
Distributing Constraints by Sampling in
Non-binary CSPs

Miguel A. Salido∗, Adriana Giret†, Federico Barber†
∗ Dpto. Ciencias de la Computación e I.A.

Universidad de Alicante
Alicante, Spain

† Dpto. Sistemas Inforḿaticos y Computación
Universidad Polit́ecnica de Valencia

Valencia, Spain
{msalido,agiret,fbarber }@dsic.upv.es

Abstract.
In constraint satisfaction, a general rule is to tackle the hardest part of a search

problem first. Many Constraint Satisfaction Problems (CSPs) are solved using search
algorithms, which require an order in which variables and values should be considered.
Choosing the right order of variables and values can noticeably improve the efficiency
of constraint satisfaction. The order in which constraints are studied can also improve
efficiency, particularly in problems with non-binary constraints.

In this paper, we present a distributed model for solving non-binary CSPs, in which
agents are committed to sets of constraints. A preprocessing agent is committed to or-
dering the constraints by a sample in finite population so that the tightest constraints
are studied first. This preprocessing agent is only applied in problems where con-
strainedness cannot be known in advance. Then, a set of agents are incrementally and
concurrently committed to building partial solutions until a problem solution is found.
This constraint ordering, as well as value and variable ordering, can improve efficiency
because inconsistencies can be found earlier and the number of constraint checks can
be significantly reduced.

1 Introduction

Nowadays, many real problems in Artificial Intelligence (AI) as well as in other areas of com-
puter science and engineering can be efficiently modeled as Constraint Satisfaction Problems
(CSPs) and solved using constraint programming techniques. Some examples of such prob-
lems include: spatial and temporal planning, qualitative and symbolic reasoning, diagnosis,
decision support, scheduling, hardware design and verification, real-time systems and robot
planning. Some of these problems can be modeled naturally using non-binary (or n-ary) con-
straints. The need to address issues regarding non-binary constraints has recently started to be
widely recognized in the constraint satisfaction literature. However, researchers have tradi-
tionally focused on binary constraints [15]. Thus, defining models to solve non-binary CSPs
becomes relevant.

General methods for solving CSPs include Backtracking-based search algorithms. While
the worst-case complexity of backtrack search is exponential, several heuristics to reduce its

2 Distributing Constraints by Sampling in Non-binary CSPs

average-case complexity have been proposed in the literature [3]. For instance, some algo-
rithms incorporate features such as variable ordering which have a substantially better per-
formance than a simpler algorithm without this feature [10], and yet the two share the same
worst-case complexity.

Many works have investigated various ways of improving the backtracking-based search
algorithms. In order to avoidthrashing[11] in Backtracking,consistencytechniques, such
asarc-consistencyandk-consistency, have been developed by many researchers. These tech-
niques are able to remove inconsistent values from the domains of the variables. Other ways
of increasing the efficiency of Backtracking include the use ofsearch orderfor variables and
values. Thus, some heuristics based onvariable orderingandvalue ordering[13] have been
developed, due to the additivity of the variables and values. However, constraints are also
considered to beadditive, that is, the order of imposition of constraints does not matter; all
that matters is that the conjunction of constraints be satisfied [1].

In spite of the additivity of constraints, only some works have be done on binary constraint
ordering mainly for arc-consistency algorithms and for problems whose constrainedness is
known in advance [16, 9], but little work has be done on non-binary constraint ordering (for
instance in disjunctive constraints [14]), and on problems whose constrainedness cannot be
known in advance. Only some heuristic techniques classify the non-binary constraints by
means of the arity. However, less arity does not imply a tighter constraint. Moreover, when
all non-binary constraints have the same arity, or these constraints are classified as hard and
soft constraints, these techniques are not useful.

In this paper, we propose a distributed model in which the constraints are ordered and par-
titioned into a set of subproblems and solved by search algorithms. Thus, these subproblems
are classified so that the tightest subproblems are studied first. This is based on thefirst-fail
principle, which can be explained as

”To succeed, try first where you are more likely to fail”

This classification is straightforward if the constrainedness is known in advance. However
in the general case, where constrainedness cannot be known in advance, this classification
must be obtained in a preprocessing step in which an agent calledpreprocessing agentcarries
out a sample in finite population, as in statistics, in which a well-distributed sample of states
from the search space represents the entire search space. This sample is checked with all the
constraints in order to classify them from the tightest constraints to the loosest constraints.
Afterwards, constraints are partitioned ink blocks. Each block contains different number
of constraints (distributed by a geometric progression) such that the first block maintains
very few constraints but they are the tightest constraints and the last block maintains many
constraints but they are the loosest constraints. Each block of constraints will be studied by
agents calledblock agents. However, as in statistics, although our objective is to select a
well-distributed sample, an incorrect constraint classification may be obtained, so a repair
method is dynamically carried out to classify the constraints in the appropriate order. Thus,
constraints are labelled to identify the number of violated tuples.

Block agent1 works on the tightest constraints, that is, the constraints that are more likely
to fail, and so, inconsistent tuples can be found earlier. Ifblock agent1 finds a solution to
its partial problem, thenblock agent2 begins to study the second set of tightest constraints
using the consistent partial state generated byblock agent1. Concurrently,block agent1
continues studying its subproblem to obtain another consistent partial state, and so on. Fi-
nally, block agentk, using the variable assignments of the previous agents, attempts to find a

Distributing Constraints by Sampling in Non-binary CSPs 3

problem solution with its group of constraints (the loosest ones). This model allows agents to
run concurrently to achieve partial solutions, and it removes the drawbacks of synchronous
backtracking algorithms [19].

In the following section, we formally define a constraint satisfaction problem and de-
scribe well-known ordering algorithms. Section 3 describes the multi-agent model. Section 4
presents the computational complexity. We present the results of the evaluation in section 5
and finally, we present our conclusions in section 6.

2 Definitions and Algorithms

In this section, we review some basic definitions as well as basic heuristics for CSPs.

2.1 Definitions

CSP:Generally, a constraint satisfaction problem (CSP) consists of:

• a set of variablesX = {x1, x2, ..., xn}
• a set of domainsD = {D1, D2, ..., Dn}, where each variablexi ∈ X has a setDi of

possible values

• a finite collection of constraintsC = {c1, c2, ..., cp} restricting the values that the variables
can simultaneously take.

State: one possible assignment of all variables; the number of states is equal to the product
of the domain size.

Partition : A partition of a setC is a set of disjoint subsets ofC whose union isC. The
subsets are called the blocks of the partition.

Distributed CSP: A distributed CSP is a CSP in which the variables and constraints are
distributed among automated agents [19].

Each agent has some variables and attempts to determine their values. However, there
are interagent constraints and the value assignment must satisfy these interagent constraints.
In our model, there arek agents1, 2, ..., k. Each agent knows a set of constraints and the
domains of variables involved in these constraints.

Objective in a CSP: A solutionto a CSP is an assignment of values to all the variables so
that all constraints are satisfied. The objective in a CSP may be to determine:

• whether a solution exists, that is, if the CSP is consistent.

• all solutions, many solutions, or only one solution, with no preference as to which one.

• an optimal, or a good solution by means of an objective function defined in terms of
certain variables.

In some real problems, it is desirable to find all solutions in order to give the user the
ability to search the design space for the best solution, particularly when various parameters
are difficult to model [4]. Some techniques such as value ordering are not valid to solve this

4 Distributing Constraints by Sampling in Non-binary CSPs

type of problems. In this case, it is necessary to be able to efficiently find thedead-endsin
order to reduce the search tree.

Two ordering algorithms are analyzed in [13, 1]: variable ordering and value ordering.
Let’s briefly look at these two algorithms.

2.2 Variable Ordering

The experiments and analyses by various researchers have shown that the ordering in which
variables are assigned during the search may have substantial impact on the complexity of the
search space explored. The ordering may be either a static ordering or a dynamic ordering.
Examples of static ordering heuristics areminimum width[5] and maximum degree[2], in
which the order of the variables is specified before the search begins and is not changed
thereafter. An example of a dynamic ordering heuristic isminimum remaining values[10], in
which the choice of the next variable to be considered at any point depends on the current
state of the search.

Dynamic ordering is not feasible for all search algorithms. For example, with simple
backtracking, there is no extra information available during the search that could be used to
make a different choice of ordering from the initial ordering. However, with forward check-
ing, the current state includes the domains of the variables as they have been pruned by the
current set of instantiations. Therefore, it is possible to base the choice of the next variable
on this information.

2.3 Value Ordering

The order in which values are considered during the search can have substantial impact on
the time necessary to find the first solution. There exist some algorithms for value ordering
[7, 6]. The basic idea behind value ordering algorithms is to select the value for the current
variable which is most likely to lead to a solution. However, if all solutions are required or the
problem is not consistent, then the value ordering does not make any difference. A different
value ordering will rearrange the branches emanating from each node of the search tree. This
is an advantage if it ensures that a branch which leads to a solution is searched earlier than
a branch which leads to a dead-end. For example, if the CSP has a solution, and if a correct
value is chosen for each variable, then a solution can be found without any backtracking.

Suppose we have selected a variable to instantiate: how should we choose which value
to try first? It may be that none of the values will succeed. In that case, every value for the
current variable will eventually have to be considered and the order does not matter. On the
other hand, if we can find a complete solution based on the past instantiations, we want to
choose a value which is likely to succeed and unlikely to lead to a conflict.

2.4 Constraint Ordering

Comparatively little work has been done on constraint ordering. In spite of the additivity
of constraints, only some works have be done on constraint ordering. Heuristics of making
a choice that minimises the constrainedness of the resulting subproblem can reduce search
over standards heuristics [8].

Distributing Constraints by Sampling in Non-binary CSPs 5

Wallace and Freuder initiated a systematic study to identify factors that determine the
efficiency of constraint propagation that achieve arc consistency [16].

Gent et al. proposed a new constraint ordering heuristic in AC3, where the set of choices
is composed by the arcs in the current set maintained by AC3 [9]. They considered the re-
maining subproblem to have the same set of variables as the original problem, but with only
those arcs still remaining in the set.

Walsh studied the constrainedness ”knife-edge” in which he measured the constrained-
ness of a problem during search in several different domains [17]. He observed a constrained-
ness ”knife-edge” in which critically constrained problems tend to remain critically con-
strained. This knife-edge is predicted by a theoretical lower-bound calculation.

Many of these algorithms focus their approximate theories on just two factors: the size
of the problems and the expected number of solutions. However, the expected number of
solutions is not easy to estimate in many real problems.

However, few work has be done on non-binary constraint ordering for general CSPs and
only some heuristics classify the non-binary constraints by means of the arity. We will focus
on this point, where the non-binary constraints will be classified from the tightest one to the
loosest one, in problems where tightnesses cannot be known in advance.

3 The Multi-Agent Model

Agent-based computation has been studied for several years in the field of artificial intelli-
gence and has been widely used in other branches of computer science. Multi-agent systems
are computational systems in which several agents interact or work together to achieve goals.
Agents in such systems may be homogeneous or heterogeneous and may have common goals
or distinct goals [12].

As we pointed out in the above definitions in section 2.1, a distributed constraint satis-
faction problem (distributed CSP) is a constraint satisfaction problem in which variables and
constraints are semantically partitioned (or distributed) into subproblems, each of which is to
be solved by an agent.

In this section, we will provide the definitions and specifications of the different agents
involved in these models and the formulation for our proposed multi-agent model.

Definition 1: A block agentaj is a virtual entity that essentially has the following prop-
erties: autonomy, social ability, reactivity and pro-activity [18].

Block agentsare autonomous agents. They operate their subproblems without the direct
intervention of any other agent or human.Block agentsinteract with each other by sending
messages to communicate consistent partial states or to exchange constraints. They perceive
their environment and changes in it, such as new partial consistent states, and react, if possi-
ble, with more complete consistent partial states.Block agentstake the initiative by evicting
constraints that are tightest than others sending them to or exchanging them with previous
block agents.

Definition 2: A multi-agent systemis a system that contains the following elements:

1. An environment in which the agents live (variables, domains, constraints and consistent
partial states).

2. A set of reactive rules, governing the interaction between the agents and their environment
(constraint exchange rules, communication rules, etc).

6 Distributing Constraints by Sampling in Non-binary CSPs

����� ����� ���
	�� �
���
	��
��	��
�
��� ��� �
� � ��� � ���
���
�
� �
� � �
�

���
��	�� ���
� �
�
�� ��
��!�� �
"�#�� � �	��
� �������
�
	�� ��� �
	

$&% '�% (�) $&% '�% (�*$+% '�% (�, $+% '�% (.-0/ 1�2

3540687�40796;:=<?>�@BAC40D�E >�A�@
FHG $+%�I0(�$C% I0J K+% (�L M�(�'�$&%�I0(�$+% I�J K+% (�L

N $ G�O P % J G�Q

R R R
R R RR R RR R R R R RR R RR R R

R R R

S G�Q $CJ $+% (Q %�$&(�'�I0K&T
$+U�'�K+(?J Q K+V

W <�>�XY<�406�7�40796Z:=<?>[@BAC40D�E >
A�@
\ '�% P I0' O+G I0L�(�I

N $ G�O P % J G�QS G�Q $+% I0'�J Q %
$C% P L�]

R R R
R R R

R R R
R R RR R R

R R R

R R R

S G�Q $+J $&% (Q %�$+(�'�I0K+T
$+U�'�K&(HJ Q K+V

S G�Q $+% I0'�J Q %
$C% P L�]

^�_ ^a`
^
b

^ac

dfe gihae j�kml nYo
dYp gih+p j0kml nYo

qsr0t�u8riv�wBt9xBxzy {[|Z}s|9t?{[~

�����z����� �z�
�

� �

� �

�[�

�&�
� � � � � � � � � �
�f�

� �
�
� �

���Y� ���0� ���0� ���0� ���0� � � � � � � � � � ��� � �0�

Figure 1: The preprocessing agent

3. A set of agents,A = {a1, a2, ..., ak}.

3.1 The Preprocessing Agent

The preprocessing agentcarries out a preprocessing step based on the sampling in finite
population, as in statistics, where there is a target population and a sampled population is
chosen to represent this population. In our context, the population is made up of the states
generated by means of the product of variable domains. Thepreprocessing agentchooses
a sampled population composed bys(n) states of the target population (s is a polynomial
function). These states are well distributed in order to represent the target population. As in
statistics, the user may select the size of the samples(n) as well as the distribution function.
Figure 1 represents the preprocessing agent. With the selected sample of statess(n), the
preprocessing agentchecks how many statesvi : vi ≤ s(n) satisfy each constraintci. Thus,
each constraintci is labelled withpri: ci(pri), wherepri = vi/s(n) represents the probability
that ci satisfies the whole problem. Thus, thepreprocessing agentclassifies the constraints
in ascending order of the labelspri. Therefore, thepreprocessing agenttranslates the initial
non-binary CSP into an ordered one so that it can be studied by a CSP solver. In Figure 1, it
can be observed that each constraint is checked with each selected state. Furthermore, each
state of the sample might store the evaluation valueTi to be used by a stochastic local search
algorithm to restart the search.

The ordered constraints must be partitioned ink blocks of constraints to be managed by
agents calledblock agentssuch that allblock agentswork equally. To this end, thepreprocess-
ing agentmust carry out a balanced partition such that ablock agentswith tight constraints

Distributing Constraints by Sampling in Non-binary CSPs 7

must manage few constraints andblock agentswith loosest constraints must manage many
constraints. Thus,block agent1 is committed to solving the most restricted subproblem and
block agentk is committed to solving the least restricted subproblem.

To obtain an appropriate number ofblock agentk, we will distribute the number of con-
straints by a geometric progression, that is, by a sequence of number such that the quotient
of any two successive members of the sequence is a constant. Thus, the sum of terms of
this geometric progression is a geometric series whose sum must be equal to the number of
constraintsp. The sum of a geometric series can be computed quickly with the formula

k∑

h=1

xk =
xk+1 − x

x− 1
= p (1)

xk+1 − x = (x− 1)p ⇒ logxk+1 = log((x− 1)p + x)

⇒ (k + 1)logx = log((x− 1)p + x) ⇒

k + 1 =
log((x− 1)p + x)

logx
⇒ k =

⌊
log((x− 1)p + x)

logx

⌋
−1

For instance, let’s suppose a problem with 65 constraints (p=65) and a geometric progres-
sion with common quotient 2 (x = 2), we obtain that the number of blockk is:

k =

⌊
log(65 + 2)

log2

⌋
−1 = 5

Thus, there are 5 blocks of constraints so that theblock agents1,2,3,4 and 5 maintain 2,
4, 8, 16, 35 constraints, respectively. It can be observed that the lastblock agentmaintains25

constraints plus the remaining constraints (25+3) to complete the total number of constraints.
Thus, the firstblock agentis committed to the smaller set of constraints, but they are the
tightest constraints, while the lastblock agentis committed to the greater set of constraints,
but they are the loosest constraints. In this way, allblock agentswork equally.

Nevertheless, the user may select the number of blocks of constraints or the common
quotient for the geometric progression in order to solve the problem.

3.2 The Block Agents

Block agentsare agents committed to solving subproblems. As we pointed out in definition
1, an agent has a set of properties. Following, we present the behavior and characteristics of
block agents(Figure 2):

• Eachblock agentaj has an identifierj.

• There is a partition of the set of constraintsC ≡
k⋃

i=1

C(i) and eachblock agentaj is

committed to the block of constraintsC(j). Each constraint is labelled with the number
of violated constraints.

8 Distributing Constraints by Sampling in Non-binary CSPs

���������
	�����
��
� ����� � � ��� �����
�	���� � � � 	�� �

������� �
! "$#

% &
')(
* '�+-,/.�0
1�2 0
3
* +
465�'87 9�: '87 9
;=<->@?
A B@<-C�B
D-EGF)?
H�A ?-I�J D-K6FML N

O�P�P�Q R8S T�U�V
W�X S-Y�U�Y�R�T�Z
[Y�\ Q Y8]�^ T�P_a`�bdc e `)f

g bdh)i)f j)k
l h)f m�c e h)n l

o�Y�]pT8^ P

Figure 2: Properties and characteristics ofblock agents.

• Eachblock agentaj has a set of variablesVj involved in its block of constraintsC(j).
These variables fall into two different sets:used variablesset (vj) andnew variablesset
(vj), that is:Vj = vj ∪ vj.

• The domainDi corresponding to variablexi is maintained in the firstblock agentat in
whichxi is involved, (i.e.),xi ∈ vt.

• Eachblock agentaj assigns values to variables that have not been assigned yet, that is,aj

assigns values to variablesxi ∈ vj, because variablesxk ∈ vj have already been assigned
by previousblock agentsa1, a2, ..., aj−1.

• Eachblock agentaj maintains a storage of partial problem solutions generated by the
previousblock agentsa1, a2, ..., aj−1. Thus,block agentaj maintains assignments of vari-
ables included in sets:v1, v2, ..., vj−1.

• Eachblock agentaj can send constraints with the highest labels to the previousblock
agentaj−1 to be managed. In this case, thenew variablesinvolved in these constraints are
also sent to the previousblock agentwith their corresponding variable domains.

Thus, theseblock agentsare committed to solving CSPs that represent subproblems of
the main CSP. Theseblock agentsmust cooperate with each other by sending messages with
consistent partial states or exchanging constraints.

In what follows, we present an overview of our multi-agent formulation in which we
analyze the relationship among all agents.

3.3 Overview of the Multi-Agent Formulation

In the specialized literature, there are many works about distributed CSPs. In [19], Yokoo
et al. present a formalization and algorithms for solving distributed CSPs. These algorithms
can be classified as either centralized methods, synchronous backtracking or asynchronous
backtracking [20].

Our model can be considered as a synchronous model. It is meant to be a framework
for interacting agents to achieve a consistent state. The main idea of our multi-agent model
is based on partitioning the problem constraints ink groups calledblocksof constraints so

Distributing Constraints by Sampling in Non-binary CSPs 9

that the tightest constraints are grouped and studied first by autonomous agents. To this end,
a preprocessing agentcarries out a partition of the constraints, similar to a sample in finite
population, with the objective of classifying the constraints ink groups, from the tightest ones
to the loosest ones. As we pointed out in Figure 1, each selected state of the sample can store
the evaluation valueTi to be used by a stochastic local search algorithm in order to restart the
search. Note that if some state has an evaluation value of zero, (Ti = 0), (the state does not
violate any constraint), then a solution is found.

Once the constraints are divided intok blocks by thepreprocessing agent, a group of
block agentsconcurrently manages each block of constraints. Eachblock agentis in charge
of solving its own subproblem by means of a search algorithm. Eachblock agentis free to
select any algorithm to find a consistent partial state. It can select a local search algorithm,
a backtracking-based algorithm, or any other, depending on the problem topology. In any
case, eachblock agentis committed to finding a solution to its particular subproblem. This
subproblem is composed by its CSP subject to the variable assignment generated by the
previousblock agents. Thus,block agent1 works on the most restricted block of constraints.
If block agent1 finds a solution to its subproblem, then it sends the consistent partial state
to block agent2, and both they work concurrently to solve their specific subproblems;block
agent1 tries to find other solution andblock agent2 tries to solve its subproblem knowing that
its used variableshave been assigned byblock agent1. Thus,block agentj, with the variable
assignments generated by the previousblock agents, works concurrently with the previous
block agents, and tries to find a more complete consistent state using a search algorithm.
Finally, the lastblock agentk, working concurrently withblock agents1, 2, ...(k − 1), tries
to find a consistent state in order to find a problem solution. Note that as theblock agent
identifier gets higher, the number ofnew variablesgets lower. Therefore, the set ofnew
variablesin block agentswith a high identifier(k-2,k-1,k)may be empty. In this case, these
block agentsneed only check their constraints with the states sent by the previousblock
agents.

3.3.1 Dynamic repair method to exchange constraints:

The preprocessing agentmay not correctly classify the constraints from the tightest one to
the loosest one. This is due to the fact that the size of the sample is not appropriate or the
sample has not been correctly selected. In this case,block agentscan apply a dynamic repair
method to exchange constraints with each other. Each constraint is labelled to identify the
number of violated tuples. Eachblock agentmaintains an upper bound of the label value. If
the upper bound is reached,block agent iandblock agent i-1negotiate the exchange of the
highest label constraints ofblock agent ifor the lowest label constraints ofblock agent i-1.
This way, the sampled population grows more and more and the constraint ordering becomes
more exact.

Figure 3 shows the multi-agent model, in which thepreprocessing agentcarries out a
constraint ordering and theblock agents(ai) are committed to concurrently finding partial
problem solutions (sij). Eachblock agentsends the partial problem solutions to the following
block agentuntil a problem solution is found (by the lastblock agent). For example, state:
s11 + s21 + ... + sk1 is a problem solution. The concurrence can be seen in Figure 3 inTime
step6 in which all block agentsare concurrently working. Eachblock agentmaintains the
corresponding domains for itsnew variables. Theblock agentmust assign values to itsnew
variablesso that the block of non-binary constraints is satisfied. When ablock agentfinds

10 Distributing Constraints by Sampling in Non-binary CSPs

���������
�	��

������

� � ������ � ��� �

�

�

�

� �

�

�
��

�
��

�
��

�
��
� �

� �

�
��
� �

� �
� � � � � �

� �

�
��
� �

� �

� � �
� � � � 	
 � �
 �� � � � � � � � � � �

� � � � � � � � � ���� �! �"
#%$!&�'�()

*,+-��.!� &�/10 �2� 3 (4 � '�)

�
��� � ��

� 5

�
�

*,+ &�6 +-�� &�)7)�4 '�$
#%$!&�'�(8 9-: ;-< =?> @-8 A�:

8 9 B-;-< =?> @-8 A-B

�8 9 A-;?< =?> @-8 A
�

C�D-E	F G HJI K E�G
L I H G K G K�D-E

� M
� � � �

�
�

� � � �

Figure 3: Multi-agent model

a value for eachnew variable, it then sends the consistent partial state to the nextblock
agent. When the lastblock agentassigns values to itsnew variablessatisfying its block of
constraints, then a solution is found. The dynamic repair method can also be applied if the
constraint ordering has not been correctly carried out.

Example: Let’s look at a similar example that is presented in [19]. There are three
variables,x1, x2, x3, with variable domains{1, 2, 3}, {1, 2}, {1, 2, 3}, respectively, and con-
straintsc1 : x1 6= x2 andc2 : x2 = x3 (see Figure 4).

���������
�	��

������

� � ������ � ��� �

�

�

� �

� � � �� �� � � � � � ��� � � �� � �

� �� �� �� � � � �� �� � �� � � � �

� � � � � � �

� � �

� � 	
 � �

 � �

�
�

�
�

�����

� � � 	
 � �

 � �� �	 � � � ��� � � �
 �

�
�
� � � � � � � �

�
�
� � � � � �

�
�
� � � � � � � �

�
�
� � �

�
� �

�

�
�
� � �

�
� �

�

� � � � � � �	 � � � �
�
� � �

�
� � �

�

� �
 � � � � 	 �

 � � � � � �

� � � � 	

�
�

�
�
� � �

�

�
�

�
�
� � � � � � � �

�
�

�
�
� � �

�

�
�

�
�
� � � � � � � � �

�
� � � � � � � �

� � � � � � �

� � � � � � �

� � � �� �� � � � � � � � � � � � � � �

� �
 � � � � 	
 �

� � � � 	

Figure 4: CSP solved by our model

As there are only two constraints, the constraint partition is straightforward. Therefore,
there are only two blocks with one constraint in each block to consider. The first block is
composed of constraintc2 and the second block is composed of constraintc1. This is due
to the fact that constraintc2 is tightest than constraintc1 asc2 maintains two valid tuples:

Distributing Constraints by Sampling in Non-binary CSPs 11

(−, 1, 1) and(−, 2, 2), while c1 maintains four valid tuples:(1, 2,−), (2, 1,−), (3, 1,−) and
(3, 2,−). Block agenta1 manages constraint 1 andblock agenta2 manages constraint 2. It
can be observed that variablesx2 andx3 arenew variablesin a1, andx1 is anew variablein
a2, while x2 is aused variablein a2. Thus, domains of variablex2 andx3 are known bya1,
and the domain ofx1 is known bya2. Furthermore,a1 is responsible for assigning values to
x2 andx3 using a search algorithm, anda2 is responsible for assigning values tox1. Figure
4 shows the behavior of our distributed model using GT. It can be observed thatTime step1
is only used bya1 to generate a consistent partial state (-,1,1). Thus,a1 sends a message to
a2 with the consistent partial state(−, 1, 1). In Time step2, botha1 anda2 work concurrently
to find a consistent partial state for their own problems.a2 tests state (1,1,1) which is not a
solution and simultaneouslya1 tests partial state (-,1,2) which is not a consistent partial state.
In Time step3, a2 tests state (2,1,1) which is a consistent state, that is, a solution. Meanwhile
a1 tests partial state (-,2,1). If only one solution is required, the process is halted. If more
solutions are required, the model continues with steps 4,5,6 and 7.

Example (The 5-Queens Problem):This well-known problem is an example of a dis-
crete problem with five variables and eleven constraints.

�������������
	����
�
������������� �
� � ��� � ��� � � ������� � � ��� � ��� � 	 ������� �
 �!� � 	"� � � �����#� � �%$ ��� � �
� � � �������
� � ��� � ��� � 	 �����'& ��(��� � ��� � � �����)& �
* �!� � 	"� � � �����+&
� 	 ��� � ��� � � �����', ��- ��� � ��� � � �����),
� � ��� � ��� � � �����'.

� �/� ��0�12123�465%5/7�8%7:9�;2</�
=?>

@BADC E?FHG I%J�C?KML
NDO6P�Q RMO2S2RDT6Q�U VXW Y �/Z 	�[Y �/Z �/[Y �%Z ��[Y �\Z �%[Y �]Z ��[Y 	/Z �?[Y 	%Z ��[Y �]Z ��[Y �]Z �/[Y �/Z ��[Y �%Z �%[Y �/Z 	�[
NDT6P�Q RMO2S2RD^6Q�U V`_ Y �/Z �/[Y �/Z �/[Y �%Z ��[Y �\Z ��[Y �]Z 	�[Y �]Z �?[Y 	%Z �%[Y 	/Z �/[Y �]Z ��[Y �]Z 	�[Y �\Z ��[Y �/Z ��[Y �aZ �/[Y �/Z �/[
N ^ P�Q R O S2RDb6Q�U V`c Y �/Z �/[Y �/Z 	�[Y �%Z ��[Y �\Z ��[Y �]Z 	�[Y �]Z �a[Y 	%Z ��[Y 	/Z �/[Y 	/Z �/[Y �]Z ��[Y �\Z �%[Y �]Z 	�[Y ��Z ��[Y �/Z ��[Y �%Z 	�[Y �/Z �a[
N b P�Q RMO6S2RDd2Q�U V`e Y �/Z �/[Y �/Z 	�[Y �%Z �%[Y �\Z ��[Y �]Z 	�[Y �]Z �a[Y �\Z ��[Y 	/Z ��[Y 	/Z �/[Y 	/Z �/[Y 	%Z ��[Y �]Z ��[Y ��Z �/[Y �]Z 	�[Y �\Z ��[Y �/Z �a[Y �/Z 	�[Y �%Z �%[
NDd6P�Q RMT2S2RD^6Q�U VXW Y �/Z 	�[Y �/Z �/[Y �%Z ��[Y �\Z �%[Y �]Z ��[Y 	/Z �?[Y 	%Z ��[Y �]Z ��[Y �]Z �/[Y �/Z ��[Y �%Z �%[Y �/Z 	�[
NDf6P�Q R T S2RDb6Q�U V`_ Y �/Z �/[Y �/Z �/[Y �%Z ��[Y �\Z ��[Y �]Z 	�[Y �]Z �?[Y 	%Z �%[Y 	/Z �/[Y �]Z ��[Y �]Z 	�[Y �\Z ��[Y �/Z ��[Y �aZ �/[Y �/Z �/[
NDg6P�Q RMT2S2RDd6Q�U V`c Y �/Z �/[Y �/Z 	�[Y �%Z ��[Y �\Z ��[Y �]Z 	�[Y �]Z �a[Y 	%Z ��[Y 	/Z �/[Y 	/Z �/[Y �]Z ��[Y �\Z �%[Y �]Z 	�[Y ��Z ��[Y �/Z ��[Y �%Z 	�[Y �/Z �a[
NDh6P�Q RM^2S2R b Q�U VXW Y �/Z 	�[Y �/Z �/[Y �%Z ��[Y �\Z �%[Y �]Z ��[Y 	/Z �?[Y 	%Z ��[Y �]Z ��[Y �]Z �/[Y �/Z ��[Y �%Z �%[Y �/Z 	�[
NDi6P�Q R ^ S2R d Q�U V`_ Y �/Z �/[Y �/Z �/[Y �%Z ��[Y �\Z ��[Y �]Z 	�[Y �]Z �?[Y 	%Z �%[Y 	/Z �/[Y �]Z ��[Y �]Z 	�[Y �\Z ��[Y �/Z ��[Y �aZ �/[Y �/Z �/[
NDO6j2P:Q R b S6RDd2Q�U VkW Y �/Z 	�[Y �/Z �/[Y �%Z ��[Y �\Z �%[Y �]Z ��[Y 	/Z �?[Y 	%Z ��[Y �]Z ��[Y �]Z �/[Y �/Z ��[Y �%Z �%[Y �/Z 	�[

���
���
� (
�
���
���
� (
���
���
���

l`ADG I]m2ADC�nBm2F]KDm
oqp\L/LaE r�C KtsuIaJ�C KDL P vMW/wxW/y6vMW%w _]y2vMW%w c\y2vMWaw e\y6vMW%w z]y2v2_\w2W%y6v2_]w _\y6v2_\w c]y2v2_\w e\y2v2_]w z\y6v2c\wxW/y2v6c\w _\y2v2c]w c\yv2c]w e]y6v2c\w z]y2v2e\w2W%y2v2e�w _\y6v2e\w _]y2v2e\w c\y6v2e]w e\y6v2e\w z]y2v2z\w6W%y2v2z]w _\y6v2z\w c]y2v6z\w e\y2v2z]w z\y

�
�

{\| }�~�� � �
R O w\R T w]R ^ w\RDb2w�R d

�
�

�
��"��
�

�
�

�/� � � �6��x� � �2��x� � �2��2�
�D�6�\�D�2�]�D� �D�6�\�D�2�]�D�6�\�D�2�]�D�

� ��2� �
�

�

�

� � � � � � � 	
 � � � � � � � � � � �

� � � � � � � � � �

�\�?���D� �/� �\��� ¡�¢ £ �M¤�¥

¦\§2¨��%©/ª2¨
« � ¬

� � � � � � � � � � �� �

� ­ ®
� � � � � � � � � � �

¯ ° ±² �2� � � �

� � � � � � � � � � �� �

� � � � � � � � � � �

� ³
� ´

µ�¶D·D¸D¹ º £ �»�u�]¢ �%¼D¥½�¾�¿ � ÀÁ
Â\Ã Ä%Å�Æ
� � � � � � � 	 � � �

 � �

� Ç

Figure 5: The 5-queens problem using our multi-agent model

Figure 5 shows the initial CSP and the number of valid tuples in each disequation. The
preprocessing agentgenerates 3 blocks of constraints corresponding to a geometric progres-
sion with common quotient 3. The firstblock agenthas only one constraintall-differentcon-
straint, the secondblock agenthas 3 constraints and the thirdblock agenthas 7 constraints.

12 Distributing Constraints by Sampling in Non-binary CSPs

Thus, eachblock agentis committed to its block of constraints and solves its subproblem by
means of a search algorithm. It can be observed that allblock agentscan work concurrently
when the lastblock agentreceives a consistent (partial) state. In section 5, we present an
exhaustive evaluation of then-queens problem in which we can observe the constraint check
saving.

4 Analysis of Our Distributed Model

In this section, we only evaluate the computational cost of thepreprocessing agentbecause
eachblock agentcan use any search algorithm with the corresponding computational com-
plexity. Thepreprocessing agentselects a sample composed ofs(n) points, so the spatial
cost isO(s(n)). The preprocessing agentchecks the consistency of the sample with each
non-binary constraint, so its temporal cost isO(ks(n)). Then, thepreprocessing agentclassi-
fies the set of constraints in ascending order. Its temporal complexity isO(klogk). Thus, the
temporal complexity of thepreprocessing agentis O(max{ks(n), klogk}).

5 Evaluation of Our Model

In this section, we compare the performance of our model with some well-known CSP
solvers: Chronological Backtracking (BT), Generate&Test (GT), Forward Checking (FC)
and Real Full Look Ahead (RFLA), because they are the most appropriate techniques for
observing the number of constraint checks. Furthermore, we compare the performance of our
model with Hill-Climbing because it is a well-known local search algorithm for analyzing
the number of restart savings.

This empirical evaluation was carried out with two different types of problems: bench-
mark problems and random problems.

Benchmark Problems

The n-queens problem is a classical search problem in the artificial intelligence area. The
5-queens problem was studied in the previous section. The 5-queens problem is an instance
of then-queens problem with 10 possible solutions. The problem is to place five queens on
a 5 × 5 chessboard so that no two queens can capture each other. That is, no two queens are
allowed to be placed on the same row, the same column, or the same diagonal. In the general
n-queens problem, a set ofn queens is to be placed on an × n chessboard so that no two
queens attack each other.

In Table 1, we present the amount of constraint check saving in then-queens problem
using GT with our model (Mod+GT), BT with our model (Mod+BT), Forward Checking
with our model (Mod+FC) and Real Full Look Ahead with our model (Mod+RFLA). Here,
our objective is to find all solutions. The results show that the amount of constraint check
saving was significant in Mod+GT and Mod+BT due to the fact that our model classifies the
constraints in ascending order (see Figure 5), and inconsistent tuples were discarded earlier.
Furthermore, the amount of constraint check saving was also significant in Mod+FC and
Mod+RFLA in spite of being more powerful algorithms than BT and GT.

The percentage of restart savings using Hill-Climbing with our model is also presented
in Table 2. Hill-Climbing uses the sample and selects the states with the lowest labels (Ti) to

Distributing Constraints by Sampling in Non-binary CSPs 13

Table 1: Amount of constraint check saving using our model with GT and BT in then-queens problem.

Mod+GT Mod+BT Mod+FC Mod+RFLA
queens Constraint Constraint Constraint Constraint

Check Saving Check Saving Check Saving Check Saving
5 2.1× 104 2.4× 102 150 110
10 4.1× 1011 3.9× 107 1.4× 105 9.3× 104

20 1.9× 1026 3.6× 1018 9.6× 1014 6.03× 1011

50 2.4× 1070 3.6× 1052 3.1× 1044 1.6× 1032

100 2.1× 10143 2.1× 10106 4.5× 1093 1.8× 1066

150 5.2× 10219 3.7× 10161 6.8× 10142 2.1× 10100

200 9.4× 10295 8.7× 10219 9.9× 10198 2.2× 10134

Table 2: Percentage of restart savings using Hill-Climbing(Max-Flip=n) in then-queens problem.

Mod+Hill-Climbing
queens Percentage of

Restart Savings
4 57.62%
5 70.41%
6 75.84%
7 80.04%
8 83.32%
9 85.51%
13 91.50%

restart the search. Here, our objective is to find only one solution. It can be observed that the
percentage was high in the 4-queens problem where the number of restarts was reduced by
57.62%. In the 13-queens problem, the percentage of restarts was reduced by 91.5%.

Random Problems

Benchmark sets are used to test algorithms for specific problems. However, in recent years,
there has been a growing interest in the study of the relation among the parameters that define
an instance of CSP in general (i.e., the number of variables, constraints, domain size, arity of
constraints, etc). Therefore, the notion of randomly generated CSPs has been introduced to
describe the classes of CSPs. These classes are then studied using empirical methods.

In our empirical evaluation, each set of random constraint satisfaction problems was de-
fined by the 3-tuple< n, c, d >, wheren was the number of variables,c the number of
constraints andd the domain size. The problems were randomly generated by modifying
these parameters. We considered all constraints as global constraints, that is, all constraints
had maximum arity. Thus, Tables 3 and 4 sets two of the parameters and varies the other one
in order to evaluate the algorithm performance when this parameter increases. We evaluated
100 test cases for each type of problem and each value of the variable parameter.

The number of constraint checks using BT filtered byarc-consistency(as a preprocessing)
(BT-AC) and BT-AC using our model (Mod+BT-AC) is presented in Table 3. We present the
number of constraint checks in problems where the number of constraints was increased from
3 to 15 and the number of variables and the domain size were set at 5 and 10, respectively:
< 5, c, 10 >. The results show that the number of constraint checks were reduced in all cases.

14 Distributing Constraints by Sampling in Non-binary CSPs

Table 3: Number of constraint checks using BT filtered with Arc-Consistency in problems classes< 5, c, 10 >.
BT-AC Mod+BT-AC

problems constraint constraint
checks checks

< 5, 3, 10 > 2275.5 798.5
< 5, 5, 10 > 14226.3 2975.2
< 5, 7, 10 > 35537.4 5236.7
< 5, 9, 10 > 50315.7 5695.5
< 5, 11, 10 > 65334 5996.3
< 5, 13, 10 > 80384 6283.5
< 5, 15, 10 > 127342 8598.6

Table 4: Number of constraint checks using BT filtered with Arc-Consistency in problems classes< 3, 5, d >.

BT-AC Mod+BT-AC
problems constraint constraint

checks checks

< 3, 5, 5 > 78.9 17.7
< 3, 5, 10 > 150.3 33.06
< 3, 5, 15 > 196.3 41.26
< 3, 5, 20 > 260.5 55.1
< 3, 5, 25 > 344.8 68.9
< 3, 5, 30 > 424.6 85.9
< 3, 5, 35 > 550.4 110.1

Table 4 presents the number of constraint checks in problems where the domain size was
increased from 5 to 35 and the number of variables and the number of constraints were set
at 3 and 5, respectively:< 3, 5, d >. The results were similar and the constraint checks were
also reduced in all cases.

6 Conclusion and Future work

In this paper, we present a distributed model for solving non-binary CSPs, in which apre-
processing agentis committed to ordering and partitioning the constraints so that the tightest
constraints are studied first. This preprocessing agent is only applied in problems where con-
strainedness cannot be known in advance. Then, a set ofblock agentsare incrementally and
concurrently committed to building partial solutions until a global solution is found. Thus, in-
consistent tuples can be found earlier with the corresponding savings in constraint checking.
Also, hard problems can be solved more efficiently overall in problems where all solutions
are required.

As future work, we are working on a distributed model in which thepreprocessing agent
can be removed due to the fact thatblock agentscan dynamically exchange constraints. Thus,
the set of constraints are initially partitioned ink randomly groups. Each of them will be
managed by ablock agent. They will be able to exchange constraints depending on the con-
strainedness and the relationship among variables in the constraint network. Furthermore, the
number ofblock agentscan be enlarged or reduced depending on the problem topology.

Distributing Constraints by Sampling in Non-binary CSPs 15

References

[1] Bartk, R. 1999. Constraint programming: In pursuit of the holy grail.in Proceedings of WDS99 (invited
lecture), Prague, June.

[2] Dechter, R., and Meiri, I. 1994. Experimental evaluation of preprocessing algorithms for constraints
satisfaction problems.Artificial Intelligence68:211–241.

[3] Dechter, R., and Pearl, J. 1988. Network-based heuristics for constraint satisfaction problems.Artificial
Intelligence34:1–38.

[4] Denk, T., and Parhi, K. 1998. Exhaustive scheduling and retiming of digital signal processing systems.
IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing45:821–837.

[5] Freuder, E. 1982. A sufficient condition for backtrack-free search.Journal of the ACM29:24–32.

[6] Frost, D., and Dechter, R. 1995. Look-ahead value orderings for constraint satisfaction problems.In Proc.
of IJCAI-95572–578.

[7] Geelen, P. 1992. Dual viewpoint heuristic for binary constraint satisfaction problems.In proceeding of
European Conference of Artificial Intelligence (ECAI’92)31–35.

[8] Gent, I.; MacIntyre, E.; Prosser, P.; and Walsh, T. 1996a. The constrainedness of search.In Proceedings of
AAAI-96246–252.

[9] Gent, I.; MacIntyre, E.; Prosser, P.; and Walsh, T. 1997b. The constrainedness of arc consistency.Principles
and Practice of Constraint Programming327–340.

[10] Haralick, R., and G., E. 1980. Increasing tree efficiency for constraint satisfaction problems.Artificial
Intelligence14:263–314.

[11] Kumar, V. 1992. Algorithms for constraint satisfaction problems: a survey.Artificial Intelligence Maga-
zine1:32–44.

[12] Liu, J. 2001. Autonomous agents and multi-agent systems: Explorations in learning, self-organization,
and adaptative computation.World Scientific, Singapore.

[13] Sadeh, N., and Fox, M. 1990. Variable and value ordering heuristics for activity-based jobshop scheduling.
In proc. of Fourth International Conference on Expert Systems in Production and Operations Management
134–144.

[14] Salido, M., and Barber, F. 2003. A Polynomial Algorithm for Continuous Non-binary Disjunctive CSPs:
Extended DLRs.Knowledge Based Systems. Ed. Elsevier Science16:277–285.

[15] Tsang, E. 1993.Foundation of Constraint Satisfaction. London and San Diego: Academic Press.

[16] Wallace, R., and Freuder, E. 1992. Ordering heuristics for arc consistency algorithms.In Proc. of Ninth
Canad. Conf. on A.I.163–169.

[17] Walsh, T. 1998. The constrainedness knife-edge.In Proceedings of the 15th National Conference on AI
(AAAI-98)406–411.

[18] Wooldridge, M., and Jennings, R. 1995. Agent theories, arquitectures, and lenguajes: a survey.Intelligent
Agents1–22.

[19] Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K. 1998. The distributed constraint satisfaction problem:
formalization and algorithms.In IEEE Transactions on Knowledge and Data Engineering10:673–685.

[20] Yokoo, M. 1995. Asynchronous weak-commitment search for solving distributed constraint satisfaction
problems.Proc. of the First International Conference on Principles and Practice of Constraint Programming
88–102.

