21± 9.42%
erlsom_simple_form.erl 126 2.589s 2.590s 201 201 48.19ms 71.45ms 1.39 ± 0.83 15.36± 9.50%
erlsom_type2xsd.erl 190 1.831s 1.832s 289 324 84.39ms 300.61ms 2.17 ± 1.66 9.29± 8.00%
erlsom_ucs.erl 158 3.356s 3.358s 222 309 94.11ms 130.81ms 1.43 ± 0.58 12.02± 9.20%
erlsom_write.erl 606 16.591s 16.598s 719 1010 118.65ms 207.84ms 1.66 ± 0.64 11.51± 9.14%
erlsom_writeHrl.erl 240 1.446s 1.447s 201 294 46.68ms 73.63ms 1.51 ± 0.87 14.16± 12.53%
ucs.erl 351 4.075s 4.078s 211 351 53.06ms 65.13ms 1.30 ± 0.61 13.90± 12.52%

Totals and averages 12859 15.359s 15.363s 12494 17891 67.37ms 121.40ms 1.69 ± 0.88 10.24± 9.45%

Table 3, which is structured like Table 2.
From the graph generation columns, we can see that

the cost of building the CE-PDG is almost equal to the
cost of building the PDG. As already known, the cost
scales with program size, with the average growing around
three orders of magnitude (from milliseconds to seconds)
with respect to Bencher, reaching a maximum of 85s. Any
improvement on the algorithms used to compute the PDG
would benefit the CE-PDG.

Regarding the time needed to slice the CE-PDG, it also
grows three orders of magnitude with respect to Bencher,
due to size. On the bright side, the increase in the size of
the programs lowers the relative speed of the graphs. In
Bencher, the CE-PDG was 3 times slower than the PDG
and, in this case, the slowdown is much lower (1.69), which
may indicate that this technique scales well with size.

Finally, the reduction in slice size is much more stable
in erlsom than in Bencher, achieving an average of 10.24%,
with a maximum of 15% in erlsom_simple_form.erl.
However, these results have a much higher variance, prob-
ably due to a higher variance in the size of slices. In con-
clusion, in larger programs we achieve a reduction in the
size of the slices of 10.24% at the cost of having a slow-
down of 1.79 to produce slices. This slowdown is 50 ms on
average.

9The exact version used corresponds to commit hash
e00d2c7426fe7a8c49f8959da38a11d21b8b2168, and is available
for download at https://github.com/willemdj/erlsom/archive/
e00d2c7.zip.

6. Related work

Transitive data dependence analysis has been exten-
sively studied [28, 32]. Less attention has received, how-
ever, the problem of field-sensitive data dependence anal-
ysis [33, 18, 34, 25]. The existing approaches can be classi-
fied into two groups: those that treat composite structures
as a whole [35, 1, 36, 33], and those that decompose them
into small atomic data types [23, 37, 24, 38, 18, 39, 40, 41].
The latter approach is often called atomization or scalar
replacement, and it basically consists of a program trans-
formation that recursively disassembles composite struc-
tures to their primitive components. However, slicing over
the decomposed structures usually uses traditional depen-
dence graph based traversal [39, 40, 41] which limits the
accuracy. Other important approaches for field-sensitive
data dependence analysis of this kind are [34, 25, 33].
Litvak et al. [33] proposed a field-sensitive program de-
pendence analysis that identifies dependencies by comput-
ing the memory ranges written/read by definitions/uses.
Späth et al. [25] proposed the use of pushdown systems to
encode and solve field accesses and uses. Snelting et al. [42]
present an approach to identify constraints over paths in
dependence graphs. Our approach combines atomization
with the addition of constraints checked by pushdown sys-
tems to improve the accuracy of slicing composite data
structures.

There exist approaches for the field-sensitive slicing of
some specific data structures. If we refer to arrays, some
static proposals consider the whole array as a variable, and
each access as a definition or use of that variable [35]. How-
ever, this technique produces complete, but unnecessarily
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large program slices [24]. The PDG variant of Ottenstein
and Ottenstein [1] represents composite data types provid-
ing a node for each one of its subexpressions, and provides
special select and update operators to access the elements
of an array. Other static approaches rely on determining
whether two statically unknown vector accesses can re-
fer to the same memory location during runtime [43, 44].
Some papers [45, 46, 47] propose algorithms that demon-
strate the absence of a flow dependence between array ac-
cesses under certain conditions.

Some approaches [48, 41] have been also proposed to
accurately represent the inner structure of objects and the
dependencies between their data members. Most object-
oriented approaches [26, 27, 41, 49] are based on the same
principle: object variables and their inner data members
are unfolded in a tree-like representation when used at
function calls. This allows for the generation of dependen-
cies between data members of a particular object and to
accurately slice off those data members of an object that
are not affecting the slicing criterion. Our representation
is inspired by this tree-like structure, but with some dif-
ferences. In our representation, the tree structure is con-
nected with a new kind of edges (structural edges) instead
of control edges. This allows us to apply a different slic-
ing behaviour for structural edges without interfering in
the traversal restrictions given to control edges in some
slicing algorithms [50]. Additionally, our tree structure
is connected not only with structural edges but also with
flow edges; providing a more realistic representation of the
dependencies between a composite structure and all its el-
ements.

Severals works have tried to adapt the PDG for func-
tional languages dealing with tuple structures in the pro-
cess [51, 52, 53, 34]. Some of them with a high abstrac-
tion level [54], and other ones with a low granularity level.
Silva et al. [19] propose a new graph representation for the
sequential part of Erlang called the Erlang Dependence
Graph. Their graph, despite being built with the minimum
possible granularity (each node in the graph corresponds
to an AST node) and being able to select subelements of
a given composite data structure, does not have a mech-
anism to preserve the dependency of the tuple elements
when a tuple is collapsed into a variable; i.e., they do not
solve the slicing pattern matching problem (for instance,
they cannot solve the program in Figure 2). In contrast,
although our graph is only fine-grained at composite data
structures, we overcome their limitations by introducing
an additional component to the graph, the constrained
edges, which allow us to carry the dependence information
between definition and use even if the composite structure
is collapsed in the process.

7. Conclusion

Static analyses often use a representation of the pro-
gram being analyzed, and this representation strongly in-
fluences their correctness, completeness, and performance.

In the particular case of intraprocedural program slicing,
the standard representation used is the PDG. Unfortu-
nately, the PDG’s data dependencies are imprecise when
modelling composite data structures. In particular, the
information stored in the nodes of the PDG (i.e., state-
ments) is often inappropriate when representing composite
data structures.

To solve this problem, we present a generalization of
the PDG called CE-PDG where (i) the inner components
of the composite data structures are unfolded into a tree-
like representation, providing an independent representa-
tion for their subexpressions and allowing us to accurately
define intra-statement data dependencies, and (ii) the edges
are augmented with constraints (constrained edges), which
allows the propagation of the component dependence in-
formation through the traversal of the graph during the
slicing process. As a result, the CE-PDG allows the user
to select any subexpression of a data structure as the slic-
ing criterion and it computes accurate slices for (recursive)
composite data structures. It ignores irrelevant elements
inside the same statement and allows for the transference
of data dependence information through the compression
and expansion of composite structures. An evaluation of
our approach shows a slowdown of 3.88/3.30 and a re-
duction of the slices of 11.27%/11.79% for programs with-
out/with cycles.
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