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Abstract.
It is well known that many scheduling problems can be modeled as constraint

optimization problems. The scheduling of train services can be considered as a prob-
lem subject to a number of constraints describing railway infrastructure, required train
services and reasonable time-intervals for waiting and transits. Railway optimization
problems are known to be hard problems and a good solution or the best solution is
a rather difficult task. In this work, we propose a topological constraint optimization
technique for solving periodic train scheduling, developed in collaboration with the
National Network of Spanish Railways (RENFE). This topological technique trans-
forms the railway optimization problem in subproblems such that a traffic pattern is
generated for each subproblem. These traffic patterns will be periodically repeated
to compose the entire running map. The results show that this technique improve
the results obtained by well known tools as LINGO and ILOG Concert Technology
(CPLEX).

1 Introduction

Over the last few years, railway traffic has increased considerably, which has created the
need to optimize the use of railway infrastructures. This is, however, a hard and difficult
task. Thanks to developments in computer science and advances in the fields of optimization
and intelligent resource management, railway managers can optimize the use of available
infrastructures and obtain useful conclusions about their topology.

The overall goal of a long-term collaboration between our group at the Polytechnic Uni-
versity of Valencia (UPV) and the National Network of Spanish Railways (RENFE) is to
offer assistance to help in the planning of train scheduling, to obtain conclusions about the
maximum capacity of the network, to identify bottlenecks, to determine the consequences of
changes, to provide support in the resolution of incidents, to provide alternative planning and
real traffic control, etc. Besides of mathematical processes, a high level of interaction with
railway experts is required to be able to take advantage of their experience.

Different models and mathematical formulations for train scheduling have been created
by researchers [10, 4, 5, 9, 7, 3, 6, 2], etc. Several European companies are also working on
similar systems. These systems include complex stations, rescheduling due to incidents, rail
network capacities, etc. These are complex problems for which work in network topology
and heuristic-dependent models can offer adequate solutions.



In this paper, we propose a topological constraint optimization technique for solving peri-
odic train scheduling. This technique has been inserted in our system [1] and it is committed
to solve this problem in order to obtain as good and feasible running map as possible. The
system is able to plot the obtained running map. A running map contains information regard-
ing railway topology (stations, tracks, distances between stations, traffic control features, etc.)
and the schedules of the trains that use this topology (arrival and departure times of trains at
each station, frequency, stops, junctions, crossing, etc,) (Figure 1). In our system, the railway
running map problem is formulated as a Constraint Optimization Problem (COP). Variables
are frequencies, arrival and departure times of trains at stations. Constraints are composed
by user requirements and the intrinsical constraints (railway infrastructures, rules for traf-
fic coordination, etc.). These constraints are composed by the parameters defined using user
interfaces and database accesses. The objective function is to minimize the journey time of
all trains. The problem formulation is (traditionally) translated into a formal mathematical
model to be solved for optimality by means of mixed integer programming techniques. In our
framework, the formal mathematical model is partitioned in two different subproblems: inte-
ger programming problem composed by the constraints with integer variables and linearized
problem in which there are now variables of type real remaining to be assigned. Therefore,
the problem constraints are classified such that most restricted constraints are studied first
[11]. This is based on thefirst-fail principle, which can be explained as

”To succeed, try first where you are more likely to fail”

The most restricted constraints are considered to be composed of integer variables. In
this way, our system studies first the integer programming problem and then it solves the lin-
earized problem. The integer programming problem will be partitioned in a set of subprob-
lems such that the solution of each subproblem will generate a traffic pattern. The partition is
carried out through the stations that take part in the running map. Each block of the partition
is composed by contiguous stations, so that each traffic pattern represents the running map
corresponding to each block of constraints. In Figure 1, a posible block of the partition may be
composed by the first four stations:Malaga Cent, Malaga Renfe, Los PradosandAeropuerto.
Each traffic pattern will be periodically repeated to composed the entire running-map.

2 Problem Topology

A sample of a running map is shown in Figure 1, where several train crossings can be ob-
served. On the left side of Figure 1, the names of the stations are presented and the vertical
line represents the number of tracks between stations (one-way or two-way). The objective of
the system is to obtain a correct and optimized running map taking into account: (i) the rail-
way infrastructure topology, (ii) user requirements (parameters of trains to be scheduled), (iii)
traffic rules, (iv) previously scheduled traffic on the same railway network, and (v) criteria for
optimization.

A railway network is basically composed of stations and one-way or two-way tracks. A
dependency can be:

• Station: Place for trains to park, stop or pass through. Each station is associated with a
unique station identifier. There are two or more tracks in a station where crossings.
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Figure 1: A sample of a running map

• Halt: Place for trains to stop, pass through, but not park. Each halt is associated with a
unique halt identifier.

• Junction: Place where two different tracks fork. There is no stop time.

In Figure 1, horizontal dotted lines represent halts or junctions, while continuous lines
represent stations. On a rail network, the user needs to schedule the paths ofn trains going
in one direction andm trains going in the opposite direction, trains of a given type and at a
desired scheduling frequency.

The type of trains to be scheduled determines the time assigned for travel between two
locations on the path. The path selected by the user for a train trip determines which stations
are used and the stop time required at each station for commercial purposes. In order to
perform crossing in a section with a one-way track, one of the trains should wait in a station.
This is called atechnical stop. One of the trains is detoured from the main track so that the
other train can cross or continue. (Figure 2).

2.1 Railway Traffic Rules, topological and requirement constraints

A valid running map must satisfy and optimize the set of existing constraints in the periodic
problem. Some of the main constraints to be considered are:

1. Traffic rules guarantee crossing operations. The main rules to take into account are:

• Crossing constraint: Any two trains and going in opposite directions must not simul-
taneously use the same one-way track. The crossing of two trains can be performed
only on two-way tracks and at stations, where one of the two trains has been de-
toured from the main track (Figure 2). Several crossings are shown in Figure 1.

• Expedition time constraint. There exists a given time to put a detoured train back on
the main track and exit from a station.
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Figure 2: Constraints related to crossing in stations

• Reception time constraint. There exists a given time to detour a train from the main
track so that crossing or overtaking can be performed.

2. User Requirements: The main constrains due to user requirements are:

• Type of train and Number of trainsgoing in each direction to be scheduled and
Travel timebetween locations.

• Path of trains: Locations used andStop timefor commercial purposed in each direc-
tion.

• Scheduling frequency. The frequency requirements of the departure of trains in both
directions. This constraint is very restrictive, because, when crossing is performed,
trains must wait for a certain time interval at stations. This interval must be prop-
agated to all trains going in the same direction in order to maintain the established
scheduling frequency.

In accordance with user requirements, the system should obtain the best solutions avail-
able so that all constraints are satisfied. Several criteria can exist to qualify the optimality
of solutions: minimize duration and/or number of technical stops, minimize the total time of
train trips (span) of the total schedule, giving priority to certain trains, etc.

2.2 General System Architecture

The general outline of our system is presented in Figure 3. It shows several steps, some of
which require the direct interaction with the human user to insert requirement parameters,
parameterize the constraint solver for optimization, or modify a given schedule. First of all,
the user should require the parameters of the railway network and the train type from the
central database (Figure 3). This database stores the set of locations, lines, tracks, trains, etc.
Normally, this information does not change, but authorized users may desire to change this
information. With the data acquired from the database, the system generates the formal math-
ematical model. This model is composed by a large number of mixed-integer constraints. To
translate the mixed-integer problem into a linear problem, a topological technique is carried
out to assign value to each integer variable. This technique carries out a partition of the sta-
tions such that each block of stations represents a subproblem and a traffic pattern (solution)
must be generated for each subproblem. This traffic pattern is generated based on the problem
topology just as the number of stations, the train frequency, the type of stations, and mainly
the distance among the stations. Once the traffic patterns are generated, the integer variables
are instantiated and the linearized problem is straightforward solved returning the running



map data. If the mathematical model is not feasible, the user must modify the parameters,
mainly the most restrictive ones. If the running map is consistent, the graphic interface plots
the scheduling. Afterwards, the user can graphically interact with the scheduling to modify
the arrival or departure times. Each interaction is automatically checked by the constraint
checker in order to guarantee the consistency of changes. The user can finally print out the
scheduling, to obtain reports with the arrival and departure times of each train in each loca-
tion, or graphically observe the complete scheduling topology.
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Figure 3: General scheme of our tool.

3 Topological Constraint Optimization Technique

The railway optimization problem is considered to be more complex than job-shop schedul-
ing [8, 12]. Here, two trains, traveling in opposite directions use tracks between two locations
for different durations, and these durations are causally dependent on how the scheduling
itself is done (ie: order of tasks), due to the stopping, and starting time for trains in a non-
required technical stop, expedition, reception times, etc. Some processes (detour from the
main railway) may or may not be required for each train at each location. In our system, the
problem is modeled as a COP, where finite domain variables represent frequency and arrival
and departure times of trains of locations. Relations on these variables permit the manage-
ment of all the constraints due to the user requirements, topological constraints, traffic rules,
commercial stops, technical operations, maximum slacks, etc. Hundred of trains, of differ-
ent types, in different directions, along paths of dozens of stations have to be coordinated.
Thus, many variables, and many and very complex constraints arise. The problem turns into
a mixed-integer programming problem, in which thousands of inequalities have to be satis-
fied and a high number of variables take only integer values. As is well known, this type of
model is far more difficult to solve than linear programming models.

Our goal is focused on periodic train scheduling, where all the trains in the same direc-
tion are of the same type; they stop in the same stations; and no previously trains are sched-
uled. Therefore, our objective is to solve this problem previously assigning values to integer
variables such that the mixed-integer programming problem is transformed into a linear pro-
gramming problem. Then, the linearized problem is easily solved. In this way, the topological
constraint optimization technique is committed to this goal.



The topological constraint optimization technique generates the traffic patterns based on
several features as identification of bottlenecks, periodicity of running maps, number of sta-
tions, distance among stations, possible wide-paths for trains, etc.

3.1 Topological Technique

The main idea of this technique is to generate a traffic pattern for each set of stations such
that the union of these contiguous traffic patterns determine the journey of each train. Figure
4 shows a possible set of stations (block).
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Figure 4: First traffic pattern generation.

The block of stations will be selected taking into account the speed of the trains, the
distance among stations and the frequency inserted into the problem. Each traffic pattern
covers the block of stations necessary for a train to go from the first station of the block
to the last station of the block and return from the last station to the first one (round trip).
This round trip must arrive to the first station (St.1) as close but before to the following
train departure (Train 2) as possible. Thus, our objective is to minimize the remaining time
between the frequency and the round trips. Each possible round trip will involve a different
set of constraints. The round trip that minimize the remaining time will be selected as the
pattern. This traffic pattern will be composed by a higher number of stations than the rest of
possible round trips.

Once the first traffic pattern has been generated, we study the following pattern with
the remaining stations. Figure 5 shows the generation of the second pattern using the same
strategy.

Therefore, when the second traffic pattern is generated, the topological technique studies
the following traffic pattern until there is no station left. In Figure 6, we can observe an
example of running map with three complete traffic patterns and some stations without traffic
pattern. However, it is usual that there are some stations left. These stations are not involved
in any traffic pattern. We must take into account that the best traffic pattern in a block of
stations implies to start the following block of stations in the last station of the previous
block. We must check all traffic patterns together in order to obtain the journey. Moreover,
the first combination of traffic patterns may not be the best solutions due to existence of some
combinations of traffic patterns. This combination depends on the number of stations that are
not involved in a traffic pattern. In this way, we explore all possible combinations in order to
obtain the best set of traffic patterns.
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Figure 5: Second Pattern generation.
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Figure 6: Periodic Pattern generation.

Figure 6 shows an example in which three stations are not involved in any traffic pattern.
So, some combinations are possible and they are restricted to the set of stations involved in
the first traffic pattern. Thus, these three stations can be sorted between the first and the last
traffic pattern. In this way, the first traffic pattern may start at the second or third station and
the last traffic pattern may finish in the penultimate or last but two station. However, due to
efficient use of resources, or depending on the importance of the station, it is more appropriate
the first traffic pattern (last traffic pattern) starts (finishes) at the first (last) station.

4 Evaluation

The application and performance of this system depends on several factors: Railway topology
(locations, distances, tracks, etc.), number and type of trains (speeds, starting and stopping
times, etc.), frequency ranges, initial departure interval times, etc.

In this section, we compare the performance of our topological technique with some
well-known tools: LINGO as an Operational Research tool and ILOG Concert Technology
(CPLEX) that combines techniques of constraint programming and mathematical program-
ming. Both are appropriate tools for solving these types of problems. However, the system
carried out important preprocessing heuristics [1] before executing these well-known tools
in order to significantly reduce the size of these problems. Therefore, CPLEX and LINGO
are combined with some heuristics, and they obtained the optimal solutions of their relaxed
problems.



This empirical evaluation was carried out integrating both different types of problems:
benchmark (real) problems and random problems. The computer used in our tests was a
Pentium IV 2.8Mz with 512 Mb. of memory. Thus, we defined random instances over a real
railway infrastructure that joins two important Spanish cities (La Coruña and Vigo). The
journey between these two cities is currently divided by 40 dependencies between stations
(23) and halts (17).

In our empirical evaluation, each set of random instances was defined by the 3-tuple
< n, s, f >, wheren was the number of trains in each direction,s the number of stations/halts
andf the frequency. The problems were randomly generated by modifying these parameters.
Thus, each of the tables shown sets two of the parameters and varies the other one in order to
evaluate the algorithm performance when this parameter increases.

In Table 1, we present the running time in seconds and the journey time in problems
where the number of trains was increased from 5 to 50 and the number of stations/halts
and the frequency were set at 40 and 90, respectively:< n, 40, 90 >. The results shows
that CPLEX obtained better running time and journey time than LINGO. However, it can be
observed that the running time is lower using the topological technique than the other two
COP tools. Furthermore, our technique always obtained the same journey time (lower than
CPLEX and LINGO) due to the fact that it generates the corresponding traffic patterns and
it is independent of the number of trains. Figure 7 shows the system interface executing our
technique with the instance< 10, 40, 90 >. The first window shows the user parameters, the
second window presents the best solution obtained in this moment, the third window presents
data about the best solution found, and finally the last window show the obtained running
map.

Table 1: Running time (sec.) and journey time in problems with different trains.

< n, 40, 90 > CPLEX+heuristics LINGO+heuristics TOPOLOGICAL
Trains running time journey time running time journey time running time journey time

5 5” 2:29:33 8” 2:30:54 3” 2:22:08
10 8” 2:26:04 17” 2:31:37 4” 2:22:08
15 13” 2:26:18 24” 2:31:51 5” 2:22:08
20 16” 2:26:25 35” 2:31:58 5” 2:22:08
50 55” 2:31:09 1302” 2:32:11 10” 2:22:08

Table 2 shows the running time in seconds and the journey time in problems where the
number of stations was increased from 10 to 60 and the number of trains and the frequency
were set at 10 and 90, respectively:< 10, s, 90 >. In this case, only stations were included to
analyze the behavior of the techniques. It can be observed that the running time was lower us-
ing our technique in all instances. The journey time was also improved using our topological
technique. It is important to realize the difference between the instance< 10, 40, 90 > of the
Table 1 and the instance< 10, 40, 90 > of the Table 2. They represents the same instance, but
in Table 2 we only used stations (no halts), so that the number of possible crossing between
trains is much more larger. This item reduced the journey time from 2:22:08 to 2:20:22, but
the number of combination increased the running time from 4” to 7”. Furthermore, CPLEX
and LINGO maintained similar behaviors.

In Table 3, we present the running time in seconds and the journey time in problems where
the frequency was increased from 60 to 140 and the number of trains and stations were set at
20 and 40, respectively:< 20, 40, f >. It can be observed that the frequency the topological



Figure 7: System Interface.

Table 2: Running time (sec.) and journey time in problems with different number of stations.

< 10, s, 90 > CPLEX+heuristics LINGO+heuristics TOPOLOGICAL
Stations running time journey time running time journey time running time journey time

10 2” 0:58:36 4” 0:58:06 1” 0:57:36
20 3” 1:04:11 20” 1:04:11 2” 1:04:11
30 15” 1:45:08 42” 1:45:38 4” 1:45:08
40 56” 2:23:16 28” 2:24:36 7” 2:20:22
60 340” 3:44:28 326” 3:44:22 40” 3:32:15

technique improved the journey time when the frequency increased. As in previous results,
the running time of the topological technique was lower than CPLEX and LINGO.



Table 3: Running time (sec.) and journey time in problems with different cadencies.

< 20, 40, f > CPLEX+heuristics LINGO+heuristics TOPOLOGICAL
Frequency running time journey time running time journey time running time journey time

60 > 43200” - > 43200” - 36” 2:32:11
90 17” 2:26:25 32” 2:31:58 5” 2:22:08
100 18” 2:23:10 34” 2:22:55 3” 2:19:09
120 16” 2:16:17 27” 2:18:47 4” 2:16:00
140 17” 2:20:18 27” 2:16:19 4” 2:17:03

5 Conclusions

We have proposed a topological constraint optimization technique for solving periodic train
scheduling in collaboration with the National Network of Spanish Railways (RENFE). This
technique has been inserted into the system to solve more efficiently periodic timetables.
This system, at a current stage of integration, supposes the application of methodologies
of Artificial Intelligence in a problem of great interest and will assist railways managers in
optimizing the use of railway infrastructures and will help them in the resolution of complex
scheduling problems.
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