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Abstract
In this paper we describe STP, a novel algorithm for temporal
planning. Similar to several existing temporal planners, STP
relies on a transformation from temporal planning to classi-
cal planning, and constructs a temporal plan by finding a se-
quence of classical actions that solve the problem while satis-
fying a given set of temporal constraints. Our main contribu-
tion is that STP can solve temporal planning problems that
require simultaneous events, i.e. the temporal actions have
to be scheduled in such a way that two or more of their ef-
fects take place concurrently. To do so, STP separates each
event into three phases: one phase in which temporal actions
are scheduled to end, one phase in which simultaneous ef-
fects take place, and one phase in which temporal actions are
scheduled to start. Experimental results show that STP sig-
nificantly outperforms state-of-the-art temporal planners in a
domain requiring simultaneous events.

Introduction
How expressive can a forward-search temporal planner be?
The third International Planning Competition (IPC) intro-
duced the most common language for modeling tempo-
ral planning problems, PDDL 2.1 (Fox and Long 2003).
PDDL 2.1 is compatible with classical planning problems,
and its semantics are defined in terms of the semantics
of classical actions. This connection was studied further
by Rintanen (2007), who proved that plan existence for
temporal planning with succinct models is EXPSPACE-
complete. As a motivation, Rintanen mentioned a basic re-
duction from temporal planning to classical planning called
TEMPO (Cushing et al. 2007), and proposed a restriction to
PDDL 2.1 that is reducible to classical planning, implying a
decrease in complexity from EXPSPACE to PSPACE.

Later, Jiménez, Jonsson, and Palacios (2015) built on this
idea and provided an effective implementation of TEMPO re-
lying on a simple modification of a classical planner. In con-
trast to Cushing et al. (2007) and later work, Jiménez, Jon-
sson, and Palacios dealt with more expressive forms of con-
currency, i.e. concurrency does not only occur in the form of
single hard envelopes.
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Rintanen (2007) argued that the complexity of temporal
planning remains in PSPACE if we avoid an unbounded de-
pendency on past and present information for determining
the next temporal state. His restrictions prohibit a temporal
action from executing in parallel with itself, and assumes
that time is discrete.

In this work we explore further the expressivity of classi-
cal planning for solving complex temporal problems, focus-
ing on the case of simultaneous events in which the effects
of temporal actions take place concurrently. Many situations
in the real-world involve simultaneous events. A clear ex-
ample are relay races where a runner gives the relay at the
same time that another runner receives it. This scenario, for
instance, could be translated into an assembly line where
robotic arms give and receive mechanical pieces.

Given the importance of classical planning as a basic
model for multi-agent planning (Brafman and Domshlak
2008), we foresee the importance of truly concurrent tem-
poral planning for enabling interesting forms of multi-agent
temporal planning. Furthermore, Rintanen (2015b) showed
that PDDL 2.1 induces temporal gaps between consecutive
independent actions; thus, no current approach taking PDDL
problems as input are capable of producing plans with simul-
taneous events.

Our approach builds on previous work by Jiménez, Jons-
son, and Palacios (2015), but we stress the differences with
respect to the initial ideas of Rintanen (2007), such that our
translation is not necessarily affected by the time scale or the
durations of the actions.

The rest of the paper is organized as follows. First we in-
troduce classical and temporal planning models. Next we
present STP, motivating the compilation and proving its
soundness. Then we present experimental results, showing
that STP is particularly strong in the case of simultaneous
events. Finally, we comment on related work and conclude.

Background
In this section we introduce the formalisms of classical plan-
ning and temporal planning. Since we are interested in tem-
poral planning with simultaneous events, we focus specifi-
cally on the semantics of concurrent action execution. Fur-



thermore, we introduce the mechanism for preserving the
temporal constraints between actions.

Classical Planning
Let F be a set of propositional variables or fluents. A state
s ⊆ F is a subset of fluents that are true, while all fluents in
F \ s are implicitly assumed to be false. A subset of fluents
F ′ ⊆ F holds in a state s if and only if F ′ ⊆ s.

A classical planning instance is a tuple P = 〈F,A, I,G〉,
where F is a set of fluents, A is a set of actions, I ⊆ F
is an initial state, and G ⊆ F is a goal condition (usually
satisfied by multiple states). Each action a ∈ A has precon-
dition pre(a) ⊆ F , add effect add(a) ⊆ F , and delete effect
del(a) ⊆ F , each a subset of fluents. Action a is applicable
in state s ⊆ F if and only if pre(a) holds in s, and applying
a in s results in a new state sn a = (s \ del(a)) ∪ add(a).

A plan for P is an action sequence π = 〈a1, . . . , an〉 that
induces a state sequence 〈s0, s1, . . . , sn〉 such that s0 = I
and, for each i such that 1 ≤ i ≤ n, ai is applicable in si−1
and results in the next state si = si−1nai. The plan π solves
P if and only if G holds in the last state, i.e. if G ⊆ sn.

Actions may have conditional effects, a common exten-
sion to classical actions. Each conditional effect has a con-
dition and effects 〈condi(a), caddi(a), cdeli(a)〉. When an
action a with conditional effects is applicable in an state s,
the effects of a include effects whose conditions hold in s,
assuming the usual consistency requirements. Let’s say

tadd = add(a) ∪
⋃
s�condi(a)

caddi(a),
tdel = del(a) ∪

⋃
s�condi(a)

cdeli(a).

Then, sn a = (s \ tdel(a)) ∪ tadd(a).
A concurrent actionA = {a1, . . . , ak} is a set of multiple

actions from A. We adopt the definition of valid concurrent
actions from PDDL 2.1 (Fox and Long 2003):
Definition 1. A concurrent action A = {a1, . . . , ak} is
valid if an only if does not exist a fluent f ∈ F and an ac-
tion pair (ai, aj) ⊆ A such that f ∈ add(ai) ∪ del(ai) and
f ∈ pre(aj) ∪ add(aj) ∪ del(aj).

Intuitively, if f is an effect of an action ai ∈ A, f cannot
appear as a precondition or effect of another action aj ∈ A.
Though this definition imposes a strong restriction on con-
current actions, it is commonly used in temporal planning,
and implemented as part of VAL (Howey, Long, and Fox
2004), a tool used to validate temporal plans.

We can view a valid concurrent action A = {a1, . . . , ak}
as a classical action by defining its precondition and effects
as the union of the individual preconditions and effects:

pre(A) =

k⋃
i=1

pre(ai), add(A) =

k⋃
i=1

add(ai),

with del(A) defined analogously. Due to Definition 1, A is
a well-defined classical action without conflicting effects.

A concurrent plan for P is a sequence of concurrent ac-
tions π = 〈A1, . . . ,An〉. The concurrent plan π solves P
if and only if each concurrent action Ai, 1 ≤ i ≤ n, is
valid and the resulting sequence of equivalent classical ac-
tions solves P according to the semantics of classical plans.

Temporal Planning
A temporal planning problem1 is a tuple P = 〈F,A, I,G〉,
where the fluent set F , initial state I and goal condition G
are defined as for classical planning. The action set A con-
sists of temporal or durative actions a ∈ A composed of:

• d(a): duration.

• pres(a), preo(a), pree(a): preconditions of a at start, over
all, and at end, respectively.

• adds(a), adde(a): add effects of a at start and at end.

• dels(a), dele(a): delete effects of a at start and at end.

Although a has a duration, its effects apply instanta-
neously at the start and end of a, respectively. The precondi-
tions pres(a) and pree(a) are also checked instantaneously,
but preo(a) has to hold for the entire duration of a.

The semantics of temporal actions can be defined in terms
of two discrete events starta and enda, each of which is nat-
urally expressed as a classical action (Fox and Long 2003):

pre(starta) = pres(a), pre(enda) = pree(a),
add(starta) = adds(a), add(enda) = adde(a),
del(starta) = dels(a), del(enda) = dele(a).

Starting temporal action a in state s is equivalent to ap-
plying the classical action starta in s, first verifying that
pre(starta) holds in s. Ending a in state s′ is equivalent to
applying enda in s′, first verifying that pre(enda) holds in s′.
The duration d(a) and precondition over all preo(a) impose
restrictions on this process: enda has to occur exactly d(a)
time units after starta and preo(a) has to hold in all states
between starta and enda. For brevity, we use the term con-
text to refer to a precondition over all preo(a), and we use
Fo ⊆ F to denote the set of fluents that appear in contexts.

A temporal plan for P is a set of action-time pairs π =
{(a1, t1), . . . , (ak, tk)}. Each action-time pair (a, t) ∈ π
is composed of a temporal action a ∈ A and a scheduled
start time t of a, and induces two events starta and enda
with associated timestamps t and t + d(a), respectively. If
we order events by their timestamp and merge events with
the same timestamp, the result is a concurrent plan π′ =
〈A1, . . . ,Am〉 for the associated classical planning problem
P ′ = 〈F,A′, I, G〉, where A′ = {starta, enda : a ∈ A}.

A temporal plan π = {(a1, t1), . . . , (ak, tk)} solves P if
and only if the induced concurrent plan π′ = 〈A1, . . . ,Am〉
solves the associated classical planning problem P ′ and, for
each (a, t) ∈ π with starta ∈ Ai and enda ∈ Aj , the context
preo(a) holds in the states si, . . . , sj−1 of the state sequence
induced by π′, i.e. in all states between actions Ai and Aj .

For π to solve P , the concurrent actions of the induced
concurrent plan π′ = 〈A1, . . . ,Am〉 have to be valid ac-
cording to Definition 1. The plan π contains simultaneous
events if and only if m < 2k, i.e. if at least two induced
events share time stamps. The context preo(a) of a tempo-
ral action a is not affected by simultaneous events: if starta
is part of a concurrent action A, it is safe for another event
in A to add a fluent f ∈ preo(a), and if enda is part of a
concurrent actionA′, it is safe for an event inA′ to delete f .

1We use the definition of PDDL 2.1 (Fox and Long 2003).



1) τa − τb ≤ −u
2) τb − τc ≤ −u
3) τc − τc ≤ 1− u
4) τc − τa ≤ 4− u
5) τa − τb ≤ −1− u

(a) Temporal constraints.

τa

τb τc

−1 − u

−u

4 − u

(b) STN.

a[5]

b[4]

c[1]

Time

(c) Resulting temporal plan.

Figure 1: Example temporal constraints, associated STN and resulting temporal plan.

The quality of a temporal plan is given by its makespan,
i.e. the temporal duration from the the start of the first tem-
poral action to the end of the last temporal action. Without
loss of generality, we assume that the first temporal action
is scheduled to start at time 0, i.e. min(a,t)∈π t = 0. In this
case, the makespan of a temporal plan π is formally defined
as max(a,t)∈π(t+ d(a)).

Simple Temporal Networks (STNs)
Temporal constraints on time variables can be represented
using simple temporal networks, or STNs (Dechter, Meiri,
and Pearl 1991). An STN is a directed graph with time vari-
ables τi as nodes, and an edge (τi, τj) with label c represents
a constraint τj − τi ≤ c. Dechter, Meiri, and Pearl (1991)
showed that scheduling fails if and only if an STN contains
negative cycles. Else, the range of feasible assignments to
a time variable τi is given by [−di0, d0i], where dij is the
shortest distance in the graph from τi to τj and τ0 is a ref-
erence time variable whose value is assumed to be 0. Floyd-
Warshall’s shortest path algorithm can be used to compute
shortest paths and test for negative cycles (i.e. whether the
cost of a shortest path from a node to itself is negative).

We illustrate the application of STNs to temporal plan-
ning using an example from (Cushing et al. 2007). Let a, b
and c be temporal actions with durations d(a) = 5, d(b) = 4
and d(c) = 1, respectively. Assume that we are given
an event sequence 〈starta, startb, startc, endc, enda, endb〉.
Then there are three associated time variables τa, τb and τc;
we designate τa as the reference time variable whose value
is 0 since a is the temporal action that starts first. Given the
above event sequence, the temporal constraints induced by
consecutive events in the sequence are:

1. τa < τb,

2. τb < τc,

3. τc < τc + d(c),

4. τc + d(c) < τa + d(a),

5. τa + d(a) < τb + d(b).

Since the temporal constraints of TEMPO are strict, we in-
troduce a slack unit of time u and rewrite each constraint
τj +x < τi+y on the form τj− τi ≤ y−x−u (this is pos-
sible since τi and x are non-negative). Figure 1a shows the
temporal constraints rewritten this way. Note that constraint
5) subsumes constraint 1), and that constraint 3) is trivially
satisfied whenever u < 1.

Figure 1b shows the associated STN after removing con-
straints 1) and 3). This STN has no negative cycles, and the
range of feasible assignments to τb is given by [−dba, dab] =
[1 + u, 4− 2u]. Likewise, the range of feasible assignments
to τc is given by [−dca, dac] = [1 + 2u, 4 − u]. This makes
sense: a starts at time 0, so for b to end after a ends, b has
to start after time 1. For c to end before a ends, c has to
start before time 4. The remaining bounds are implied by
the fact that c starts after b starts. Since one of the goals
of temporal planning is to minimize makespan, i.e. the time
until the last action of the temporal plan ends, we always se-
lect the smallest possible assignment to each time variable
τi, i.e. −di0. In the example, this results in a temporal plan
{(a, 0), (b, 1 + u), (c, 1 + 2u)}, illustrated in Figure 1c.

Theoretically, STNs can be modeled in PDDL, using flu-
ents to represent the entries of a matrix and actions to sim-
ulate updates of Floyd-Warshall. However, each entry of the
matrix can take on a range of values, and the size of the
matrix is not bounded by the number of active actions, but
rather the total number of temporal actions in the plan. In
practice, the enormous number of necessary fluents and ac-
tions makes this approach unfeasible.

Jiménez, Jonsson, and Palacios (2015) proposed an al-
ternative approach for incorporating STNs into temporal
planning. They represent lifted temporal states as part of
the search nodes of the Fast Downward planning sys-
tem (Helmert 2006), which is where auxiliary information
about a state is stored (e.g. the predecessor state). Specifi-
cally, to each search node they add an STN, a list of active
actions and the latest event.

Each time a compiled action is applied (either starta or
enda for some a), Fast Downward generates a successor
state. To the search node associated with this state they add
an STN which is a copy of the STN of its predecessor, but
with a single new edge corresponding to the temporal con-
straint generated by the successor rule of TEMPO. They then
recompute the shortest paths of the STN.

Given an STN (V,E) with accompanying shortest paths,
Cesta and Oddi (1996) described an O(|V ||E|) algorithm
for adding a single edge to the STN and recomputing the
shortest paths. However, Jiménez, Jonsson, and Palacios
take a different approach to updating the STN. Instead of
explicitly representing the STN, they represent the STN im-
plicitly using the matrix of shortest distances (as in Floyd
Warshall’s algorithm). When a new edge (τi, τj) is added
to the STN, for each pair of nodes there is a single new



candidate shortest path, namely that via (τi, τj). Since the
shortest distances to τi and from τj are already represented,
the update can be performed in time O(|V |2), which is typi-
cally much smaller than O(|V ||E|). In the modified version
of Fast Downward, they prune a search node whenever the
corresponding STN contains negative cycles, i.e. when the
temporal actions cannot be scheduled in a way that coin-
cides with the current event sequence. The temporal con-
straints can thus be viewed as an implicit precondition of
actions which is invisible to the planner (e.g. when comput-
ing heuristics).

POPF (Coles et al. 2010) and OPTIC (Benton, Coles, and
Coles 2012) also use STNs for solving temporal planning
problems. POPF encodes the STN using linear program-
ming, which allows it to compute plans with actions that
cause continuous linear numeric changes. On the other hand,
OPTIC encodes the STN as a mixed integer problem which
additionally allows handling temporally dependent costs.

The STP Planner
In this section we describe STP (Simultaneous Temporal
Planner). STP is built on top of the same framework as
TP (Jiménez, Jonsson, and Palacios 2015), but incorporates
additional machinery in order to handle simultaneous events.
STP shares several characteristics with TP:

1. Both TP and STP apply a modified version of the Fast
Downward (FD) planning system to generate temporal
plans. The modified version of FD incorporates simple
temporal networks or STNs to represent temporal con-
straints.
There is a time variable τi for each temporal action ai
of a temporal plan, and a feasible assignment to τi corre-
sponds to the time ti when ai should be scheduled to form
an action-time pair (ai, ti). During the search process, a
branch is pruned if the temporal constraints are violated.
At the end of the section we describe the temporal con-
straints imposed by STP.

2. Both TP and STP impose a bound K on the number of
active temporal actions, that started but did not end yet.
Hence no more than K temporal actions can execute con-
currently.

3. Both compilations are described for problems with fixed
durations and no duration dependent effects.

Unlike TP, STP also defines a constant C that represents
the maximum value of a cyclic counter that starts at 0, and
resets to 0 after reaching C (more details later).

STP works by protecting the contexts of temporal actions
in case a naı̈ve execution of events using classical planning
would produce inconsistent results. Our compilation divides
each concurrent event into three phases:

1. End phase (immediately before the event). This is where
active actions are scheduled to end, and in doing so, the
corresponding counters of fluents in context are decre-
mented.

2. Event phase (concurrent event itself). This is where si-
multaneous events take place, both ending and starting

endphase finisha

eventphase
dostartca
doendca

startphase
launcha
resetf

setevent

setstart

setendi

Figure 2: Interaction between the different actions intro-
duced by the STP planner in the different phases.

freea startinga

activeaendinga

dostartca

launcha

finisha

doendca

Figure 3: Fluents that are enabled each time an action in the
compilation is executed.

actions. Here we check preconditions and apply effects,
and verify that the concurrent event is valid.

3. Start phase (immediately after the event). Here we check
that the contexts of active actions that just started are satis-
fied (possibly as a result of being added during the concur-
rent event itself), and increment the corresponding coun-
ters of fluents in context.

Figure 2 shows the interconnection between the phases
and actions introduced in the compilation. Actions setevent,
setstart and setendi change the current phase, whereas the
other actions can only be applied (if their preconditions
hold) in the corresponding phase. Actions dostart and doend
correspond to the semantic events. Execution begins in the
endphase, and ends in the startphase.

Figure 3 shows the cycle each action a ∈ A passes
through in the compilation. Between dostarta and doenda,
actions launcha and finisha execute the start phase and end
phase, respectively. Each time we transition from one state
to another, we delete the auxiliary fluent of the state, and
add the next, thus obtaining a mutex invariant. We also use
additional fluents nstartinga and nendinga, that have the op-
posite values of startinga and endinga, respectively.

Now, we are ready to present the compilation itself. Let
P = 〈F,A, I,G〉 be a temporal planning problem. Given
constants K and C, STP compiles P into a classical plan-
ning problem ΠK,C = 〈FK,C , AK,C , IK,C , GK,C〉.

Fluents
To ensure that the contexts of temporal actions are not vio-
lated, STP follows the same scheme as TP: for each fluent
f ∈ Fo that appears in contexts, we introduce fluents countcf
that model the number c of active temporal actions that have
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Figure 4: The seven relations on interval pairs (X,Y ) in
Allen’s interval algebra.

f as context. For an event to delete a fluent f ∈ Fo, its count
has to equal 0 (no active actions can have f as context).

STP also has to ensure that joint events are valid, and en-
sure that contexts are properly handled at the start and end
of a temporal action. Recall that a fluent f ∈ preo(a) in the
context of a temporal action amay be added by an event that
is simultaneous with the start of a, and that f may be deleted
by an event that is simultaneous with the end of a.

The set FK,C ⊇ F contains the following new fluents:
• For each a ∈ A, fluents freea and activea indicating that
a is free (i.e. did not start) or active.

• For each f ∈ Fo and each c, 0 ≤ c ≤ K, a fluent countcf
indicating that c active actions have f as context.

• For each c, 0 ≤ c ≤ K, a fluent concurc indicating that
there are c concurrent active actions.

• Fluents endphase, eventphase and startphase corre-
sponding to the three phases described above.

• For each a ∈ A, fluents startinga, endinga, nstartinga
and nendinga indicating that a is starting, ending, not
starting and not ending, respectively.

• For each f ∈ F , fluents canpref and canefff indicating
that we can use f as a precondition or effect.

• Fluents endcounti, 0 ≤ i < C, that model the number of
times the end phase has occurred. This counter is cyclic,
i.e. if i = C − 1, then i+ 1 = 0.
To motivate the role of the end count, we consider an ex-

ample instance of the Allen’s Interval Algebra (AIA) do-
main (Jiménez, Jonsson, and Palacios 2015), where a set of
time intervals must be scheduled such that they comply with
a set of relations between them (see Figure 4). The example
is the following: the start of i1 and i2 should be simultane-
ous, as should the end of i2 and i3. The durations of the in-

tervals are 5 for i1 and i3, and 11 for i2. Figure 5a shows the
only possible solution for this problem, whereas Figure 5b
shows two different intermediate solutions A and B that the
planner might explore. The black dotted lines indicate end
phases. In solution A, the start of i3 is concurrent with the
end of i1, which is not the case in solution B. The solid red
line indicates the time at which solutionsA andB assign the
same values to the fluents in FK,C .

If no end counts are maintained and a planner first ex-
plores A, it will not find a solution since ending i2 and i3
simultaneously violates the temporal constraints. When the
planner later exploresB, it will find the state on fluents iden-
tical to A and prune this branch of search. As a result, the
planner will report that no solution exists, even though the
instance does have a valid solution, namely B. The end count
allows the planner to distinguish between A and B.

Note that the end count is not infallible: since it is cyclic,
state repetitions can still happen. The higher the end count
is, the less likely it is that states are repeated. However, in-
creasing the end count increases the complexity of the prob-
lem (higher number of fluents and actions), so it can be more
difficult to obtain a solution.
Lemma 1. The number of fluents of ΠK,C is given by
|FK,C | = 3 |F |+ 6 |A|+ (K + 1) (|Fo|+ 1) + C + 3.

Proof. By inspection of the fluents in FK,C . For each f ∈
F , FK,C contains three fluents f , canpref and canefff .
For each a ∈ A, FK,C contains six fluents freea, activea,
startinga, endinga, nstartinga and nendinga. For each f ∈
Fo, FK,C contains K + 1 fluents of type countcf , and there
areK+1 fluents of type concurc. Finally, there areC fluents
of type endcounti, and three fluents endphase, eventphase
and startphase.

The initial state IK,C is defined as

IK,C = I ∪ {freea, nstartinga, nendinga : a ∈ A}
∪ {concur0, endphase, endcount0} ∪ {count0f : f ∈ Fo}
∪ {canpref , canefff : f ∈ F},

and the goal is GK,C = G ∪ {concur0} ∪ {startphase}.

Actions
The action set AK,C contains several actions corresponding
to each temporal action a ∈ A: dostartca and launcha for
starting a, and doendca and finisha for ending a. For each c,
0 ≤ c < K, action dostartca is defined as

pre = pres(a) ∪ {eventphase, concurc, freea}
∪ {count0f : f ∈ Fo ∩ dels(a)} ∪ {canpref : f ∈ pres(a)}
∪ {canefff : f ∈ adds(a) ∪ dels(a)},

add = adds(a) ∪ {concurc+1, startinga},
del = dels(a) ∪ {concurc, freea, nstartinga}
∪ {canefff : f ∈ pres(a)}
∪ {canpref , canefff : f ∈ adds(a) ∪ dels(a)}.

For a given c < K, we can only start a in the event phase
if there are c active actions and a is free. All contexts deleted
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(a) The only possible scheduling.
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Solution A
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i2[11]
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Solution B

(b) Two possible intermediate solutions. With no end counter, B is not explored (see text).

Figure 5: Example instance of the AIA domain: i1 and i2 start at the same time, while i2 and i3 end at the same time.

at start of a need a count of 0, and all preconditions and
effects at start of a have to be available. Starting a adds fluent
startinga, deletes freea and nstartinga, and increments the
number of active actions. Moreover, deleting fluents of type
canpref and canefff prevents invalid joint events: if f is a
precondition at start of a, f can no longer be used as an
effect in this event phase, and if f is an effect at start of a, f
can no longer be used as a precondition or effect.

For each c, 0 ≤ c < K, action doendca is defined as

pre = pree(a) ∪ {eventphase, concurc+1, endinga}
∪ {count0f : f ∈ Fo ∩ dele(a)} ∪ {canpref : f ∈ pree(a)}
∪ {canefff : f ∈ adde(a) ∪ dele(a)},

add = adde(a) ∪ {concurc, freea, nendinga},
del = dele(a) ∪ {concurc+1, endinga}
∪ {canefff : f ∈ pree(a)}
∪ {canpref , canefff : f ∈ adde(a) ∪ dele(a)}}.

For a given value of c, we can only end a in the event
phase if there are c+1 active actions and a is already sched-
uled to end, represented by fluent endinga. Ending a adds
fluents freea and nendinga and decrements the number of
active actions. The remaining action definition is analogous
to dostartca and controls the validity of the joint event.

Action launcha is responsible for completing the start of
a during the start phase:

pre = preo(a) ∪ {startphase, startinga},
add = {activea, nstartinga},
del = {startinga}.

This is where we check that the contexts of a hold, and due
to the precondition startinga we can only launch a if a was
started during the event phase. The result is adding activea
and nstartinga and deleting startinga. In addition to the de-
scribed effects, the action launcha includes conditional ef-
fects 〈{countlf}, {countl+1

f }, {countlf}〉, f ∈ preo(a) and
0 ≤ l < K, incrementing the count of each f ∈ preo(a).

Finally, action finisha is needed to schedule a for ending:

pre = {endphase, activea},
add = {endinga},
del = {activea, nendinga}.

The result is adding endinga and deleting activea and
nendinga. In addition, finisha includes conditional effects
for decrementing the context counts of fluents in preo(a).

The action set AK,C also needs actions setevent, setstart

and setendi, 0 ≤ i < C, whose purpose is to switch between
phases. Action setevent is defined as

pre = {endphase},
add = {eventphase},
del = {endphase}.

Action setstart is defined as

pre = {eventphase} ∪ {nendinga : a ∈ A},
add = {startphase},
del = {eventphase}.

Note that we cannot leave the event phase unless all actions
in the joint event have ended.

Action setendi is defined as

pre = {startphase, endcounti} ∪ {nstartinga : a ∈ A}
∪ {canpref , canefff : f ∈ F},

add = {endphase} ∪ {endcountj : j = (i+ 1) mod C},
del = {startphase, endcounti}.

Note that we cannot leave the start phase unless all actions
in the joint event have started and all fluents are available as
preconditions or effects. In addition, setendi increments the
end count.

The resulting action set,AK,C , also contains a reset action
resetf for each f ∈ F :

pre = {startphase},
add = {canpref , canefff},
del = ∅.

These actions can only be applied in the start phase.

Lemma 2. The number of actions of the classical planning
problem ΠK,C is |AK,C | = (2K + 2) |A|+ C + |F |+ 2.

Proof. For each a ∈ A, AK,C contains 2K + 2 actions
dostartca, doendca, launcha and finisha, 0 ≤ c < K. AK,C
also contains C + 2 actions setevent, setstart and setendi,
0 ≤ i < C, and |F | actions of type resetf .



In the modification of FD, we introduce temporal con-
straints every time we generate events. For a given event
e, let τe = τa if e = starta for some temporal action a,
and let τe = τa + d(a) if e = enda. Let {e1, . . . , ek} be
a concurrent event generated during the event phase of our
compilation. To ensure that the events are scheduled at the
same time, we introduce the temporal constraint τej ≤ τej+1

for each j, 1 ≤ j < k, as well as the temporal constraint
τek ≤ τe1 . In addition, for each active action a′ that started
before the concurrent event, we introduce the temporal con-
straint τej + u ≤ τa′ + d(a′) for each j, 1 ≤ j < k, where
u is a slack unit of time which ensures that the end of a′
takes place strictly after ej . This last constraint is redundant
since the end of a′ will eventually be scheduled after the
given concurrent event, but in practice it helps ensure that
unsound temporal plans are pruned as soon as possible.

For two consecutive concurrent events {e1, . . . , ek} and
{e′1, . . . , e′m}, we introduce the constraint τek+u ≤ τe′1 . Our
modification of FD maintains an STN that is updated each
time a new temporal constraint is added, and prunes a search
node as soon as the temporal constraints are impossible to
satisfy, i.e. when the STN contains negative cycles.

Theorem 3 (Soundness). Let π′ be a plan that solves the
classical planning instance ΠK,C by our modified version
of FD. Given π′, we can always construct a temporal plan π
that solves the temporal planning instance Π.

Proof. The system can only be in one phase at a time, and
we can only cycle through phases in the order endphase →
eventphase → startphase → endphase using actions
setevent, setstart and setendi. The system is initially in the
end phase, and the goal state requires us to be in the start
phase with no actions active (due to goal condition concur0).

A temporal action a can start in the event phase and
launch in the start phase. Specifically, the fluent nstartinga
is deleted by dostartca and added by launcha. After starting
a in the event phase, we cannot end a until another subse-
quent event phase since the precondition endinga of action
doendca is only added by finisha, which is only applicable
in the end phase. Together with the fact that no action is ac-
tive in the goal, starting a implies that we have to fully cycle
through all the phases at least one more time. In turn, this
requires us to apply action setendi. Due to the precondition
nstartinga of setendi, we cannot start a in the event phase
without launching a in the very next start phase.

Likewise, a temporal action a can finish (i.e. be scheduled
for ending) in the end phase, and end in the event phase.
Specifically, the fluent nendinga is deleted by finisha and
added by doendca. After ending a in the event phase, we have
to apply action setstart at least one more time since the goal
state requires us to be in the start phase. Due to the precon-
dition nendinga of setstart, we cannot finish a in the end
phase without ending a in the very next event phase.

For each f ∈ F , fluents canpref and canefff are true each
time we apply action setevent, i.e. when entering the event
phase. These fluents are true in the initial state, i.e. in the end
phase, and are only deleted by actions of type dostartca and
doendca, which are only applicable in the event phase. The

precondition {canpref , canefff} of action setendi requires
us to reset f in the start phase using action resetf , and there
are no actions that delete these fluents in the end phase.

A solution plan π′ for ΠK,C thus has the following form:

〈setevent, dostarta, setstart, launcha, resetf , setend, . . . ,

. . . , setend, finisha, setevent, doenda, setstart〉

For clarity, actions that alter the phases are underlined. We
may, of course, start and launch multiple actions at once, as
well as finish and end multiple actions at once. We may also
start and end actions during the same event phase.

We show that each joint event induced by π′ is valid.
Each time a fluent f appears as an effect of an event, delet-
ing fluents canpref and canefff prohibits f from appear-
ing as a precondition or effect of another event in the same
event phase (resetf is not applicable until the following start
phase). Likewise, each time f appears as a precondition,
deleting canefff prohibits f from appearing as an effect of
another event. Because of the mechanism for finishing and
launching temporal actions, the context of a temporal action
amay be added by an event simultaneous with starting a and
deleted by an event simultaneous with ending a.

Since π′ is reported as a solution plan for ΠK,C by our
modified version of FD, the resulting STN does not contain
negative cycles, making it possible to satisfy all temporal
constraints. Since the temporal constraints require all con-
current events to take place simultaneously and all subse-
quent events to take place after a given concurrent event, we
can convert π′ into a temporal plan π by assigning a start-
ing time t = −di0 to each action ai of π′, where di0 is the
shortest distance in the graph from τi to τ0, the temporal
action that starts at time 0. This ensures that event sequence
induced by π is identical to π′. Since π′ solves ΠK,C and en-
sures that no contexts of temporal actions are violated, this
ensures that the goal condition G is satisfied after the execu-
tion of the temporal plan π, implying that π solves P .

Although STP can deal with many kinds of temporal
problems (sequential, with single hard envelopes, simulta-
neous events, . . . ), it is not complete. The reason precisely
depends on the parameters K and C. First, there can be
problems for which a given K is not enough to solve the
problem; for instance, STP will not solve a problem requir-
ing 5 concurrent actions if K < 5. Second, the end count C
is cyclic: it reduces the risk of ignoring propositionally equal
but temporally different states, but it does not remove it.

Given the dependency on K and C, an appropriate strat-
egy for trying to solve a temporal problem using STP could
consist on starting from low values of K and C and increas-
ing them while the solution is not found.

Results
We performed an evaluation in all 10 domains of the tem-
poral track of IPC-2014. Moreover, we added the DRIVER-
LOGSHIFT (DLS) domain (Coles et al. 2009), the AIA do-
main (Jiménez, Jonsson, and Palacios 2015), and a domain
based on an STN example by Cushing et al. (2007) (from



now on, we refer to this domain as CUSHING)2.
STP was executed for values of K in the range 1, . . . , 4

and with a fixed end count C = 10, which proved to
work fine in AIA instances. We compared STP to several
other planners that compile problems into classical plan-
ning: the TP planner using the same values of K, and the
TPSHE planner using the LAMA-2011 setting of FD to
solve the compiled instance. We also ran experiments for
POPF2 (Coles et al. 2010) (the runner-up at IPC-2011),
YAHSP3-MT (Vidal 2014) (the winner at IPC-2014), and
ITSAT (Rankooh and Ghassem-Sani 2015).

Table 1 shows, for each planner, the IPC quality score and
the coverage, i.e. the number of instances solved per domain.
Experiments were executed on a Linux computer with In-
tel Core 2 Duo 2.66GHz processors. Each experiment had a
cutoff of 10 minutes or 4GB of RAM memory.

The benchmark domains can be classified into four cat-
egories. Seven domains (DRIVERLOG, FLOORTILE, MAP-
ANALYSER, PARKING, RTAM, SATELLITE and STORAGE)
can be solved using sequences of temporal actions, i.e. there
is no need for actions to execute concurrently. In these do-
mains, TPSHE comes out on top, solving 98 instances with
an IPC score of 76.44, followed by TP(1) and YAHSP3-MT.
The latter can in fact only solve domains of this type. We re-
mark that at IPC-2014, YAHSP3-MT solved 103 instances;
one reason for this discrepancy is that we used a shorter cut-
off, and YAHSP3-MT is also sensitive to input parameters.

All variants of STP performed particularly poorly in these
seven domains, with the top performer being STP(1) with
34 instances solved. Compared to TP(1), which solved more
than twice that number, STP(1) incorporates additional flu-
ents and actions associated with the three phases used to
simulate events. Since events are not concurrent, these ad-
ditional fluents and action only hurt performance, resulting
in a larger state space and an increased branching factor.

A further four domains (DLS, MATCHCELLAR, TMS
and TURN&OPEN) can be solved using temporal plans that
only incorporate concurrency in the form of single hard en-
velopes (Coles et al. 2009). ITSAT is the top performer in
these domains, solving 60 instances with an IPC score of
56.97, followed by TPSHE with 59 instances solved. TP(1)
and STP(1) cannot solve any instance since they do not al-
low for concurrency. TP(2) solves 40 instances, compared
to 24 instances of STP(2), STP(3) and STP(4). Again, since
simultaneous events are not needed, the increased size of the
compilation in STP makes instances harder to solve.

The third category is represented by the CUSHING do-
main, which requires concurrency not in the form of sin-
gle hard envelopes, but does not require events to take place
simultaneously. In this domain, ITSAT and TPSHE cannot
solve any instances, and the top performer is instead POPF2,
which solves all instances. TP(3) and TP(4) also solve all in-
stances but produce plans with longer makespan, and STP(3)
and STP(4) solve 14 and 5 instances, respectively. Yet again
the additional machinery of STP does not pay off. The fact
that STP(4) performs much worse than STP(3) highlights

2The code of the compilation and the domains are available at
https://github.com/aig-upf/temporal-planning.

Domain Compression Domain Compression
AIA 0.94 MATCHCELLAR 0.83
CUSHING 0.85 PARKING 0.66
DLS 0.66 SATELLITE 0.72
MAPANALYSER 0.72

Table 2: Average level of compression of plans returned by
STP(K) in relation to the best results of the other planners.

the fact that the increased number of fluents and actions
makes instances more difficult to solve.

The only domain in which STP excels is AIA, in which
many instances do require concurrency in the form of simul-
taneous events, representing the fourth and final category.
STP(4) is the only planner that can solve all 25 instances.
POPF2 and TP(4) solve all 10 instances that do not require
simultaneous events, and all planners solve the 3 instances
that can be solved using sequential temporal plans.

Although STP performs poorly in most domains, we still
argue that the ability to deal with simultaneous events in a
forward-search temporal planner is a contribution to the field
of temporal planning, for two reasons. The benchmark do-
mains commonly used in temporal planning present a clear
bias towards domains that are challenging from a combina-
torial perspective, but the temporal aspect is almost trivial,
which is the reason that few temporal planners are able to
handle concurrent temporal actions in a robust manner. The
reason STP performs poorly is mostly because of the com-
binatorial aspect, since the ability to deal with simultaneous
events comes with a price: an increased number of fluents
and actions, resulting in a larger search space.

The second reason that STP may have an impact is if re-
searchers develop a way to analyze temporal planning do-
mains prior to solving them. If the analysis shows that a do-
main is temporally simple, then there is no need to run STP,
since it will always perform worse than several other alterna-
tives. Only when the analysis determines that more intricate
forms of concurrency are required , STP will be executed.

Since STP can output plans with simultaneous events, we
compare the number of events in its plans with the number of
events in other planners. Table 2 shows how much STP(K)
planners compress (on average) plans in comparison to the
other planners (TPSHE, TP(K), POPF2, YAHSP3-MT and
ITSAT). Given a problem, we compare the number of events
in plans output by STP(K) against the number of events out-
put by a planner from the other group. The comparison is
done just if the problem is solved by both groups.

From the table, we observe that solutions returned by STP
always contain less events than the other planners. In do-
mains like DLS and PARKING, the solutions contain around
30% less events compared to the other planners.

Related Work
Several authors have provided theoretical justification for
splitting durative actions into classical actions (Cooper,
Maris, and Régnier 2013) and proposed a compilation for
doing so. An early approach, LPGP (Long and Fox 2003),
turned out to be unsound and incomplete since it failed to (1)
ensure that temporal actions end before reaching the goal,



TPSHE TP(1) TP(2) TP(3) TP(4) STP(1) STP(2) STP(3) STP(4) POPF2 YAHSP3-MT ITSAT
AIA[25] 3/3 3/3 6.5/8 7.5/9 8.5/10 3/3 17.17/22 19.51/24 23.5/25 10/10 3/3 3/3
CUSHING[20] 0/0 0/0 0/0 4.07/20 4.93/20 0/0 0/0 3.31/14 2.28/5 20/20 0/0 0/0
DRIVERLOG[20] 14.78/15 1.42/5 0.93/3 1.08/4 0.91/3 0/0 0/0 0/0 0/0 0/0 2.31/4 1/1
DLS[20] 9.37/11 0/0 10/10 7.7/9 8.06/9 0/0 3.78/4 3.9/4 3.49/4 7/7 0/0 16.18/19
FLOORTILE[20] 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 4.93/5 19.7/20
MAPANALYSER[20] 17.38/20 10.16/19 13.08/20 12.34/20 12.02/19 9.18/19 9.81/17 10.09/16 7.69/12 0/0 1/1 0/0
MATCHCELLAR[20] 15.72/20 0/0 15.71/20 15.71/20 15.71/20 0/0 15.71/20 15.71/20 15.71/20 20/20 0/0 18.91/19
PARKING[20] 6.73/20 5.59/19 5.79/17 5.67/17 5.33/16 1.67/6 1.79/6 1.93/6 1.93/6 12/13 16.84/20 0.96/6
RTAM[20] 16/16 4.91/11 2.45/6 2.73/6 2.79/6 0/0 0/0 0/0 0/0 0/0 0/0 0/0
SATELLITE[20] 16.63/18 7.99/19 4.97/13 5.04/13 4.67/12 2.31/6 0/0 0/0 0/0 2.92/3 13.82/20 1.68/7
STORAGE[20] 4.92/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 3.91/9 9/9
TMS[20] 0.06/9 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 16/16
TURN&OPEN[20] 15.53/19 0/0 5.05/10 5.03/10 5.19/10 0/0 0/0 0/0 0/0 7.31/8 0/0 5.88/6
Total 120.12/160 33.07/76 64.49/107 66.87/128 68.11/125 16.16/34 48.26/69 54.45/84 54.61/72 79.22/81 45.8/62 92.3/106

Table 1: IPC quality score / coverage per domain for each planner. Total number of instances of each domain between brackets.

(2) ensure that the contexts of temporal actions are not vio-
lated, and (3) ensure that temporal constraints are preserved.

Rintanen (2007) proposed a compilation from temporal
to classical planning that explicitly represents time units as
objects. The compilation includes classical actions that start
temporal actions, and keeps track of time elapsed in order
to determine when temporal actions should end. The compi-
lation only handles integer duration, potentially making the
planner incomplete when events have to be scheduled frac-
tions of time units apart and, as far as we know, this compila-
tion has never been implemented as part of an actual planner.

The planners most similar to ours are TPSHE and TP
(Jiménez, Jonsson, and Palacios 2015). Both planners are
based on compiling temporal planning problems to clas-
sical planning problems. TPSHE only handles instances
where required concurrency is in the form of single hard en-
velopes. In contrast, TP partially compiles temporal actions
into classical planning and introduces an STN into the Fast
Downward classical planner to enforce temporal constraints.
POPF (Coles et al. 2010) and OPTIC (Benton, Coles, and
Coles 2012) also use STNs. POPF encodes the STN using
linear programming which allows it to compute plans with
actions that cause continuous linear numeric changes. OP-
TIC encodes the STN as a mixed integer problem which ad-
ditionally allows handling temporally dependent costs.

With respect to planners that perform explicit state-
space search, an interesting direction is the exploitation
of landmarks. This group includes the TEMPLM plan-
ner (Marzal, Sebastia, and Onaindia 2014) that discovers
classical landmarks from a temporal instance, and builds
a landmark graph that expresses the temporal relations be-
tween these landmarks. This approach has proven useful
to detect unsolvable instances under deadline constraints.
However, in the absence of tightly-constrained dead-ends
it does not yield significant benefits over classical causal
landmarks. Karpas et al. (2015) do not rely on the pres-
ence of deadlines to discover landmarks that are not causal
landmarks and define notions of temporal fact landmarks,
which state that some fact must hold between two given time
points, and temporal action landmarks, which state that the
start or end of an action must occur at a given time point.

Satisfiability checking is also an important trend in tem-
poral planning. Similarly to the SAT-based approaches for
classical planning, temporal planning instances can be en-

coded as SAT problems. The SAT encoding for tempo-
ral planning instances is more elaborated since it involves
choosing the start times of actions and verifying the tem-
poral constraints between them. Moreover, PDDL induces
temporal gaps between consecutive interdependent actions
that effectively doubles the number of joint events required
to solve a given temporal planning instance and hence affect-
ing the performance of SAT-based search approaches. The
ITSAT planner (Rankooh and Ghassem-Sani 2015) deals
with this issue by abstracting out the duration of actions
and separating action sequencing from scheduling. ITSAT
assumes that actions can have arbitrary duration and en-
codes the abstract problem into a SAT formula to gener-
ate a causally valid plan without checking the existence of
a valid schedule. To find a temporally valid plan, ITSAT
then tries to schedule the causally valid plan solving the
STN defined by the duration of the actions in the plan. If
the STN can be solved, ITSAT returns a valid plan, but if
not, ITSAT adds the sequence of events that led to the un-
solvable STN as new blocking clauses in the SAT encod-
ing. The process is repeated until a valid temporal plan is
achieved. A different approach is producing a SAT encod-
ing that integrates action sequencing and scheduling. Re-
cently the modeling language NDL has been proposed as
an alternative to PDDL with the aim of producing a SAT
Modulo Theories encoding where action sequencing and
scheduling are tightly integrated (Rintanen 2015a). Rinta-
nen (2015b) showed that while PDDL forces temporal gaps
in action scheduling (which have a performance penalty),
NDL avoids such gaps using the notion of resources.

Conclusions
We introduced a compilation from temporal planing with
simultaneous events to classical planning, and proved it
returns sound plans if used in a forward-search planner
that maintains STNs for checking temporal consistency. We
showed that our approach performs well in domains requir-
ing simultaneous events, although it is not competitive in do-
mains requiring simpler forms of concurrency. We only use
the actual durations of actions in the STN to verify consis-
tency, making our compilation closer to the state-based def-
inition of temporal planning (Rintanen 2007), where dura-
tions did not appear. Moreover, we avoid the proposed coun-
ters on the remaining duration of actions, instead relying on



temporal constraints to enforce soundness.
Solving rich planning problems using classical planning

usually involves modeling trajectories that can be translated
to rich plans, and additional constraints to enforce the clas-
sical planning trajectories correspond to sound rich plans
(Baier, Bacchus, and McIlraith 2009; Palacios and Geffner
2009). These mechanisms could be challenging for state-of-
the-art planners, developed around handmade benchmarks.

Regarding the cost of compilation, the increase in the
number of fluents and actions is polynomial, ensuring that
the existence of a classical plan remains in PSPACE. The
STN, used by STP to verify the consistency of temporal con-
straints, grows linearly with the length of the plan, as grows
the plan representation built by state-of-the-art planners.
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