
A DECISION SUPPORT SYSTEM (DSS) FOR
THE RAILWAY SCHEDULING PROBLEM∗

L. Ingolotti1, P. Tormos2 , A. Lova 2, F. Barber 1, M.A. Salido 3 and
M. Abril1
1DSIC, Universidad Politecnica de Valencia,Spain; 2DEIOAC, Universidad Politecnica
de Valencia, Spain; 3 DCCIA, Universidad de Alicante, Spain

Abstract The recent deregulation occurred in the public railway sector in many
parts of the world has increased the awareness of this sector of the need
for quality service that must be o�ered to its customers. In this paper,
we present a software system for solving and plotting the Single-Track
Railway Scheduling Problem e�ciently and quickly. The problem is
formulated as a Constraint Satisfaction Problem (CSP), which must
be optimized. The solving process uses di�erent stages to translate
the problem into mathematical models, which are solved to optimality
by means of mixed integer programming tools. The Decision Support
System (DSS) we present allows the user to interactively specify the
parameters of the problem, guarantees that constraints are satis�ed and
plots the optimized timetable obtained.

Keywords: Planning and Scheduling, Railway Scheduling Problems, Industrial Ap-
plication of AI

1. INTRODUCTION
The recent deregulation in the public railway sector in many parts

of the world has increased the awareness of this sector of the need for
quality service that must be o�ered to its customers. Under pressure
for improvement, computer tools have been developed to help planners
do their work more e�ciently and quickly. In this context, the timeta-
ble planning plays a fundamental role in the management and operation
of a public transport system. Nowadays, software tools o�er e�ective
support for the construction of schedules. Many of the proposed tools
are of the form of an interactive what-if application, in which the goal
is to obtain feasible solutions quickly rather than obtaining an optimi-

∗This work has been supported by a join contract RENFE-UC/UPV

2

zed solution. Information on network topology, engine properties as well
as user requirements are stored in databases. Graphical user interfaces
allow schedule planners to build and edit schedules interactively based
on time space diagrams that contain lines representing trains serving
each route. However, the automatic generation of feasible schedules still
remains too time-consuming. In particular, currently implemented algo-
rithms are still too slow for networks of real-world size. In fact, existing
software tools such as HASTUS, FBS, BERTA, MICROBUS, VISUM
ÖV 7.0, ptv interplan, and solutions by TLC GmbH, Berlin, D are limi-
ted to only modifying an already existing timetable [4]. Although the
use of such tools can be valuable, a train scheduling tool that is also
capable of �nding optimal solutions for the problem within a reasonable
computational time is equally desired.

In this paper, a computer tool that is able to obtain optimized rai-
lway running maps1 is presented. The running map will contain infor-
mation regarding the topology of the network and the schedules of the
trains; that is, arrival and departure times of trains at each station, fre-
quency, stops, etc. The resulting optimized running map combines user
requirements and deals with a wide variety of the complex constraints
encountered in practical train scheduling.

2. THE TRAIN SCHEDULING PROBLEM
Planning of train schedules is a part of the general planning process of

tra�c systems and is traditionally broken down into several stages that
have to be completed before a train schedule can be created. These sta-
ges are: Network Planning, Line Planning, Train Schedule Planning and
Stock and Crew Planning. Planning rail tra�c problems are basically
optimization problems that are computationally di�cult to solve as they
belong to the NP-hard class of problems. Hence, e�orts in the develop-
ment of new, powerful, exact and heuristic algorithms are justi�ed. The
models and methods applied to solve these problems have been analyzed
in [1], [3].

The majority of the papers published in the area of periodic time-
tabling in the last decade are based on the Periodic Event Scheduling
Problem (PESP) introduced by [9]. Schrijver and Steenbeek in [8] deve-
loped a constraint programming based solver called CADANS to solve
the feasibility problem. Nachtigall was the �rst to consider the objective
function to be to minimize the passenger waiting time [5]. In [6] they

1We consider a running map as an association between trains and the arrival and departure
times at/from each location in their paths.

A Decision Support System (DSS for the Railway Scheduling Problem) 3

developed a genetic algorithm to solve the problem in a context with
two criteria taking into account investments in infrastructure over im-
provements in passenger waiting time. Odijk in [7] developed a cutting
plane algorithm to solve the feasibility problem. His objective was to qui-
ckly generate a set of feasible timetables in order to be able to evaluate
infrastructure projects. Recently, Caprara, Fischetti and Toth have pro-
posed a graph formulation for the problem using a directed multigraph
in which nodes correspond to departures/arrivals at a certain station at
a given time instant [2]. This formulation is used to derive an integer
linear programming model that is relaxed in a Lagrangian way. In their
formulation, the objective is to maximize the sum of the bene�ts based
on the di�erences between actual traversal times and ideal timetables, of
the scheduled trains.

� �
� �

� �

� �
� �

��� 	�
�� �� ����� � ��� ��� � ���� ��� � � � � � � � � � � � � � � �

� ����

 "!

� �#�" $!

Figure 1. Each oblique line represents the position of a train depending on the time
(axis x).

3. DESCRIPTION OF A SINGLE-TRACK
RAILWAY SCHEDULING PROBLEM
(STRSP)

Consider a STRSP problem de�ned by:
1 a set of ordered locations L={l0,l1,...,lm} that must be visited by

each train. Each li is a place to stay or pass through. A pair of
adjacent locations is joined by a single-way track.

2 a set of trains for each direction (TD and TU). Given the sequence
of locations L, TD={t0,t2,...,td} visits the locations in the order
given by the sequence (down direction), and TU={t1,t3,...,tu} visits
the locations in the opposite order (up direction). The variable ti
represents the ith train that starts the journey in a given direction
(see Figure 1).

3 a journey for trains TU and TD in L speci�es the traversal time for
each section of track and each direction in L (Ri→i+1 and Ri→i−1),
and the minimum stop time (Si) for commercial purposes in each
li.

4

Considering tydep lx and tyarriv lx as the departure and arrival times
of train ty from/at location lx, the STRSP consists in �nding the optimal
running map (with minimum average traversal time) that satis�es all the
following constraints2:

Time Intervals to start the journey by the �rst train in each direc-
tion, [minD,maxD] and [minU ,maxU],
minD ≤ t0dep l0 ≤ maxD ∧minU ≤ t1dep lm ≤ maxU

Frequency Constraint speci�es the period (FU/FD) between de-
partures of two consecutive trains in each direction at the same
location,
{∀ti, lk/ti ∈ TD −{td} ∧ lk ∈ L−{lm}}, ti+1dep lk = tidep lk + FD

{∀ti, lk/ti ∈ TU − {tu} ∧ lk ∈ L− {l0}}, ti+1dep lk = tidep lk + FU

Stopover Constraint: a train must stay in a location lk at least Sk

time units,
{∀ti, lk/ti ∈ TD∪TU ∧ lk ∈ L−{lm+ l0}}, tidep lk ≤ tiarriv lk +Sk

Exclusiveness Constraint: a single-way section of track must be
occupied by only one train at the same time,
{∀tj , ti, lk/tj ∈ TD ∧ ti ∈ TU ∧ lk ∈ L− {lm}},
tidep lk+1 ≥ tjarriv lk+1 ∨ tjdep lk ≥ tiarriv lk

A con�ict occurs when two trains going in opposite directions re-
quire the same section of track at the same time. We denote Cijk ≡<
ti, tj , sk k+1 > when ti ∈ TD and tj ∈ TU compete for the section track
lk,lk+1. The crossing of two trains going in opposite directions can be
performed only at locations where one of the two trains has been de-
toured from the main track. This operation requires a reception and
expedition time for the detoured train.

Reception Time Constraint: At least are required Rk time units
at location lk between the arrival times of two trains going in the
opposite direction (Figure 2),
{∀tj , ti, lk/tj ∈ TD ∧ ti ∈ TU ∧ lk ∈ L},
tjarriv lk ≥ tiarriv lk + Rk ∨ tiarriv lk ≥ tjarriv lk + Rk

2The constraints are related to railway infrastructure, parameters of trains to be scheduled
and tra�c rules.

A Decision Support System (DSS for the Railway Scheduling Problem) 5

� � ��� � � ���
	 �
� �
� ��� � � ���
	 � � � ��� � � ���
� � �
���

� �
� �

�!
" # $�% &
')(" *
+ , - .�/ /�0 1�2
3 4 5
674

, 8
, 8

, -

, -

9�: ; :�<=, 0 >)?A@B0 CD: 6!EF<
: G
0 , 0 >)?A@70 CH:

Figure 2. Reception and Expedition time constraint

Expedition Time Constraint: At least are required Ek time units
at location lk between the arrival and departure times of two trains
going in the opposite direction (Figure 2),
{∀tj , ti, lk/tj ∈ TD ∧ ti ∈ TU ∧ lk ∈ L},
tjdep lk ≥ tiarriv lk + Ek ∨ tidep lk ≥ tjarriv lk + Ek

Precedence Constraint: each train employs a given time interval
(Rk→k+1

orRk→k−1) to traverse each section of track (lk → lk+1orlk → lk−1)
in each direction,
{∀ti, lk/ti ∈ TD ∧ lk ∈ L−{lm}}, tiarriv lk+1 = tidep lk + Rk→k+1

{∀ti, lk/ti ∈ TU ∧ lk ∈ L− {l0}}, tiarriv lk−1 = tidep lk + Rk→k−1

The complexity of the problem lies mainly in the number of con�icts
that can appear during the generation of the running map. In each con-
�ict, one of two trains must wait for the release of the section of track
(priority assignment). This problem is a well known NP-hard problem
which makes exploring all possibilities for optimality complex and inef-
�cient. In the DSS system, the search space is drastically reduced by
means of a pre-processing stage before applying CSP techniques to solve
the problem.

4. THE SOLVING TOOL: A
DEPENDENT-DOMAIN CSP

The architecture of our system is shown in Figure 3. First, the user
gives the parameters of a required running map (L1): which journeys,
number of trains, time interval to start the journey and frequency. All
parameters are stored in a common database and used by the solver
process (L2). Finally, the solution is shown graphically to the user (L3),
who can interact with the system.

The main module is the solver process, which obtains an optimized
running map (L2 in Figure 3). This process is e�ciently performed by
identifying, solving, and replicating a given pattern.

6

��� � � � � � �
��� � 	�
�� � � � �

� � ��� � � � � ��� � � 	 � � � 	

� � � � � � �
� � � � � � �
� � � � 	 � � � �

� � � 	 � � � 	�� �
� � � � � 	 � � � � � � � � � � � 	

� � � � � ��� � � � � �
� � � �

� � ��� � � � � �

!�"

!�#

!�$

�� � � � � � � � � �

Figure 3. General System Architecture

4.1 Identification of replication patterns
The identi�cation of replication patterns to reduce complexity in order

to solve STRSP is based on the concept that we have named Equivalent
Con�icts: Two con�icts Cmek (con�ict between tm and te for the section
of track k, k + 1) and Cojh (con�ict between to and tj for the section of
track h, h + 1) are equivalents if and only if:

they occur in the same section of track (i.e.: k = h);

for each con�ict Cmm′v (i.e.: each con�ict of tm with another train
tm′ for a section track v, v + 1) there exists one con�ict Coo′v (con-
�ict between to and another train to′ for a section track v, v + 1)
or vice versa;

for each con�ict Ce′ew , a con�ict Cj′jw exists or vice versa.

For instance, in Figure 4, C1 and C2 (which represent to Cmek and
Cojh respectively) are equivalent con�icts due to the following:

They occur in the same section of track.

all con�icts between tm and any other tm′ (C3, C5) occur in the
same section of track that all con�icts between to and to′ (C4, C6),
respectively.

all con�icts between te and any other te′ (C7) occur in the same
section of track as all con�icts between tj and tj′ (C8), respectively.

The concept of equivalent con�icts allows us to identify patterns in a
running-map. A pattern is a part of the whole running map, where only
non equivalent con�icts exist (Figure 4). Each possible start departure

A Decision Support System (DSS for the Railway Scheduling Problem) 7

� � � ��� ��� � � � � � � 	 �
 � � � � �

� � � � � � � � � �
��� �

��� �
�����
�

�����
��� �!

�!" �!#

�!$ �!%
�!& �!'

Figure 4. An example for equivalent con�icts and pattern identi�cation

time in each direction gives rise to a set of non-equivalent con�icts and
a consequent pattern. Solving a pattern implies solving the complete
running map, because if the related set of non-equivalents con�icts is
solved, all equivalent con�icts may be solved similarly. That is to say, the
complete running map can be obtained by replicating the solved pattern.
Finding and replicating the pattern with minimum cost produces the
optimal running map. Thus, the basic process consists in identifying
and solving the patterns for each possible start departure time in each
direction (Figure 5 shows how a pattern for a given start departure time
is identi�ed and solved), and choosing the pattern with minimum cost
and replicating it along the running map. It is important to remark that
once a pattern is identi�ed, increasing the number of trains does not
increase the problem complexity.

4.2 Algorithm for Single-Track Railway
Scheduling

The pattern to be solved and replicated depends on the set of non-
equivalent con�icts which in turn depends on the initial departure of the
trains. The algorithm to identify and to solve patterns has three nested
loops (Figure 6): Loop 1 explores departure times for the �rst trains in
each direction, Loop 2 explores assignment of priorities for trains and
Loop 3 identi�es the set of non-equivalent con�icts. Constraints are
generated only for the subset S of trains implied in the current set of non-
equivalent con�icts, and solved (if possible) according to the assignment
of priorities given by the second loop.

Once all possible sets of non-equivalent con�icts (patterns) are iden-
ti�ed and solved, the best solution is replicated to obtain the optimal
running map.

8

� ��� ��� ���	
 � � � � �
��� � ��� �

� ��� ��� ���	
 � � � � �
��� ����� �

� ��� � � � � � ��� � ! " # � !

$ %

$ &
$ '
$ (
$)

* % * & * (* + * ,
* - * ' *) * . * /

$ -

$ %

$ &
$ '
$ (
$)

$ -
$ %

$ &
$ '
$ (
$)

$ -
* % * & * (

* - * -

* - * -

* % * & * (

* % * & * (* % * & * (

* % * & * (* + * ,

* - * ' *) * . * /

$ %

$ &
$ '
$ (
$)

$ -
$ %

$ &
$ '
$ (
$)

$ -

$ %

$ &
$ '
$ (
$)

$ -

0 ��� ! � 1 � 3254 � 6 � � � � 7 8� ! 1 !�� 9���� 4 � 6 � � � �;: 2�� < 7 = ��2���9 4 � >�! "�7 � ! � 1 � �� ! ? ��� 4 � 6 � � � � 7 8� ! 1 !�� 9���� 4 � 6 � � � �;: 250 < 7

@ ��2�0A9 4 � >�! "�7 � ! � 1 � A� ! ? ��� 4 � 6 � � � � 7 8� ! 1 !�� 9���� 4 � 6 � � � �;: 2�= < 7CB ��2�=A9 4 � >�! "�7 � ! � 1 � �� ! ? ��� 4 � 6 � � � � 7 D�4�E;4 1 !�� 4 � 6 � � � � 9 7F�G�8�8�H�I�DKJ�L�MAD�N

O � I�! P � � � � � !5F�G�8�8�H�I�D;7 8� !�� 4 � � � � 1 � >�! � � � EA!�6 4 1�� !�1 # � � � � QAE3� P;� 954 R � � � � ! " 7

S -UT V W X Y Z [\] ^ S�_] ` [X a ^ ^ _�S - T�V W X Y Z [\] ^ S�_] ` [X a ^ ^ _�S -

Figure 5. Outline of the algorithm

5. CAPABILITIES OF THE DSS FOR THE
STRSP

The DSS developed in this work is a tool for solving a STRSP accor-
ding to the values speci�ed by the user for given parameters: frequency,
number of trains, journey, and start time interval, for each direction.
The system considers the set of parameters with their corresponding va-
lues as a request. Once the problem has been parameterized, the system
solves it, saving the obtained running map in a database for its later
graphical display. Figure 7 shows an example of a request solved by the
DSS. In this example, for each direction the user composes his request
choosing: a frequency (1 hour), a journey, a number of trains (100) and

A Decision Support System (DSS for the Railway Scheduling Problem) 9

��� � � � ���	� ��
�� ���� � � ����� ����� � ��� � ��� �

�
� � � � � �
� � ! " # $ % &�' "

(*)�% ' ",+)�" - ".% $,$ / 0	",! " # $ % &�' " 1 23# 4�576 8 % $�4�/ +�9�:.; ;

6 8 <�= > ? @ ACB D > ? D�@ E F G H I @ D

J*A�I H =KD A�= ? =KI B�>�@ E F G H I @ D�LKF�E F�M = N O�I P�> H = F D�D E7> F�Q
@ E F G H I @ D�R�= H E F�S I F�S.D E�T

U V W�X�V Y Z�[\�Z] ^ _ `�V
acb d e�f g h e�i j.k l�g m�j.n�o k p�q j rsi k e�f g o h d e g f�l k o t
u v w�x y y z {�|~} ��� { y � � �K� ��� �
� � x � � �7��� � z�� { � � y � � z�� �����

w.{ �	� ��z �K� { � z�� � �
} ��� � � ���C� � � ��x ���7�.|�� ��� � x � � ��y � ��{ �,� � � ���c ¡

� � � � ¢ £ ¤ ¥
¦�§ ¨ ©Kª�« ¬ ¨ ® ¬ ¯�§ ° ° ±,² ³

´ µ�¶�·

¸�¹ º » ¹ º ¼ ½ ¾

¿,À�Á7Â*Ã�Ä Å Æ

¿,À�ÁCÇ È

Â*Ã�Ä Å Æ.É�Ê Ä Ë Ê Ä Ì Í�ÎcÏ Ð�Ë Ê Ñ Ò Ó Ô Ò Ó Õ Ö	×CØ

Ñ Ò Ó Ô Ò Ó Õ Ö Ù Ú Û Ü Ú Û Ý ÞCß à

á â

ã,ä�å7æèç�é ê ë

ã,ä�å�æ*ç�é ê ë
ì í î~ï ð ñ.ò ó ô ï�õ�ñ ö ô�÷ ñ ø ô ù ï õ7ô ú û ø ü

ý ý þ ÿ ��� ��� � � � � � � � 	
� � � ��� ÿ�� � ��ÿ � � � ��� � ÿ � ��� ��� � ��� � ÿ �
ý ý ��ÿ 	 ��� 	������ � � ��� ÿ�� ��	 � � ÿ�� � ÿ���ÿ 	 � � � � � ��� � 	 �
ý ý ����� 	
�� � � � � � ����� �

ý ý �� � 	
� � ÿ!	 ÿ ��� �
� ÿ � ÿ � � ÿ ��� � � 	 � � � � � 	�� � " � � ��� � � �
� � � � � � ��� � � #$� � ÿ!	 � �
	 ÿ ��þ

%
ï
ï
&

'

%
ï
ï
&

(

%
ï
ï
&

)

Figure 6. Main steps in the algorithm

a time interval to start the journey (6:00-6:30 for DOWN and 8:00-8:30
for UP). The system took 25 seconds to solve this problem using an Intel
Pentium 4 1,6 GHz processor. The user interface of the DSS allows the
parameters to be easily modi�ed obtaining a solution for each request.
This makes the DSS an appropriate tool application for what-if analysis.
The number of trains that could be allocated in one day in the running
map with a given frequency, or the best departure time to start a given
journey, in order to obtain the minimum average traversal time, etc, are
some examples of useful information for the �nal operator. The graphi-
cal interface through the space-time diagrams shows the topology of the
solution in a clearer way.

6. RESULTS
In this section we evaluate some problems, whose value parameters

can be applied to practical cases. Each constraint satisfaction problem
is de�ned by the pair < n, f >, where n is the number of trains and
f is the frequency between consecutive trains. In Table 1, we present
the execution time in problems solved with DSS and general constraint
solvers (LINGO, CHEEP, CPLEX, etc), where the number of trains was
increased from 10 to 50 while the frequency was �xed to 60 and problems
where the frequency was increased from 60 to 120 and the number of

10

��� � � � � � �

�	�
�� � � � ���
� � �� � � � �

� � � � � �

����� �

�� � ��
 ����!
�
 " � � �
 �

Figure 7. An example using the application

Table 1. Execution time in problems < n, 60 > and < 20, f >.

DSS - Solvers - DSS - Solvers
Problems Run Time (sc) Run Time (sc) Problems Run Time (sc) Run Time (sc)

<10,60> 3 9 <20,60> 5 313
<16,60> 4 46 <20,75> 1 4200
<20,60> 5 313 <20,90> 1 95
<36,60> 6 1487 <20,105> 1 34
<50,60> 7 >4800 <20,120> 1 147

trains was �xed to 20. In both cases, the number of locations was 40
and the departure time was [06:00:00 - 06:30:00] in down direction and
[05:30:00 - 06:30:00] in up direction. The problems were solved with an
Intel Pentium 4 1,6 GHz processor.

In Table 1, we observe that DSS reduces considerably the execution
time in all cases due to it reduces the search space using the heuristic
described in previous sections while general solvers provide the optimal
schedule without preprocessing and they must study the complete pro-
blem.

A Decision Support System (DSS for the Railway Scheduling Problem) 11

7. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, a DSS to solve the Single Track case of this problem
has been developed. The system provides the user with an interface to
parameterize the problem . It solves the request in an optimal and e�-
cient way using CSP guided by the proper characteristics of the problem,
thereby reducing the search space and hence the computational e�ort.
The user can obtain di�erent running maps for easier and more e�ective
decision making. The current system is being validated by a railway
company. Future work will address to the extension of the method in
order to deal with double tracks and networks already occupied by other
trains.

References
[1] Bussieck, M.R., Winter, T., and Zimmermann, U.T., `Discrete optimization in

public rail transport', Math. Programming, 79(1-3), 415�444, (1997).
[2] Caprara, A., Fischetti, M., and Toth P., `Modeling and solving the train timeta-

bling problem', Operations Research, 50, 851�861, (2002).
[3] Cordeau, J.F., Toth, P., and Vigo, D., `A survey of optimization models for train

routing and scheduling', Transportation Science, 32(4), 380�404, (1998).
[4] Liebchen, C., and Möhring, R., `A case study in periodic timetabling', Electronic

Notes in Theoretical Computer Science, 66, 6, (2002).
[5] Nachtigall, K., `Periodic network optimization with di�erent arc frequen-

cies',Discrete Applied Mathematics 69, 1-2, 1�17, (1996).
[6] Nachtigall, K., and Voget, S., `Minimizing waiting times in integrated �xed in-

terval timetables by upgrading railway tracks', European Journal of Operational
Research, (1997).

[7] Odijk, M.A., `A constraint generation algorithm for the construction of periodic
railway timetables', Transportation Research, 30, 6, 455�464, (1996).

[8] Schrijver, A., and Steenbeek, A., `Timetable construction for railned', Technical
Report, CWI, Amsterdam, The Netherlands (in Dutch), (1994).

[9] Sera�ni, P., and Ukovich, W., `A mathematical model for periodic scheduling
problems', SIAM Journal on Discrete Mathematics, 2(4), 550�581, (1989).

